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Abstract. One of interesting subjects in Data Envelopment Analysis 
(DEA) is estimation of congestion of Decision Making Units (DMUs).
Congestion is evidenced when decreases (increases) in some inputs re-
sult in increases (decreases) in some outputs without worsening (im-
proving) any other input/output. Most of the existing methods for
measuring the congestion of DMUs utilize the traditional definition of
congestion and assume that inputs and outputs change with the same
proportion. Therefore, the important question that arises is whether
congestion will occur or not if the decision maker (DM) increases or de-
creases the inputs dis-proportionally. This means that, the traditional
definition of congestion in DEA may be unable to measure the con-
gestion of units with multiple inputs and outputs. This paper focuses
on the directional congestion and proposes methods for recognizing the
directional congestion using DEA models. To do this, we consider two
different scenarios: (i) just the input direction is available. (ii) none
of the input and output directions are available. For each scenario,
we propose a method consists in systems of inequalities or linear pro-
gramming problems for estimation of the directional congestion. The
validity of the proposed methods are demonstrated utilizing two nu-
merical examples.
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1. Introduction

In recent years, DEA has been applied as a powerful tool for performance eval-
uation. Since then, a large amount of studies has been done in DEA theory and
practice. Emrouznejad and Yang [9] reported DEA studies from 1978 to end of
2016. The concept of congestion is an important subject in DEA and management.
It occurs when the reduction (increment) in some inputs results in the maximum
possible increase (decrease) in some outputs without worsening (improving) other
input/output (Cooper et al. [5]). The DM can apply congestion to decide about in-
creasing or decreasing the size of a particular DMU. The problem of the congestion
estimation of decision making units has attracted attentions of several scholars.
Färe and Sevensson [10] formulated a linear programming model to define the
concept of congestion in a production technology with a single output. Färe et
al. [11] emphasized on the efficiency evaluation and proposed a radial model to
estimate the congestion. Because of the congestion is a kind of inefficiency, there-
fore, their model may be unable to recognize the congestion in some situations.
Later, Cooper et al. [6] proposed a slack-based method to measure the congestion
of DMUs. The advantage of their method over previous methods is that it not only
distinguishes the congested inputs, but also measures the amount of congestion
of each input. Cooper et al. [7] developed an additive model for identifying the
congestion of units.

Regarding the traditional definition of congestion, the congestion is evidenced
when the increase in some inputs results in the decrease in some outputs, hence,
it can identify the shortfall of outputs. In this respect, Wei and Yan [23] and Tone
and Sahoo [21] considered the congestion in outputs. Wei and Yan [24] considered
the output oriented DEA models to recognize the necessary and sufficient condi-
tions for the existence of congestion. Sueyoshi and Sekitani [20] dealt with the
situation that there exist alternative optimal solutions in models for measuring
the congestion and proposed an approach to measure the congestion of decision
making units. Ghomashi and Abbasi [12] proposed a linear inequality and equality
system to estimate the congestion of decision making units. Kheirollahi et al. [15]
developed an input relaxation model to identify the input congestion of units in
data envelopment analysis with fuzzy data. Khoveyni et al. [16] proposed mixed
integer programming (MIP) models to determine the strongly and weakly most
congested units in the presence of negative data. Mehdiloozad et al. [18] intro-
duced the concept of Max-projection for the congestion of inefficient units and
proposed a linear programming model to identify the Max-projection and also de-
veloped a single-stage LP model to estimate the congestion of units. Ebrahimzade
Adimi et al. [8] introduced the concept of the congestion hyperplane and applied
it to measure the congestion of DMUs. For more studies about congestion see
Jahanshahloo and Khodabakhshi [13], Kao [14], Noura et al. [19], Khoveyni et
al. [17] and Wu et al. [27], Wu et al. [25], [26].

The conventional DEA models assume that all inputs and outputs are deter-
ministic. However, this assumption may not always hold true due to existence of
uncertainty for example inputs and outputs might be stochastic or fuzzy data. See
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Wanke et al. [22] for more studies about the comparison between DEA and fuzzy
DEA models.

There are two basic terms in the congestion literature: strong and weak conges-
tion. If decreases in all (some) inputs of the DMU result in increases in all (some)
outputs of it, then this decision making unit has strong (weak) congestion. There
exist main drawbacks with the definitions of strong and weak congestion. First,
strong and weak congestion only consider the situation that the decreases in inputs
can be associated with the increases in outputs and the case that the increases in
some inputs result in the decreases in some outputs without improving any other
input or output is not considered in these definitions. Second, in case of strong or
weak congestion, we cannot recognize the precise direction along which the con-
gestion occurs. This means that we do not know whether congestion will occur
or not if the DM increases (or decreases) inputs and outputs dis-proportionally.
Therefore, we may be unable to estimate the congestion of DMUs with multiple
inputs and outputs. In this regard, Yang [28] proposed the definition of the di-
rectional congestion along certain input and output directions. He proposed two
methods with different perspectives to estimate the directional congestion. Both
methods assume that input and output directions are predetermined by the DM.

The methods of Yang [28] only consider the existence of congestion along the
certain input/output directions. In other words, if a DMU has no congestion
along these certain directions, no information about the existence or absence of
the congestion along other directions can be obtained. Therefore, we consider the
situation in which at least one input or output direction is not specified. Two
different scenarios are considered in this paper: (i) a scenario in which only the
input direction is specified. We present two methods to estimate the directional
congestion for this scenario. If there exists the congestion along a certain input di-
rection, both methods can find an output direction along which congestion occurs.
(ii) a scenario based on the assumption that both input and output directions are
not specified. We propose a system of inequalities to find input and output direc-
tions along which the congestion occurs in this scenario. This study addresses the
relationship between our defined directional congestion and the classical definition
of strong and weak congestion.

The rest of this paper is organized as follows: Section 1 reviews preliminaries
and basic definitions. In section 2, we present three methods to estimate the
directional congestion. Numerical examples are provided in section 3. Section 4
concludes the paper.

2. Preliminaries and basic definitions

Suppose that there exist n decision making units, DMUj , j = 1, ..., n, and each

DMU consumes m inputs to produce s outputs. The ith input and rth output for
DMUj are denoted by xij and yrj , respectively for i = 1, ...m and r = 1, ..., s. We
assume that all input and output values are non-negative, and at least one of each
is non-zero. Let DMUo = (xo, yo) be the unit under assessment. The production
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Possibility Set (PPS) with variable returns to scale (VRS) defined by Banker et
al. [1] is as follows:

Tv = {(x, y)|x ≥
n∑

j=1

λjxj , y ≤
n∑

j=1

λjyj ,
n∑

j=1

λj = 1, λj ≥ 0, j = 1, ..., n} (1)

The output-oriented BCC model proposed by Banker et al. [1] for evaluating
the efficiency score of DMUo is as follows:

ψ∗ = max ρ+ ε(
m∑
i=1

s−i +
s∑

r=1

s+r )

s.t.
n∑

j=1

λjxij + s−i = xio, i = 1, ...,m, (2)

n∑
j=1

λjyrj − s+r = ρ yro, r = 1, ..., s,

n∑
j=1

λj = 1,

λj ≥ 0, j = 1, ..., n,
s−i ≥ 0, i = 1, ...,m,
s+r ≥ 0, r = 1, ..., s.

where ε is non-Archimedean.
Banker et al. [1] presented the following definition:

Definition 1. Suppose that (ρ∗, s−
∗
, s+

∗
, λ∗) is an optimal solution for model

(2) evaluating DMUo. If ρ∗ = 1 then DMUo is called technically efficient. Fur-
thermore, if ψ∗ = 1, DMUo is called strongly efficient.

Cooper et al. [3] and Brockett et al. [2] presented the classical definition of
congestion as follows:

Definition 2. The unit DMUo = (xo, yo) has congestion if the decreases (in-
creases) in some inputs result in the increases (decreases) in some outputs without
worsening (improving) other inputs/outputs.

There are several approaches to recognize the congestion. For example, Tone
and Sahoo [21] proposed TS method which is summarized as follows:

2.1. TS method

Tone and Sahoo [21] defined the PPS accepting all assumptions to build Tv
except one assumption, strong disposal. They considered weak disposal instead,
which was defined as follows:
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Definition 3. The PPS satisfies weak disposal assumption if for each (x̄, ȳ)
belonging to the PPS and vector (x, y) where x = x̄ and y ≤ ȳ, (x, y) belongs to
the PPS.

Therefore, Tone and Sahoo [21] presented the following PPS:

Pconvex = {(x, y)|x =
n∑

j=1

λjxj , y ≤
n∑

j=1

λjyj ,
n∑

j=1

λj = 1, λj ≥ 0, j = 1, ..., n} (3)

They proposed the following model to evaluate the efficiency score of DMUo,
with respect to Pconvex :

Φ∗ = max Φ + ε(
s∑

r=1

s+r )

s.t.
n∑

j=1

λjxij = xio, i = 1, ...,m, (4)

n∑
j=1

λjyrj − s+r = Φyro, r = 1, ..., s,

n∑
j=1

λj = 1,

λj ≥ 0, j = 1, ..., n,
s+r ≥ 0, r = 1, ..., s.

It is clear that the target unit for DMUo, located on the strongly efficient
frontier of Pconvex is as follows:

x̂io = xio, i = 1, ...,m,
(5)

ŷro = Φ∗yro + s+∗
r , r = 1, ..., s.

Tone and Sahoo [21] presented the following definitions for strongly efficient
unit, strong congestion and weak congestion, respectively:

Definition 4. The unit DMUo = (xo, yo) is strongly efficient unit with respect
to Pconvex, if Φ∗ = 1.

Definition 5. Suppose that DMUo = (xo, yo) is strongly efficient unit with
respect to Pconvex. DMUo has strong congestion if there exists (x̄o, ȳo) ∈ Pconvex

such that x̄o = αxo(0 < α < 1) and ȳo ≥ βyo(β > 1).

Definition 6. Suppose that DMUo = (xo, yo) is strongly efficient unit with
respect to Pconvex. DMUo has weak congestion if there exists an activity in Pconvex

that uses less resources in some components of the input vector to produce more
products in some components of the output vector.
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Tone and Sahoo [21] assumed that DMUo is strongly efficient unit with re-
spect to Pconvex. If not, they projected DMUo on to the strongly efficient frontier
of Pconvex and then applied the following method to recognize the strongly and
weakly congested units:

Step 1. Solve model (2). Suppose that (ρ∗, s−∗, s+∗, λ∗) is an optimal solution
for this model:

(a) If ρ∗ = 1, s−∗ = 0, s+∗ = 0, then DMUo = (xo, yo) is BCC-efficient
and not congested.

(b) If ρ∗ = 1, s−∗ 6= 0, s+∗ = 0, then DMUo = (xo, yo) is technically
inefficient.

(c) If ρ∗ = 1, s+∗ 6= 0 or ρ∗ > 1, then DMUo = (xo, yo) has congestion.
Go Step 2.

Step 2. Solve model (6):

ũ = maxuo

s.t.

s∑
r=1

uryro = 1, (6)

s∑
r=1

uryrj −
m∑
i=1

vixij + uo ≤ 0, j = 1, ..., n, j 6= o,

s∑
r=1

uryro −
m∑
i=1

vixio + uo = 0,

ur ≥ 0, r = 1, ..., s,
vi free, i = 1, ...,m,
uo free.

suppose that ũ is the optimal value of model (6) and ρ̃ = 1 + ũ. If ρ̃ < 0 then
DMUo has strong congestion, otherwise it has weak congestion.

Step 3. Termination.

The definition of strong and weak congestion has main drawbacks. First, strong
and weak congestion only consider the situation that decreases in inputs can be
associated with increases in outputs and the case that increases in inputs result in
decreases in outputs without improving any other input or output, is not consid-
ered in these definitions. Second, in case of strong or weak congestion, we cannot
recognize the precise direction along which the congestion occurs. This means
that we do not know whether congestion will occur or not if the DM increases (or
decreases) inputs dis-proportionally. Therefore, we may be unable to estimate the
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congestion of DMUs with multiple inputs and outputs. In this regard, Yang [28]
proposed the definition of directional congestion along certain input and output
directions. He proposed two methods with different perspectives to estimate the
directional congestion. Both methods assume that input and output directions are
predetermined.

The methods of Yang [28] only consider the existence of congestion along the
certain input/output directions. In other words, if a DMU has no congestion
along these certain directions, no information about the existence or absence of
the congestion along other directions can be obtained. Therefore, we consider the
situation in which at least one input or output direction is not specified. Two
different scenarios are considered in this paper: (i) a scenario in which only the
input direction is specified. We present two methods to estimate the directional
congestion for this scenario. If there exists the congestion along a certain input di-
rection, both methods can find an output direction along which congestion occurs.
(ii) a scenario based on the assumption that both input and output directions are
not specified. We propose a system of inequalities to find input and output direc-
tions along which the congestion occurs in this scenario. This study addresses the
relationship between our defined directional congestion and the classical definition
of strong and weak congestion.

3. Our proposed methods for determining the
directional congestion

In this section, we consider two different scenarios to recognize the directional
congestion. In the first scenario only the input direction is specified. We present
two methods to estimate the directional congestion for this scenario. One of them
is based on solving linear programming problems and the other one is based on
solving systems of inequalities. If a unit is directionally congested along a certain
input direction, then our methods find an output direction along which congestion
occurs. In the second scenario both input and output directions are not specified.
We propose systems of inequalities to find the input and output directions along
which congestion occurs in this scenario.

We consider Pconvex in both scenarios and we investigate the congestion for the
strong efficient unit with respect to Pconvex.

3.1. The first scenario

Assume that the input direction vector ~w = (w1, w2, ..., wm) ≥ 0 is specified
by the DM along which the components of the input vector of DMUo should be
changed. First, the components of the input vector of DMUo are decreased along

~w and we find an output direction vector (~δo) along which the output components
of DMUo are increased. If there exists such an output direction vector, then
DMUo is directionally congested from the left along ~w. Then, the components of
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the input vector of DMUo are increased along ~w and we find an output direction

vector (~δ′o) along which the output components of DMUo are decreased. If there
exists such an output direction vector, then DMUo is directionally congested from
the right along ~w. If DMUo is directionally congested from the left and right, then
this unit is directionally congested along ~w. Otherwise DMUo is not directionally
congested along the input direction vector ~w.

We propose two methods in sections 2.1.1 and 2.1.2 to determine whether
DMUo is directionally congested along ~w or not.

In the first proposed method for the first scenario, we determine the output
direction vectors along which the congestion occurs from the left and right by
solving the systems of inequalities. In the second proposed method for the first
scenario, we determine the output direction vectors along which the congestion
occurs from the left and right by solving linear programming problems.

3.1.1. The first method for the first scenario

In this method, firstly, we consider the reduction in the components of the input
vector of DMUo along ~w and the increment in the components of the output vec-

tor of DMUo along an output direction vector (~δo) obtained by solving a system
of inequalities. Afterwards, we consider the increment in the components of the
input vector of DMUo along ~w and the reduction in the components of the output

vector of this unit along an output direction vector (~δ′o) obtained by solving an-
other system of inequalities. In the following, we present Algorithm I to recognize
the directional congestion in the first scenario.

Algorithm I

Step 1. Solve model (7) to know whether we can decrease the components of
the input vector of DMUo, along the input direction vector ~w = (w1, w2, ..., wm)
or not.

θ∗o = max θ

s.t.
n∑

j=1

λjxij = xio − θwixio, i = 1, ...,m, (7)

n∑
j=1

λjyrj ≥ (1 + β)yro, r = 1, ..., s,

n∑
j=1

λj = 1,

λj ≥ 0, j = 1, ..., n,
θ ≥ 0, β free

Theorem 1. If θ∗o = 0 at the optimality of model (7), then DMUo is not
directionally congested along ~w = (w1, w2, ..., wm).
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Proof. If θ∗o = 0, then the maximum possible decrease in the components of the
input vector of DMUo along ~w = (w1, w2, ..., wm) is zero. This means that we
cannot decrease inputs along ~w. Hence, DMUo is not directionally congested from
the left along ~w. Therefore, this unit is not directionally congested along ~w =
(w1, w2, ..., wm). �

If θ∗o > 0, then go to step 2.

Step 2. Consider the following system of inequalities:

n∑
j=1

λjxij = xio − αwixio, i = 1, ...,m, (8)

n∑
j=1

λjyrj ≥ yro + δroyro, r = 1, ..., s,

n∑
j=1

λj = 1,

s∑
r=1

δro = 1,

λj ≥ 0, j = 1, ..., n,
δro ≥ 0, r = 1, ..., s,
0 ≤ α ≤ θ∗o .

If system (8) has no solution, then DMUo is not directionally congested from
the left along ~w = (w1, w2, ..., wm) because there exists no direction vector along
which the output components of DMUo increase. Otherwise, there exists an out-

put direction vector ~δo = (δ1o, δ2o, ..., δso), obtained from system (8), such that
the output components of DMUo increase along it. This means that DMUo is
directionally congested from the left along the input direction ~w = (w1, w2, ..., wm)

and the output direction ~δo = (δ1o, δ2o, ..., δso).

Go step 3 to determine the right-hand congestion:

Step 3. Solve model (9) to determine whether we can increase the components
of the input vector of DMUo, along the input direction vector ~w = (w1, w2, ..., wm)
or not.

θ
′∗
o = max θ

′

s.t.
n∑

j=1

λjxij = xio + θ
′
wixio, i = 1, ...,m, (9)

n∑
j=1

λjyrj ≥ (1 + β)yro, r = 1, ..., s,
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n∑
j=1

λj = 1,

λj ≥ 0, j = 1, ..., n,

θ
′ ≥ 0, β free.

Theorem 2. If θ
′∗
o = 0 at the optimality of model (9), then DMUo is not

directionally congested along ~w = (w1, w2, ..., wm).

Proof. If θ
′∗
o = 0 then the maximum possible increase in the components of the

input vector of DMUo along ~w = (w1, w2, ..., wm) is zero. This means that we
cannot increase inputs along ~w. Hence, DMUo is not directionally congested from
the right along ~w. Therefore, this unit is not directionally congested along ~w =
(w1, w2, ..., wm).

�

If θ
′∗
o > 0, then go step 4.

Step 4. Consider the following system of inequalities:

n∑
j=1

λjxij = xio + αwixio, i = 1, ...,m, (10)

n∑
j=1

λjyrj ≥ yro − δ
′

royro, r = 1, ..., s,

n∑
j=1

λj = 1,

s∑
r=1

δ
′

ro = 1,

λj ≥ 0, j = 1, ..., n,

δ
′

ro ≥ 0, r = 1, ..., s,

0 ≤ α ≤ θ′∗o .

If system (10) has no solution, then DMUo is not directionally congested from
the right along ~w = (w1, w2, ..., wm) because there exists no direction vector along
which the output components of DMUo decrease. Otherwise, there exists an out-

put direction vector ~δ′o = (δ
′

1o, δ
′

2o, ..., δ
′

so), obtained from system (10), such that
the output components of DMUo decrease along it. This means that DMUo is di-
rectionally congested from the right along the input direction ~w = (w1, w2, ..., wm)

and the output direction vector ~δ′o = (δ
′

1o, δ
′

2o, ..., δ
′

so). If DMUo is directionally
congested from the both sides, then, this unit is directionally congested along the
input direction ~w = (w1, w2, ..., wm).

In what follows, we propose the second method.
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3.1.2. The second method for the first scenario

In the following, we present Algorithm II to recognize the directional congestion
in the first scenario.

Algorithm II

Step 1. Solve model (7) to determine whether we can decrease the components
of the input vector of DMUo, along the input direction vector ~w = (w1, w2, ..., wm)
or not. As we said in Algorithm I, if θ∗o = 0 at the optimality of model (7), then
DMUo is not directionally congested from the left along ~w = (w1, w2, ..., wm).
Otherwise, go to step 2.

Step 2. Solve model (11) or the linearized form of it, namely model (12), to

find the output direction vector ~δo = (δ1o, ..., δso) along which the output compo-
nents of DMUo have the maximum possible increase:

τ∗o = max ( min
1≤r≤s

δro)

s.t.

n∑
j=1

λjxij = xio − αwixio, i = 1, ...,m, (11)

n∑
j=1

λjyrj ≥ yro + δroyro, r = 1, ..., s,

n∑
j=1

λj = 1,

s∑
r=1

δro = 1,

λj ≥ 0, j = 1, ..., n,
δro ≥ 0, r = 1, ..., s,
0 ≤ α ≤ θ∗o .

Model (11) can be transformed into linear programming model (12) by intro-
ducing the variable τ = min

1≤r≤s
δro:

τ∗o = max τ

s.t.
n∑

j=1

λjxij = xio − αwixio, i = 1, ...,m, (12)

n∑
j=1

λjyrj ≥ yro + δroyro, r = 1, ..., s,

n∑
j=1

λj = 1,
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s∑
r=1

δro = 1,

τ ≤ δro, r = 1, ..., s,
λj ≥ 0, j = 1, ..., n,
δro ≥ 0, r = 1, ..., s,
τ ≥ 0,
0 ≤ α ≤ θ∗o .

The feasible set of model (12) is as follows:

S1 = {(α, τ, ~λ, ~δo)|~λX ≤ xo − α~wxo, ~λY ≥ yo + ~δoyo,~1.~λ = 1,~1. ~δo = 1, ~λ ∈
Rn

≥,
~δo ∈ Rs

≥, α ≤ θ∗o , ~τ ≤ ~δo}. (13)

where ~τ = (τ, ..., τ) ∈ Rs and alsoX = [x1, x2, ..., xn]m×n and Y = [y1, y2, ..., yn]s×n

are input and output matrices, respectively.

Therefore, there are two the following cases:

1) If S1 = ∅, then there exists no output direction vector along which the
components of the output vector of DMUo increase. Therefore DMUo is not di-
rectionally congested from the left along ~w = (w1, w2, ..., wm), therefore it is not
directionally congested along ~w.

2) Let S1 6= ∅ and (α∗, τ∗, ~λ∗, ~δ∗o) be an optimal solution for model (12). There-
fore (δ∗1o, δ

∗
2o, ..., δ

∗
so) is the output direction vector along which the components of

the output vector of DMUo have the maximum possible increase. This means that
DMUo is directionally congested from the left along ~w = (w1, w2, ..., wm), and go
to step 3.

Step 3. Solve model (9) to determine whether we can increase the components
of the input vector of DMUo, along the input direction vector ~w = (w1, w2, ..., wm)

or not. As we said in Algorithm I, if θ
′∗
o = 0 at the optimality of model (9), then

DMUo is not directionally congested from the right along ~w = (w1, w2, ..., wm).
Otherwise, go to step 4.

Step 4. Solve model (14) or the linearized form of it, namely model (15), to

find the output direction vector ~δ′o = (δ
′

1o, ..., δ
′

so) along which the output compo-
nents of DMUo have the maximum possible decrease:

τ
′∗
o = max( min

1≤r≤s
δ
′

ro)

s.t.
n∑

j=1

λjxij = xio + αwixio, i = 1, ...,m, (14)
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n∑
j=1

λjyrj ≥ yro − δ
′

royro, r = 1, ..., s,

n∑
j=1

λj = 1,

s∑
r=1

δ
′

ro = 1,

λj ≥ 0, j = 1, ..., n,

δ
′

ro ≥ 0, r = 1, ..., s,

0 ≤ α ≤ θ′∗o .

Model (14) can be transformed into linear programming model (15) by intro-

ducing the variable τ
′

= min
1≤r≤s

δ
′

ro:

τ
′∗
o = max τ

′

s.t.
n∑

j=1

λjxij = xio + αwixio, i = 1, ...,m, (15)

n∑
j=1

λjyrj ≥ yro − δ
′

royro, r = 1, ..., s,

n∑
j=1

λj = 1,

s∑
r=1

δ
′

ro = 1,

τ
′ ≤ δ′ro, r = 1, ..., s,

τ
′ ≥ 0,
λj ≥ 0, j = 1, ..., n,

δ
′

ro ≥ 0, r = 1, ..., s,

0 ≤ α ≤ θ′∗o .

The feasible set of model (15) is as follows:

S2 = {(α, ~τ ′ , ~λ, ~δ′o)|~λX ≤ xo + α~wxo, ~λY ≥ yo − ~δ′oyo,~1.
~λ = 1,~1. ~δ′o = 1, ~λ ∈

Rn
≥,
~δ′o ∈ Rs

≥, α ≤ θ
′∗
o ,

~τ ′ ≤ ~δ′o}. (16)

where ~τ ′ = (τ
′
, ..., τ

′
).

Therefore, there are two the following cases:

1) If S2 = ∅, then there exists no output direction vector along which the
components of the output vector of DMUo decrease. Therefore, DMUo is not
directionally congested from the right along ~w = (w1, w2, ..., wm) and it is not
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directionally congested along ~w.

2) Let S2 6= ∅ and (α∗, τ
′∗, ~λ∗, ~δ′o) be an optimal solution for model (15).

Therefore (δ
′∗
1o, δ

′∗
2o, ..., δ

′∗
so) is the output direction vector along which the com-

ponents of the output vector of DMUo have the maximum possible decrease.
This means that DMUo is directionally congested from the right along ~w =
(w1, w2, ..., wm).

Now, we show the relationship between our defined directionally congestion and
the classical definitions for the strong and weak congestion.

Theorem 3. If DMUo is directionally congested from the left along the input
direction vector ~w = (w1, w2, ..., wm), it is weakly congested.

Proof. If DMUo is directionally congested from the left along ~w = (w1, w2, ..., wm)
then the components of the input vector of DMUo decrease along ~w and there

exists an output direction vector ~δo = (δ1o, δ2o, ..., δso) along which the components
of the output vector of DMUo are increased. Since, some components of ~w =

(w1, w2, ..., wm) and ~δo = (δ1o, δ2o, ..., δso) may be zero, there exists at least one
activity in Pconvex that uses less resources in some inputs to make more products
in some outputs. In other words, DMUo is weakly congested.

�

Theorem 4. Suppose that DMUo is directionally congested from the left
along the input direction vector ~w = (w1, w2, ..., wm) > 0. If the components of
the output direction vector, obtained from system (8) or model (12), are positive,

i.e., ~δo = (δ1o, δ2o, ..., δso) > 0, then DMUo is strongly congested.

Proof. Since ~w = (w1, w2, ..., wm) > 0 and DMUo is directionally congested from
the left, therefore, all input components are reduced along ~w. Suppose that the
components of the output direction vector, obtained by Algorithm I and Algo-

rithm II, are positive, i.e., ~δo = (δ1o, δ2o, ..., δso) > 0. This means that, all output

components are increased along ~δo. In other words, by decreasing all input com-
ponents of DMUo along ~w, all output components of this unit are increased along

the output direction vector ~δo = (δ1o, δ2o, ..., δso). Therefore, DMUo is strongly
congested.

�

3.2. The second scenario

Now, we consider the scenario where none of input or output directions are spec-
ified. At the first step, we try to find an input direction vector ~wo = (w1o, w2o, ...,

wmo) and an output direction vector ~δo = (δ1o, δ2o, ..., δso) such that the input
components of DMUo decrease along ~wo, and the output components of DMUo

increase along ~δo. If such vectors exist, then DMUo is directionally congested
from the left. At the second step, we try to find an input direction vector
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~w′o = (w
′

1o, w
′

2o, ..., w
′

mo) and an output direction vector ~δ′o = (δ
′

1o, δ
′

2o, ..., δ
′

so) such

that the input components of DMUo increase along ~w′o and the output compo-

nents of DMUo decrease along ~δ′o. If such vectors exist, then DMUo is directionally
congested from the right. Finally, if DMUo is directionally congested from both
sides, then this unit is directionally congested. The following algorithm recognizes
the directional congestion.

Algorithm III

Step 1: Solve system (17):

n∑
j=1

λjxij = xio − wioxio, i = 1, ...,m, (17)

n∑
j=1

λjyrj ≥ yro + δroyro, r = 1, ..., s,

n∑
j=1

λj = 1,

s∑
r=1

δro = 1,

m∑
i=1

wio = 1,

λj ≥ 0, j = 1, ..., n,
δro ≥ 0, r = 1, ..., s,
wio ≥ 0, i = 1, ...,m.

If system (17) has no solution, then DMUo is not directionally congested
from the left and consequently it is not directionally congested along any input
and output directions. Otherwise, suppose that ~wo = (w1o, w2o, ..., wmo) and
~δo = (δ1o, δ2o, ..., δso) are the solutions of system (17). Therefore, the components

of the output vector of DMUo can not decrease along ~δo and the components
of the input vector of DMUo can not increase along ~wo. In other words, there
exists an activity belongings to Pconvex that uses less resources in one or more
inputs to make more products in one or more outputs. Therefore DMUo is direc-
tionally congested from the left along the directions ~wo = (w1o, w2o, ..., wmo) and
~δo = (δ1o, δ2o, ..., δso)

Step 2: Solve system (18):

n∑
j=1

λjxij = xio + w
′

ioxio, i = 1, ...,m, (18)
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n∑
j=1

λjyrj ≥ yro − δ
′

royro, r = 1, ..., s,

n∑
j=1

λj = 1,

s∑
r=1

δ
′

ro = 1,

m∑
i=1

w
′

io = 1,

λj ≥ 0, j = 1, ..., n,

δ
′

ro ≥ 0, r = 1, ..., s,

w
′

io ≥ 0, i = 1, ...,m.

If system (18) has no solution, then DMUo is not directionally congested
from the right and consequently it is not directionally congested along any in-

put and output directions. Otherwise, suppose that ~w′o = (w
′

1o, w
′

2o, ..., w
′

mo) and
~δ′o = (δ

′

1o, δ
′

2o, ..., δ
′

so) are the solutions of system (18). Therefore, the components

of the output vector of DMUo can not increase along ~δ′o and the components of

the input vector of DMUo can not decrease along ~w′o. Therefore DMUo is direc-

tionally congested from the right along the directions ~w′o = (w
′

1o, w
′

2o, ..., w
′

mo) and
~δ′o = (δ

′

1o, δ
′

2o, ..., δ
′

so). If DMUo is directionally congested on both sides then this
unit is directionally congested.

In the next section, we illustrate our proposed algorithm for the various scenar-
ios in the case studies from Tone and Sahoo [21] and Yang [28].

4. Numerical examples

This section uses two numerical examples taken from DEA literature to compare
our proposed method for identifying the directional congestion of units with the
existing methods.

Example 1. In this example, the results of applying the proposed approach
to the data set of chain stores in Japan for a period of 27 years from 1957 trough
2001, reported in Tone and Sahoo [21], are presented. This dataset has two inputs,
the number of stores (x1) and the total area of stores (x2) (unit: 1000 m2) and
one output, annual sales y1 (unit: hundred million yen). The input and output
data are reported in Table 1.

The last column of Table 1 shows the strongly and weakly congested units
obtained by applying TS method.
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Table 1. Chain stores data set.
DMU x1 x2 y1 Congestion status

1 2412 5480 41091 -
2 3163 6233 48367 Weak
3 3350 6798 56000 Weak
4 3371 7274 60940 -
5 3778 7992 69046 -
6 4020 8500 77347 -
7 5029 9246 85805 -
8 5164 9639 90433 -
9 5285 9981 95640 -
10 5618 10276 100257 -
11 5981 10521 105944 Weak
12 6217 10766 109857 Weak
13 6455 11144 116114 Weak
14 6674 11418 125404 Weak
15 6829 11717 131862 Weak
16 6995 11987 140817 -
17 7338 12463 150583 -
18 7946 13426 152943 Weak
19 8236 14147 155128 Weak
20 7722 15014 158714 Weak
21 7727 15022 161739 Weak
22 7822 16191 169786 -
24 7531 16969 167195 Strong
24 7201 17627 167187 -
25 7281 18364 165480 Strong
26 7053 19698 162847 Weak
27 6067 16176 154671 -

We use model (4) and Equation (5) to determine the strongly efficient units
with respect to pconvex and the projection point of each DMU on the strongly
efficient frontier of pconvex, respectively, then we use the projection point of the
unit to determine the directional congestion of it in our proposed methods.

In the first scenario of our proposed methods, we determine the directional
congestion of units along two input direction vectors ~w1 = (0.3, 0.7) and ~w2 =
(0.9, 0.1) by applying Algorithm I and Algorithm II, respectively. The results are
summarized in Table 2 and Table 3.

Table 2 reports the results of applying Algorithm I for the data set of chain
stores.

Step 1. We solve model (7) to determine the maximum possible decrease in
the components of the input vector of units along the input direction vector ~w1 =
(0.3, 0.7). The second column of Table 2 shows the optimal value of this model.
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If θ∗o = 0 then DMUo is not directionally congested from the left along the input
direction vector ~w1 = (0.3, 0.7). Otherwise, we go to Step 2.

Table 2. The directional congestion of units along ~w1 = (0.3, 0.7).

DMU θ∗o
~δo LHC θ

′∗
o

~δ′o RHC
1 0.000 - No 0.000 - No
2 0.000 - No 0.000 - No
3 0.088 - No 0.000 - No
4 0.204 - No 0.574 - No
5 0.217 - No 0.788 - No
6 0.240 - No 0.845 - No
7 0.061 - No 1.474 - No
8 0.101 - No 1.352 - No
9 0.132 - No 1.251 - No
10 0.089 - No 1.073 - No
11 0.027 - No 0.905 - No
12 0.005 - No 0.795 - No
13 0.010 - No 0.678 - No
14 0.000 - No 0.584 - No
15 0.011 - No 0.512 - No
16 0.013 - No 0.442 - No
17 0.000 - No 0.312 - No
18 0.000 - No 0.102 - No
19 0.000 - No 0.000 - No
20 0.284 - No 0.076 1.000 Yes
21 0.284 - No 0.075 1.000 Yes
22 0.388 - No 0.000 - No
23 0.502 1.000 Yes 0.025 1.000 Yes
24 0.594 - No 0.063 1.000 Yes
25 0.628 1.000 Yes 0.013 1.000 Yes
26 0.724 - No 0.000 - No
27 0.655 - No 0.087 1.000 Yes

Step 2. We solve system (8) to obtain the output direction vector ~δo = (δ1o, ...,
δso) along which the left-hand congestion occurs. The third column of Table 2
shows the output direction vectors for all units obtained by system (8). If system
(8) has no solution for DMUo then this unit is not directionally congested from
the left along ~w1 = (0.3, 0.7). The fourth column of Table 2 shows the status of
the left-hand directional congestion of units (LHC).

Step 3. We solve model (9) to determine the maximum possible increase in
the components of the input vector of DMUo along the input direction vector
~w1 = (0.3, 0.7). The fifth column of Table 2 shows the optimal value of this model.
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If θ
′∗
o = 0 then DMUo is not directionally congested from the right along the input

direction vector ~w1 = (0.3, 0.7). Otherwise, we go to Step 4.

Step 4. We solve system (10) to obtain the output direction vector ~δ′o =

(δ
′

1o, ..., δ
′

so) along which the right-hand congestion occurs. Column 6 of Table
2 shows the output direction vectors for all units obtained by system (10). If sys-
tem (10) has no solution for DMUo then this unit is not directionally congested
from the right along ~w1 = (0.3, 0.7). Column 7 shows the status of the right-hand
directional congestion of units (RHC).

Table 3. The directional congestion of units along ~w2 = (0.9, 0.1).

DMU θ∗o
~δo LHC θ

′∗
o

~δ′o RHC
1 0.000 - No 0.000 - No
2 0.191 - No 0.000 - No
3 0.182 - No 0.000 - No
4 0.134 - No 0.196 1.000 Yes
5 0.174 - No 0.202 1.000 Yes
6 0.186 - No 0.223 1.000 Yes
7 0.329 - No 0.045 1.000 Yes
8 0.322 - No 0.076 1.000 Yes
9 0.317 - No 0.102 1.000 Yes
10 0.348 - No 0.065 1.000 Yes
11 0.382 - No 0.018 1.000 Yes
12 0.397 - No 0.003 1.000 Yes
13 0.403 - No 0.007 1.000 Yes
14 0.413 - No 0.000 - No
15 0.413 - No 0.007 1.000 Yes
16 0.417 - No 0.007 1.000 Yes
17 0.427 - No 0.000 - No
18 0.438 - No 0.000 - No
19 0.431 - No 0.000 - No
20 0.340 - No 0.047 1.000 Yes
21 0.340 - No 0.046 1.000 Yes
22 0.294 - No 0.000 - No
23 0.220 - No 0.017 1.000 Yes
24 0.140 - No 0.045 1.000 Yes
25 0.111 1.000 Yes 0.009 1.000 Yes
26 0.000 - No 0.000 - No
27 0.033 - No 0.302 1.000 Yes

Now, we determine the directional congested units along ~w2 = (0.9, 0.1) by
applying Algorithm II. The results are summarized in Table 3. The second column
of Table 3 reports the optimal value of model (7) with ~w2 = (0.9, 0.1). The third
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column shows the output direction vectors ~δo = (δ1o, ..., δso) obtained by solving
model (12). Column 4 shows the status of the left-hand directional congestion of
units along ~w2 = (0.9, 0.1). The fifth column reports the optimal value of model

(9) with ~w2 = (0.9, 0.1). Columns 6 shows the output direction vectors ~δ′o =

(δ
′

1o, ..., δ
′

so) obtained by solving model (15). Finally, Column 7 shows the status
of the right-hand directional congestion of units along ~w2 = (0.9, 0.1).

As we saw in Table 1, DMU23 and DMU25 are strongly congested by TS
method. Also, in our proposed method, we obtain the output direction vector
~δo > 0, reported in Table 2 and Table 3, for o ∈ {23, 25} , so, according to Theorem
4, DMU23 and DMU25 are strongly congested units by our proposed methods.
This shows the relationship between our proposed methods in the first scenario
and the conventional methods for recognizing the congestion in the literature.

Table 4. The directional congestion of units in the second scenario.

DMU ~wo
~δo LHC ~w′o

~δ′o RHC
1 - - No - - No
2 (1.0, 0.0) (1.0) Yes - - No
3 (1.0, 0.0) (1.0) Yes - (1.0) No
4 - - No (1.0, 0.0) (1.0) Yes
5 - - No (0.0, 1.0) (1.0) Yes
6 - - No (0.0, 1.0) (1.0) Yes
7 - - No (0.0, 1.0) (1.0) Yes
8 - - No (1.0, 0.0) (1.0) Yes
9 - - No (1.0, 0.0) (1.0) Yes
10 - - No (1.0, 0.0) (1.0) Yes
11 (1.0, 0.0) (1.0) Yes (0.0, 1.0) (1.0) Yes
12 (1.0, 0.0) (1.0) Yes (0.0, 1.0) (1.0) Yes
13 (1.0, 0.0) (1.0) Yes (0.0, 1.0) (1.0) Yes
14 (1.0, 0.0) (1.0) Yes (0.0, 1.0) (1.0) Yes
15 (1.0, 0.0) (1.0) Yes (0.0, 1.0) (1.0) Yes
16 - - No (0.0, 1.0) (1.0) Yes
17 - - No (0.0, 1.0) (1.0) Yes
18 (1.0, 0.0) (1.0) Yes (0.0, 1.0) (1.0) Yes
19 (1.0, 0.0) (1.0) Yes - - No
20 (1.0, 0.0) (1.0) Yes (0.0, 1.0) (1.0) Yes
21 (1.0, 0.0) (1.0) Yes (0.0, 1.0) (1.0) Yes
22 - - No - - No
23 (0.2, 0.8) (1.0) Yes (0.0, 1.0) (1.0) Yes
24 - - No (0.0, 1.0) (1.0) Yes
25 (0.0, 1.0) (1.0) Yes (0.0, 1.0) (1.0) Yes
26 (0.0, 1.0) (1.0) Yes - - No
27 - - No (0.0, 1.0) (1.0) Yes
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In the second scenario of our proposed method, none of the input and out-
put directions are available. We apply algorithm III to recognize the directional
congestion of the data set of chain stores. The results are summarized in Table 4.

Step 1. we solve system (17) and obtain the input direction vector ~wo and the

output direction vector ~δo, reported in columns 2 and 3 of Table 4, respectively.
Column 4 shows the status of the left-hand directional congestion of units. As we
saw in Table 1, the units 2, 3, 11, 12, 13, 14, 15, 18, 19, 20, 21, 26 are weakly
congested and the units 23 and 25 are stronly congested by TS method. On
the other hand, in our proposed method for the second scenario, we obtain the

input direction vector ~wo = 0 and the output direction vector ~δo = 0 for all o ∈
{2, 3, 11, 12, 13, 14, 15, 18, 19, 20, 21, 26}, so, according to Theorem 3, the units 2, 3,
11, 12, 13, 14, 15, 18, 19, 20, 21, 26 are weakly congested by our proposed method.
Also, we obtain the input direction vector ~wo > 0 and the output direction vector
~δo > 0 for o ∈ {23, 25} , so, according to Theorem 4, DMU23 and DMU25 are
strongly congested units by our proposed method. This shows the relationship
between our proposed method and the conventional methods for recognizing the
congestion in the literature.

Step 2. we solve system (18) and obtain the input direction vector ~w′o and the

output direction vector ~δ′o, reported in the fifth column of Table 4. Column 6
shows the status of the right-hand directional congestion of DMUs.

Example 2. In this example, the results of applying the proposed approach to
the data set of basic research institutes in the Chinese Academy of Science (CAS)
in 2010, reported in Yang [28], are presented. This dataset has 16 units with

Table 5. The data of units in Example 2.
DMU x1 x2 y1 y2 y3 y4 Congestion status

1 252 117.945 436 133 184 31.558 No
2 37 29.431 243 127 43 15.3041 No
3 240 101.425 164 70 89 33.8365 weak
4 356 368.483 810 276 247 183.8434 No
5 310 195.862 200 55 111 12.9342 No
6 201 188.829 104 49 33 60.7366 No
7 157 131.301 113 49 45 72.5368 No
8 236 77.439 8 1 44 23.7015 Weak
9 805 396.905 371 118 89 216.9885 Strong
10 886 411.539 607 216 168 88.5561 Strong
11 623 221.428 314 49 89 45.3597 Strong
12 560 264.341 261 79 131 41.1156 Strong
13 1344 900.509 627 168 346 645.4150 No
14 508 344.312 971 518 335 205.4528 No
15 380 161.331 395 180 117 90.0373 Weak
16 132 83.972 229 138 62 32.6111 Weak
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two inputs, the full-time equivalent of full-time research staff (x1) and the amount
of total income of each institute (x2) to produce four outputs, the number of
international papers indexed by Web of Science from Thompson Reuters (y1),
the number of highly-quality papers published in top research journals (y2), the
number of graduate student enrollment in 2009 (y3) and the amount of external
research funding from research contracts (y4). The input and output data are
reported in Table 5.

We use model (4) and Equation (5) to determine the strongly efficient units with
respect to pconvex and the projection point of each DMU on the strongly efficient
frontier of pconvex, respectively, then we use the projection point of DMUo to
determine the directional congestion of it in our proposed methods.

In the first scenario of our proposed methods, we determine the directional
congestion of units along two input direction vectors ~w1 = (1.7, 0.3) and ~w2 =
(1.1, 0.9) by applying Algorithm I and Algorithm II, respectively. The results are
summarized in Tables 6 and 7, respectively.

Table 6. The directional congestion of units along ~w1 = (1.7, 0.3).

DMU θ∗o
~δo LHC θ

′∗
o

~δ′o RHC
1 0.333 - No 0.279 (0.4, 0.2, 0.4, 0.0) Yes
2 0.000 - No 0.000 - No
3 0.357 (0.3, 0.6, 0.0, 0.1) Yes 0.185 (0.1, 0.1, 0.5, 0.3) Yes
4 0.000 - No 0.976 (0.4, 0.4, 0.2, 0.0) Yes
5 0.247 - No 0.623 (0.3, 0.3, 0.3, 0.1) Yes
6 0.049 - No 1.431 (0.3, 0.3, 0.3, 0.1) Yes
7 0.105 - No 1.390 (0.3, 0.3, 0.2, 0.2) Yes
8 0.406 (0.1, 0.7, 0.1, 0.1) Yes 0.000 - No
9 0.337 (0.2, 0.3, 0.4, 0.1) Yes 0.051 (0.0, 0.8, 0.0, 0.2) Yes
10 0.352 (0.1, 0.3, 0.2, 0.4) Yes 0.000 - No
11 0.407 (0.1, 0.6, 0.1, 0.2) Yes 0.000 - No
12 0.344 (0.2, 0.2, 0.4, 0.2) Yes 0.145 (0.3, 0.3, 0.1, 0.3) Yes
13 0.000 - No 0.000 - No
14 0.228 - No 0.395 (0.2, 0.3, 0.2, 0.3) Yes
15 0.365 (0.3, 0.5, 0.2, 0.0) Yes 0.158 (0.2, 0.3, 0.2, 0.3) Yes
16 0.218 - No 0.776 (0.2, 0.3, 0.3, 0.2) Yes

Table 6 reports the results of applying Algorithm I for the data set of 16 basic
research institutes in CAS. The second column of Table 6 reports the optimal value
of model (7) with ~w1 = (1.7, 0.3). The third column shows the output direction

vectors ~δo = (δ1o, ..., δso) obtained by solving system (8). Column 4 shows the
status of the left-hand directional congestion of units along ~w1 = (1.7, 0.3). The
fifth column reports the optimal value of model (9) with ~w1 = (1.7, 0.3). Column

6 shows the output direction vectors ~δ′o = (δ
′

1o, ..., δ
′

so) obtained by solving system
(10). Finally, Column 7 shows the status of the right-hand directional congestion
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of units along ~w1 = (1.7, 0.3). As we saw in Table 6, the units 8, 9, 10, 11, 12 are
strongly congested and the units 3, 15, 16 are weakly congested by TS method.

In our proposed method, we obtain the output direction vector ~δo > 0 for all
o ∈ {8, 9, 10, 11, 12}, so, according to Theorem 4, the units 8, 9, 10, 11, 12 are
strongly congested by our proposed method. On the other hand, we obtain the

output direction vector ~δo = 0 for all o ∈ {3, 15, 16}, so, according to Theorem
3, the units 3, 15, 16 are weakly congested by our proposed method. This shows
the relationship between our proposed method and the conventional methods for
recognizing the congestion in the literature.

Table 7. The directional congestion of units along ~w2 = (1.1, 0.9).

DMU θ∗o
~δo LHC θ

′∗
o

~δ′o RHC
1 0.743 - No 1.748 (0.0, 0.2, 0.8, 0.0) Yes
2 0.000 - No 30.906 (0.4, 0.5, 0.1, 0.0) Yes
3 0.759 - No 1.576 (0.3, 0.3, 0.2, 0.2) Yes
4 0.000 - No 0.000 - No
5 0.665 - No 2.126 (0.3, 0.4, 0.3, 0.0) Yes
6 0.229 - No 1.890 (0.3, 0.3, 0.3, 0.1) Yes
7 0.393 - No 5.165 (0.3, 0.3, 0.3, 0.1) Yes
8 0.000 - No 0.000 - No
9 0.769 - No 0.122 (0.0, 0.0, 0.0, 1.0) Yes
10 0.782 (0.1, 0.3, 0.2, 0.4) Yes 0.000 - No
11 0.814 (0.3, 0.5, 0.1, 0.1) Yes 0.000 - No
12 0.77 - No 0.427 (0.3, 0.4, 0.2, 0.1) Yes
13 0.681 - No 0.000 - No
14 0.654 - No 1.731 (0.2, 0.4, 0.2, 0.2) Yes
15 0.778 - No 0.736 (0.3, 0.3, 0.1, 0.3) Yes
16 0.590 - No 6.010 (0.3, 0.3, 0.3, 0.1) Yes

Now, we determine the directional congested units along ~w2 = (1.1, 0.9) by
applying Algorithm II. The results are summarized in Table 7. The second column
of Table 7 reports the optimal value of model (7) with ~w2 = (1.1, 0.9). The third

column shows the output direction vectors ~δo = (δ1o, ..., δso) obtained by solving
model (12). Column 4 shows the status of the left-hand directional congestion of
units along ~w2 = (1.1, 0.9). The fifth column reports the optimal value of model

(9) with ~w2 = (1.1, 0.9). Columns 6 shows the output direction vectors ~δ′o =

(δ
′

1o, ..., δ
′

so) obtained by solving model (15). Finally, Column 7 shows the status
of the right-hand directional congestion of units along ~w2 = (1.1, 0.9). As we see

in Table 7, we obtain the output direction vector ~δo > 0 for o ∈ {10, 11}, so,
according to Theorem 4, DMU10 and DMU11 are strongly congested units by our
proposed method and TS method.
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In the second scenario of our proposed method, none of the input and output
directions are available. We apply algorithm III to recognize the directional con-
gestion of the data set of 16 basic institutes in CAE. The results are summarized
in Table 8.

Table 8. The directional congestion of 16 units in the second scenario.

DMU ~wo
~δo LHC ~w′o

~δ′o RHC
1 - - No (0.4, 0.6) (1.0, 0.0, 0.0, 0.0) Yes
2 - - No (0.6, 0.4) (0.0, 1.0, 0.0, 0.0) Yes
3 (0.5, 0.5) (0.0, 0.3, 0.6, 0.1) Yes (0.4, 0.6) (0.0, 0.0, 0.0, 1.0) Yes
4 - - No (0.7, 0.3) (0.4, 0.6, 0.0, 0.0) Yes
5 - - No (0.5, 0.5) (0.0, 1.0, 0.0, 0.0) Yes
6 - - No (0.6, 0.4) (0.0, 1.0, 0.0, 0.0) Yes
7 - - No (0.6, 0.4) (1.0, 0.0, 0.0, 0.0) Yes
8 (0.6, 0.4) (0.1, 0.5, 0.3, 0.1) Yes (0.3, 0.7) - No
9 (0.8, 0.2) (0.2, 0.3, 0.4, 0.1) Yes (0.5, 0.5) (0.0, 0.0, 1.0, 0.0) Yes
10 (0.3, 0.7) (0.1, 0.3, 0.2, 0.4) Yes (0.3, 0.7) (0.0, 1.0, 0.0, 0.0) Yes
11 (0.5, 0.5) (0.1, 0.6, 0.1, 0.2) Yes (0.3, 0.7) - No
12 (0.3, 0.7) (0.2, 0.4, 0.2, 0.2) Yes (0.4, 0.6) (0.0, 1.0, 0.0, 0.0) Yes
13 - - No - - No
14 - - No (0.5, 0.5) (0.3, 0.7, 0.0, 0.0) Yes
15 (1.0, 0.0) (0.3, 0.4, 0.2, 0.1) Yes (0.4, 0.4) (0.0, 1.0, 0.0, 0.0) Yes
16 (1.0, 0.0) (0.3, 0.4, 0.2, 0.1) Yes (0.4, 0.6) (0.0, 1.0, 0.0, 0.0) Yes

In the first step, we solve system (17) and obtain the input direction vector

~wo and the output direction vector ~δo, reported in the second and third columns
of Table 8. Column 4 shows the status of the left-hand directional congestion of
units. It should be noted that, we obtain the input direction vector ~wo > 0 and

the output direction vector ~δo > 0 for all o ∈ {8, 9, 10, 11, 12}, so, according to
Theorem 4, the units 8, 9, 10, 11 and 12 are strongly congested by our proposed
method in the second scenario and TS method.

In the next step, we solve system (18) and obtain the input direction vector ~w′o
and the output direction vector ~δ′o, reported in columns 5 and 6. Column 7 shows
the status of the right-hand directional congestion of DMUs. Therefore, the units
3, 9, 10, 12, 15 and 16 are directionally congested.

It should be noted that, Yang [28] only considers the situation that both the
input and output direction vectors are predetermined. In the other word, if a
unit has no directional congestion along these certain directions, then we cannot
obtain any information about the existence of the congestion of this unit. He set

the output direction vector as ~δ = (1, 1, 1, 1) and determined the congestion of
16 basic institutes in CAE along different input direction vectors. For example,
he recognized that DMU1 has no congestion along the input direction vector

~w1 = (1.7, 0.3) and the output direction vector ~δ. Also, he showed that DMU15
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has no congestion along the input direction vector ~w2 = (1.1, 0.9) and the output

direction vector ~δ. Hence, no information about the existence of congestion of
DMU1 and DMU15 can be obtained by his method. To tackle this issue, the
first scenario of our proposed method considers the situation that only the input
direction vector is available and then determines the output direction vector along
which the congestion occurs.

As we see in Tables 6, our proposed method determines the output direction

vector ~δ1 = (0.4, 0.2, 0.4, 0.0) such that DMU1 has the right-hand congestion along

~w1 = (1.7, 0.3) and ~δ1. Also, as we see in Tables 7, our proposed method determines

the output direction vector ~δ15 = (0.3, 0.3, 0.1, 0.3) such that DMU15 has the right-

hand congestion along ~w2 = (1.1, 0.9) and ~δ15.
Yang [28] showed that DMU1 has no congestion along the output direction

vector ~δ = (1, 1, 1, 1) and 9 different input direction vectors. But, we still cannot
obtain any information about the congestion status of this unit. In the second
scenario of our proposed methods, both the input and output directions are not
specified and our proposed method determine the input and output direction vec-
tors along which the congestion occurs. As we see in Table 8, our proposed method
determines the input direction vector ~w1 = (0.4, 0.6) and the output direction vec-

tor ~δ1 = (1.0, 0.0, 0.0, 0.0) along which DMU1 has the right-hand congestion. So,
our proposed methods are more powerful than the method of Yang [28].

5. Conclusion

The concepts of strong and weak congestion are two basic terms in the conges-
tion literature. The definitions of strong and weak congestion have main draw-
backs, for example, we do not know whether the congestion will occur or not if
the DM increases or decreases the inputs and outputs dis proportionally. In this
regard, Yang [28] introduced the concept of the directional congestion in DEA.
He proposed methods to determine the directional congestion of units along the
certain input and output directions. The main drawback of his methods is that if a
unit has no congestion along the certain input and output directions, no informa-
tion about the existence of the congestion along other directions can be obtained.
This study considered the situation in which at least one input or output direction
is not specified. Two different scenarios have been considered in this paper: (i) only
the input direction vector is available. We presented two methods to recognize the
directional congestion for this scenario. (ii) none of the input and output direction
vectors are available. We proposed a system of inequalities to find the input and
output direction vectors along which the congestion occurs in this scenario. This
study addresses the relationship between our defined directional congestion and
the classical definitions of strong and weak congestion. The validity of the pro-
posed methods was demonstrated utilizing two numerical examples from literature.
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[10] Färe, R., Svensson, L. (1980). Congestion of factors of production. Econometrica 48,

1745−1753.
[11] Fare, R., Grosskopf, S., Lovell, C.A.K. (1985) The measurement of Efficiency of Production.

Kluwer-Nijhoff Publishing, Boston, USA.

[12] Ghomashi, A., and Abbasi, M. (2017). An Approach to Identify and Evaluate Congestion in
Data Envelopment Analysis. International Journal of Data Envelopment Analysis, 5(3), 1327-

1336.

[13] Jahanshahloo, G. R., Khodabakhshi, M. (2004) Suitable combination of inputs for improving
outputs in DEA with determining input congestion Considering textile industry of China.

Applied Mathematics and Computation 151(1), 263-273.

[14] Kao, C. (2010) Congestion measurement and elimination under the framework of data en-
velopment analysis. International Journal of Production Economics 123(2), 257-265.

[15] Kheirollahi, H., Hessari, P., Charles, V., and Chawshini, R. (2017). An input relaxation
model for evaluating congestion in fuzzy DEA. Croatian Operational Research Review, 8(2),

391-408.

[16] Khoveyni, M., Eslami, R., (2017) Determining the strongly and weakly most congested firms
in Data Envelopment Analysis, International Association for Management of Technology, 1-8.

[17] Khoveyni, M., Eslami, R., Khodabakhshi, M., Jahanshahloo, G.R., Hosseinzadeh Lotfi,
F. (2013) Recognizing strong and weak congestion slack based in data envelopment analysis.
Computers and Industrial Engineering 64(2), 731-738.

[18] Mehdiloozad, M., Zhu, J., and Sahoo, B. K. (2018). Identification of congestion in data

envelopment analysis under the occurrence of multiple projections: A reliable method capable
of dealing with negative data. European Journal of Operational Research, 265(2), 644-654.

[19] Noura, A. A., Hosseinzadeh Lotfi, F., Jahanshahloo, G. R., Fanati Rashidi, S., Parker, B. R.
(2010) A new method for measuring congestion in data envelopment analysis. Socio-Economic
Planning Sciences 44(4), 240-246.

[20] Sueyoshi, T., Sekitani, K. (2009) DEA congestion and returns to scale under an occurrence
of multiple optimal projections. European Journal of Operational Research 194(2), 592-607.



27

[21] Tone, K., Sahoo, B.K. (2004) Degree of scale economies and congestion: a unified DEA

approach. European Journal of Operational Research, 158(3), 755-772.
[22] Wanke P., C. P. Barros, A. Emrouznejad, (2018), A Comparison between Stochastic DEA

and Fuzzy DEA approaches: Revisiting Efficiency in Angolan Banks, RAIRO-Operations Re-

search, 25(1): 285 - 303.
[23] Wei, Q.L., Yan, H. (2004) Congestion and returns to scale in data envelopment analysis.

European Journal of Operational Research, 153(3), 641-660.

[24] Wei, Q. L., Yan, H. (2009) Weak congestion in output additive data envelopment analysis,
Socio-Economic Planning Sciences, 43(1), 40-54.

[25] Wu, F., Zhou, P., Zhou, D.Q. (2015a) Measuring energy congestion in Chinese industrial

sectors: a slacks-based DEA approach, Computational Economics, 46(3), 479-494.
[26] Wu, F., Zhou, P., Zhou, D.Q. (2015b) Does there exist energy congestion? Empirical evi-

dence from Chinese industrial sectors. Energy Efficiency, 9(2), 1-14.
[27] Wu, J., An, Q., Xiong, B., Chen, Y. (2013) Congestion measurement for regional industries

in China: a data envelopment analysis approach with undesirable outputs. Energy Policy, 57(C),

7-13.
[28] Yang, G. L. (2015) Directional Congestion in Data Envelopment Analysis. arXiv preprint

arXiv:1510.07225.




