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Abstract: 

Surface texturing has been paid more attention by researchers for bio-applications due to its 

major role in controlling the integration of the implanted biomaterials and the surface fouling 

behaviour. Accurate control over the surface chemistry and physical characteristics 

significantly influence the interaction between the cells and the material’s surface regarding 

adhesion and migration. Short pulsed lasers have been widely used in modifying the surface 

topography and in generating structures ranging from micro-patterns to nanostructures. So 

far, bacterial and fouling activities and the biocompatibility of the implants’ laser-treated 

surfaces are not entirely understood. In this chapter, a brief overview of the lasers and 

techniques utilised in micro- and nano-surface modifications is presented, followed by a 

detailed discussion of the surface chemistry and topography effect on bacteria aggregation 
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and adhesion. Also, the role of the laser-induced superficial patterns on the response and 

sensitivity of bio-implants will be explored in depth 

Keywords: 

Short pulse lasers, surface texturing, implant, human cell, bacteria. 

1. Introduction 

Biomaterials have received increasing interest by researchers in the recent years in different 

applications including biology, physics, implant design and cell and drug research (Caruso, 

2001, Cheng et al., 2004, Katsikogianni and Missirlis, 2010, Bazaka et al., 2011). Due to the 

complex response of living organisms to the bio-surfaces, many factors play a crucial role in 

the interaction between cells and the bio-devices or implants. It is essential, for designing the 

biochips (Lamolle et al., 2009, Wu et al., 2014), bio-detectors (Liu et al., 2004), orthopaedic 

and dental prostheses (Chu et al., 2002, Anselme et al., 2010), to understand the mechanism 

behind the cell-biomaterials interaction in order to tailor each product to the suitable medical 

or engineering applications. For example, the growth of the living cells can be promoted in a 

microchip matrix (El-Ali et al., 2006) by controlling the cell culture in the microchannels inside 

the microfluidic system (Zare and Kim, 2010, Sugioka et al., 2010, Sugioka and Cheng, 2012). 

Also, controlling the cancer cells’ migration through a confined microchannels was used as a 

method for preventing cancer cells from sneaking into the blood stream or lymphatic system 

(Malboubi et al., 2015). Therefore, methods for fabricating microchips and modifying 

implants’ surfaces have been developed to offer full control over the cells’ response at the 

interface. The topography and chemistry of the bio-surfaces not only influence the cell’s 

morphology but also affect the cellular behaviour regarding spread/elongation, migration, 

proliferation, orientation and protein synthesis (Murugan et al., 2009, Liu et al., 2005). Before 

reviewing these aspects, it is crucial to differentiate in the behaviour of the human cells and 

bacteria due to the differences in their cell’s shape, biological structure, functions, 

reproduction mechanism and their movement. Human cells are eukaryotic and static with 

either spherical or oval shape and depend greatly on other cells for their survival. However, 

bacteria are independent organisms which have different shapes and functions and can 

survive independently even in harsh environments. Moreover, bacteria can move and rotate 
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using their built-in flagella and can, therefore, easily migrate between locations unlike human 

cells (Ranganr, 2017). 

The significance of the differentiation between these types of cells is vital for the design of 

the scaffolds’ or implants’ surfaces since each type of these surfaces has a unique interaction 

mechanism with the cells in contact. Human cells are usually needed to adhere and grow on 

the prostheses surfaces or migrate through miniaturised laboratories that perform analysis, 

processing or separation (Huebsch and Mooney, 2009, Sugioka and Cheng, 2011). Therefore, 

the surfaces of the medical devices and engineered tissues should promote cells attachment, 

provide a stimulating microenvironment for their proliferation and function as if they are in 

vivo (Koufaki et al., 2011). On the other hand, bacteria have detrimental effects on tissues 

causing diseases and infections. Hence, their presence can be fought by preventing their 

adhesion on the surface of the biomaterial or by killing them. Three types of bacteria-

biomaterial interactions, namely: bactericidal, anti-fouling and bacteriostasis, should be 

understood to modulate the surface of interest using the correct fabrication methods. 

Bactericidal effects embrace the engineered surfaces’ ability to kill the bacteria by 

penetrating the cell or destroying the protective cell wall as occurs in the case of nano-pillars 

which rupture the bacteria’s cell wall (Pogodin et al., 2013). Anti-fouling surfaces, however, 

prevent the bacterial adhesion by introducing periodic micro- or nano- structures smaller 

than the bacteria size. These structures reduce the contact area used by the bacteria to attach 

to the bio-surface and hence prevents their colonisation. Lastly, bacteriostatic effects of 

antibacterial surfaces or agents mean that the bacteria are prevented from reproduction 

without being killed or prevented from adhesion to the surface (Price, 2006). Figure 1 

provides a representation of the mechanism whom micro/nanostructure use for killing 

bacteria. 
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Figure 1. Micro-/nano-structures are killing the bacteria by penetrating their internal 

components (left) or by stretching the bacteria’s wall causing its rupture (right). 

2. Surface Modification Methods 

Over the last two decades, natural surfaces have been engineered for cell adhesion 

enhancement using two main approaches: substrates coating with bioactive substances and 

direct modification of the superficial chemistry or/and topography (Price, 2006).  

The former embraces the introduction of a bioactive agent to the surface using different 

techniques such as polymerisation, functionalisation and derivatisation (Hasan et al., 2013, 

Cooke et al., 2008, Alves et al., 2009). However, these methods are usually carried out in 

multiple steps using various materials which, in some cases, undergo residual stresses and/or 

delamination (Maruo et al., 1997, Davis et al., 1996, Ching et al., 2014). 

Micro- and nanostructures such as grooves, pillars and pores have been created on the 

surface to modify its topography using various techniques such as lithography (Loesberg et 

al., 2007, Qin et al., 2010, Zheng et al., 2013), direct electron beam vaporisation (Puckett et 

al., 2008), imprinting (Truskett and Watts, 2006, Plasschaert and Bartolomei, 2014), polymer 

demixing (Dalby et al., 2002a, Dalby et al., 2002b, Lim et al., 2005), plasma micromachining 
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(Chu et al., 2002, Avram  et al., 2007, Oehr, 2003) and microscale chemical patterning (Oliveira 

et al., 2014, Liu and Wang, 2014) etc. Figure 2 shows different traditional methods for surface 

modification of the biocompatible materials. 

 

Figure 2. Different types of bio-surfaces and the techniques used for surface modification 

Short pulsed lasers were used to replace the long and expensive processes, used for creating 

multi-level structures using masks, special materials and environments, by a single and a 

direct step for creating uniform micro- or nanostructures on various material in ambient 

atmosphere (Nuutinen et al., 2012). This process is usually referred to as Light Induced 

Periodic Surface Structures (LIPSS) (Qi et al., 2009, Zhao et al., 2007). Short laser pulses are 

versatile in their output and can be easily produced with multiple spatial and temporal 

distributions and polarisation needed for the production of periodic surface structures. 

Among the commercially available lasers, ultrashort lasers (such as femto- and picosecond 

lasers) have an additional privilege over longer pulse lasers (nano- and microsecond lasers) 

due to the localised thermal effect and the limited heat affected zone generated in the 

substrate (Chichkov et al., 1996). Figure 3 shows an example of picosecond and nanosecond 

laser-induced surface structures on a stainless steel substrate. 
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Figure 3. Textured surfaces using a 125 µm hatching distance and different scanning 

direction and laser parameters (a) 30 deg and 60 deg, nanosecond pulses of 9.2 J/cm2, 1 

mm/s, single pass (b) 0 deg and 90 deg, nanosecond pulses of 9.2 J/cm2, 50 mm/s, 100 

passes (c) 30°& 60°, picosecond pulses of 2.6 J/cm2 1 mm/s, single pass (d) 0 deg and 90 

deg, nanosecond pulses of 2.6 J/cm2, 50 mm/s, 100 passes. 

In the following sections, the influence of the laser pulses on surface topography and 

chemistry is thoroughly reviewed for controlling human and bacterial cells’ behaviours. 

3. Effect of Laser-fabricated Structures on Cell Behaviour 

The number of hip and knee endoprostheses recorded in 2015 reached more than 160,000 

and 375,000 cases in the UK and Germany respectively (National Joint Registry, 2015, 

Statistisches Bundesamt (Destatis), 2015). This number is ever increasing each year with an 

urgent need for biomaterials that can meet the biological compatibility of the inserted 

devices, chips and implants in the human bodies’ tissues which are very diverse in their 

functionality and composition (Anderson, 2001, Babensee et al., 1998). The biocompatibility 

of the material may reduce over time because of the inflammatory reactions resulted during 

the formation of fibroblast scar tissues, causing harmful influence to the implant and hence 

the patient. Due to the detrimental effects of the fibroblast proliferation, biomaterials have 

to selectively inhibit the fibroblast reproduction yet to simultaneously enhance the neuronal 

c d  

b  a  
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attachment and differentiation in the area of interest. In this case, inflammation will be 

hindered, and the neuronal cells can easily adhere to the biomedical surfaces (Fadeeva et al., 

2013). 

Manipulating the biomaterial’s surfaces is an effective approach for stimulating the 

biocompatibility. It has been approved that the surface morphology (structure and 

roughness) and chemistry (wettability) influence the cell orientation, morphology, 

proliferation and differentiation (Flemming et al., 1999, Wilkinson et al., 2002, Fadeeva et al., 

2009a). However, laser-induced surface structures are preferable because they are simple to 

manufacture, environmentally clean and can be fabricated on different substrates and in 

ambient and non-standard atmospheres (Gaggl et al., 2000, Pető et al., 2002). Table 1 lists 

some of the biomaterials used for cell response control. 

Table 1. Metallic and non-metallic materials used in cellular behaviour control 

Material Application(s) Ref. 

Silicon Cell Proliferation 
(Fadeeva et al., 2009b, 
Fadeeva et al., 2013) 

Stainless Steel 
Controlling Cell 

Spreading/Elongation, 
Localization and 

Orientation. 

(Nuutinen et al., 2012) 
Polycarbonate 

Polydimethylsiloxane 
(PDMS) 

Selective Cell Adhesion (Alshehri et al., 2016) 

Chitosan 
Bacterial Cell Growth 

Control 
(Estevam-Alves et al., 2016) 

Chitosan (Positively 
charged) 

Promoting Erythrocyte 
adhesion, Fibrinogen 

adsorption and Platelet 
adhesion and activation 

(He et al., 2011) 

Titanium 
Orthopedic and Dental 

Applications 

(Chai et al., 2010, Cei et al., 
2011, Orsini et al., 2012, Ota-

Tsuzuki et al., 2011) 

Platinium (Fadeeva et al., 2013) 

 

3.1. Effect of Surface Geometry 

Due to the critical role of the fibroblast in tissue regeneration and wound healing, research 

has been carried out to study the effect of laser induced surface topography on fibrotic 
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encapsulation within different environments. The surface of various substrates including 

silicon, titanium, stainless steel, polymers and platinum has been processed using 

femtosecond pulsed laser which produces high-quality structures and small heat affected 

zones. 

3.1.1. Effect of surface roughness 

It was noted that surfaces with low roughness values stimulate fibroblasts NIH/3T3 cell’s 

attachment (Ranella et al., 2010). The silicon substrate was modified by producing conical 

structures (spikes) of different dimensions and aspect ratio, and their attachment and 

proliferation were studied in comparison with other cell types such as Neuroblastoma and 

Osteoblasts (Schlie et al., 2011, Schlie et al., 2012, Ranella et al., 2010, Fadeeva et al., 2014, 

Fadeeva et al., 2009b). Both infrared (800 and 1064 nm wavelength) femtosecond (30-150 fs) 

and picosecond (12 ps) laser pulses were utilised to produce these spikes in a Sulfur 

Hexafluoride (SF6) gas atmosphere.  

The fabricated spikes not only reduced the number of the fibroblast on the textured areas 

but also changed the fibroblast cell morphology from elongated to rounded cells on the nano- 

and micro-structured silicon and platinium substrates. According to the measured cells 

numbers, fibroblasts proliferated at much lower rates in comparison with Neuroblastoma and 

Osteoblasts whom numbers were not negatively influenced (Fadeeva et al., 2014, Schlie et 

al., 2011). It was noted that fibroblasts prefer to settle on top of the spikes whereas other 

cells attach and spread on both the top and the bottom (the grooves) of the spikes. This trend 

in settlement indicates that the conical microstructures increased the surface-cells contact 

area and hence promoted their proliferation after achieving the adhesion (Fadeeva et al., 

2014, Schlie et al., 2011).  

Fadeeva et al. (2009b) used femtosecond laser pulses to generate quasi-regular spiky 

structures on silicon and silicone elastomer. The fabricated structures enhanced the 

hydrophobic character of the surfaces by increasing the contact angle for water drops in the 

sessile drop tests by about 47 degrees. The increase in hydrophobicity can be explained by 

the air molecules trapped within the micro- and nano-structures which form an “air bag” to 

separate particular type of cells from the surface. The response of a particular type of cells to 

the surface wettability varied depending on the substrate material and the surface condition 

(the roughness produced by the microstructures). For instance, fibroblasts can easily adhere 
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to the silicon and glass surfaces, which are hydrophilic in nature, and can subsequently spread 

and grow to large numbers. However, a significant reduction in fibroblast’s adhesion was 

observed once silicon and silicone elastomer surfaces were textured using femtosecond 

lasers. The laser-induced reduction in the surface wettability made it difficult for such cells to 

bond and culture on the surface. On the contrary to the fibroblast’s behaviour, SH-SY5Y 

Neuroblastoma cells did not show any significant change in their adhesion response to the 

textured and non-textured surfaces and continued to adhere well to the surfaces regardless 

of their type and condition. This selective response can be attributed to the different 

mechanisms each type of cells use for their adhesion and proliferation. The cell attachment 

is usually governed by the intracellular signaling pathways via Ras, Rho and MAPK cascades in 

the cytoskeleton (Clark and Hynes, 1996, Giancotti and Ruoslahti, 1999).  

This selective adhesion of the cells was also noted when PDMS (Fadeeva et al., 2009b, Koufaki 

et al., 2011), positive photocurable and poly (lactide-coglycolide) polymers (Koufaki et al., 

2011) were textured using 150 fs laser pulses. The results showed that the fibroblasts NIH/3T3 

cells preferred the adhesion on surfaces with low roughness regardless the polymer type and 

its wettability. Similarly, PC12 cells tend to adhere to the textured surfaces irrespective of its 

roughness and wettability (Koufaki et al., 2011).  

Paul et al. (2008) discussed the influence of the laser-ablated surface patterns on the 

macrophage function of Polyvinylidene fluoride (PVDF) using an ArF Excimer laser pulses of 

1.08 J/cm2 fluence. The created surface features were dome-like microstructure of 1.8 μm in 

height and about 10 μm in diameter with a spacing of 30 μm from centre-to-centre. It was 

found that the cell polarisation (by monitoring CD163 and 27E10 expressions) was increased 

in the case of micro-scale features compared to the nanoscale structures. On the other hand, 

C2C12 cells and the rabbit anti-mouse protein were found to bond to the surrounding of the 

patterned regions due to the presence of nanoscale features (the debris of ablation process 

which generates nanoparticles) (Alshehri et al., 2016). 

3.1.2. Effect of structure size and replication 

The size of the spikes also played an active role in altering the fibroblasts adsorption when it 

was promoted using small spikes with a spike-to-spike distance of about 2 µm and 4 µm, while 

it was reduced using bigger spikes of size 6 µm (Schlie et al., 2012). The fibroblasts shape was 

also modified according to the structures size. Elongated morphology, which is usually the 
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common shape for fibroblast cells, were observed on surfaces with small spikes, while 

rounded cells were dominant when large spikes exist. The elongated shape helps the cell to 

spread and proliferate (Schlie et al., 2012).  

In a relevant research (Marticorena et al., 2007), titanium foils were laser patterned using a 

pulsed Nd:YAG laser with a UV light of 355 nm wavelength and 2.5 J/cm2 fluence. It was 

proved that the titanium nitride TiN layer formed above the laser-treated surface along with 

the high surface roughness significantly improve the bone response to the introduced implant 

comparing to the untreated Ti. The generation of spikes on the Ti substrate resulted in a 

significant reduction in the fibroblast proliferation to about 91% and a rapid Osteoblasts 

growth from 163% (control) to 203% (laser-textured Ti) (Schlie et al., 2011).  

Regular groove structures and self-organized hierarchical micro features with nanostructures 

were generated on Ti substrate and its effect on human fibroblast and MG-63 osteoblasts 

were investigated. Different groove dimensions were fabricated, and it was observed that 

these grooves play a major role in forming a contact guidance for the cultivated cells. No 

difference in cell response and morphology between fibroblast and osteoblasts was recorded 

for all groove sizes apart from the surface of a 20 µm groove width. A strong connection was 

noted between the size of the cells and the underlying features since fibroblasts could not 

recognise the grooves of 20 µm width, while the osteoblasts cells responded very well and 

grew according to the pattern generated. It was concluded that the cell width is a critical 

parameter for determining the cell reaction with grooved structures because the width of the 

fibroblast cell (20 µm) is smaller than that of the osteoblast (26 µm), while the cell’s length is 

larger for fibroblast (124 µm) than that of the osteoblast (111 µm). Therefore, wide grooves 

cause less cell orientation since the narrow fibroblast did not show a significant response to 

the 20 µm groove width (Fadeeva et al., 2010). It should be noted here that the fibroblast 

cells take a rounded shape in a hierarchical structure with very limited growth over the 

complex hierarchical structure. This is attributed, as previously discussed, to the high 

roughness values and to the inflexibility of the cell cytoskeleton which prevents the cell from 

altering their shape and settling between the micro-features. However, osteoblast cells 

proliferated very well, and its growth was promoted due to its high flexibility and ability to 

adaptation (Fadeeva et al., 2010).  

Liang et al. (2013) studied the generation of different micro/nanostructures using 

Coliseum/Phosphorus deposition on titanium surfaces. Titanium substrates were immersed 
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in 2 mg/ml nano-hydroxyapatite suspension with a 2.5 mm solution/air interface. Then, the 

titanium in the solution was patterned using fs laser producing two surfaces of microgrooves 

covered by a secondary structural layer of nano peaks and valleys at two different laser 

fluences. While at low fluences, 10 µm periodic with 1.5 µm depths were formed, 40-50 µm 

structures with a 4 µm depth were fabricated at high fluences. It was observed that there was 

no difference in the MC3T3-E1 cells’ attachment and proliferation between non-textured and 

textured Ti at low fluences (low periodicity), while 50% of the seeded cells were attached to 

the high-periodicity structures indicating a 60% improvement over the polished Ti samples. 

The results concluded that surfaces with high periodicity exhibited better osseointegration, 

including active attachment, proliferation and division, with the bone tissues compared to 

low-periodicity samples and polished Ti. This conclusion was further supported by the high 

value of the binding force obtained during the test of tibia tissue with bone trabecula 

formation without fibroblast tissue (Liang et al., 2013). 

3.1.3. Effect of laser scanning direction 

LIPSS effect on the human Mesenchymal Stem (hMSCs) cell behaviour was recently 

investigated. Two types of LIPSS were induced on stainless steel samples in a two-strips 

pattern using fs laser. One of the directions was parallel to the scanning direction while the 

second was engraved at 40 deg to the strip direction. It was noted that the cell preferentially 

adhered to the LIPSS grooves parallel to the strips and high values were recorded for the cell 

density. The cells preferentially migrated to the fabricated nanopatterns while avoiding the 

polished or as-received areas since the larger contact area was provided by the former 

(Martínez-Calderon et al., 2016).  

3.2. Effect of Surface Chemistry 

Regarding the effect of wettability, Ranella et al. (2010) found that the hydrophobicity of the 

spiky surfaces was increased with enlarging the spikes’ dimensions (width and height). This 

resulted from the poor cell attachment to the modified surfaces. For comparison, hydrophilic 

spikes were produced by thickening the oxide layer during the samples’ heating in a furnace 

at 1000oC for 30 minutes in ambient atmosphere. However, to generate superhydrophobic 

spikes, surfaces were coated with saline after the laser treatment. 
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With increasing the hydrophobicity of the surface, cell’s attachment, cultivation and spread 

were inhibited. According to the surface condition, the cell responded and formed what is 

known as a polygonal spread (extensive cell-surface interaction) on the hydrophilic surfaces 

and formed a rounded shape with clustering (weak cell-surface interaction) on the 

hydrophobic surfaces (Ranella et al., 2010).  

Furthermore, Polydimethylsiloxane was linearly textured using fs laser and the effect of 

textured surfaces were studied on protein adhesion and cell growth. It was found that the 

cells adhered on the non-textured areas located between the nano-features. The study 

suggested that the nanostructures actively facilitated the cell adhesion in certain areas over 

others. This allows the production of complex scaffolds with customised cell adhesion in 

certain parts (Alshehri et al., 2016).  

In addition, it was noted that the replication of spike structure in Si and silicone elastomer 

switched the surface condition from hydrophilic (spikes on Si) to hydrophobic (silicon 

elastomer spikes). This replication helped to reduce the fibroblast’s proliferation compared 

to Neuroblastoma’s growth, which was promoted on silicone elastomer (Fadeeva et al., 

2009b). Koufaki et al. (2011) studied the effect of wettability of replicated spike structure of 

three types of polymers on cell adhesion. It was concluded that the fibroblast avoids the 

hydrophobic areas whereas PC12 cells seem to adhere well with high density compared to 

the non-textured areas (Koufaki et al., 2011). Fadeeva et al. (2010) found that the contact 

angle of a laser textured Ti with a groove structure increased when it was measured in the 

direction perpendicular to the slot direction and reduced in the direction parallel to groove 

after laser processing. This led the cells to spread in a direction parallel to the slot. The authors 

concluded that the production of the hierarchal structure with super-hydrophobic properties 

reduced the fibroblast adhesion, while the osteoblast adhesion was enhanced compared to 

the non-textured Ti surface (Fadeeva et al., 2010). 

4. Surface Characteristics and Bacteria Aggregation and Adhesion  

Statistics showed that 1.5% of the introduced implants in the human body is associated with 

implant-associated infections (IAI). Although this percentage seems low, such infections can 

lead to severely detrimental complications to the patients, physicians and the health care 

system. Different types of bacteria can exist in this kind of infection including Staphylococcus 
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aureus, a biofilm-forming coagulase-negative Staphylococcus epidermidis (S. epidermidis), or 

gram-negative species (Zaatreh et al., 2017). 

Over the last decades, various materials have been used in manufacturing the implant, bio- 

chips and devices. Heavy metals such as copper, zinc, silver, arsenic have antibacterial 

properties and can be used in different applications except for human contact since they are 

toxic (Medlin, 1997). Therefore, in this review, we will only discuss metals and non-metals 

that are biocompatible with the human body and do not rise any toxicity issues.   

It should be noted here that one deals, in disinfection tests, with three types of bacteria 

present at the same time: sensitive, moderate and resistant. Sensitive bacteria can easily be 

killed after a short period of exposure to the antibacterial material, while resistant bacteria 

can stand toxic environments for longer periods of time. Some antibacterial biomaterials can 

be bacteriostatic for short periods and bactericidal for long periods. Therefore, care should 

be taken while carrying out such tests when the antibacterial effect is being evaluated (Price, 

2006). Table 2 gives the medical applications for different biomaterials with cell anti-

adhesive/antibacterial characteristics.  

Surface chemistry and topography have a significant effect on the antibacterial activity of 

biofilms or antibacterial surfaces. The key for the antibacterial activity of a surface textile is 

how the bacteria cells attach to and aggregate on the surface. One should note that 

“adhesion” term describes the attachment of a cell to a substrate while “cohesion” is called 

after the cell-to-cell attachment or aggregation (Garrett et al., 2008).  

A variety of techniques has been used to modify and develop the surface topography and 

chemistry of biomaterials to change the bacterial response and promoting desirable cell 

phenotypes. The understanding of the aggregation and the bacterial adhesion mechanisms is 

governed by several physical, chemical and biological processes.  

Fletcher (1980) described the aggregation of bacteria on a biofilm or a textured surface as a 

process of three stages: firstly, adsorption of bacteria on a collector surface; secondly, the 

attachment at the interface between bacteria and the collector surface which form a polymer 

bridges between the bacteria and surface; and Finally, the bacteria growth and division on 

the collector’s surface. Characklis and Marshal (1990) proposed an expanded process 

consisting of eight steps: the formation of an initial layer, reversible adhesion of bacteria, 

irreversible adhesion of bacteria, and the ultimate detachment of cells from a mature biofilm 

as a preparation for subsequent colonisation (Garrett et al., 2008). 
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Table 2. Various materials with cell antiadhesive/antibacterial characteristics and their 
applications  

 

Material 
Behaviour 

(bactericidal/anti 
fouling) 

Application(s) References 

Poly (Ethylene Glycol) 
/Carboxyl-Containing  

Ethylene Anti-fouling 

Implants Surface 
Engineering, Anti-

Adhesive Properties, 
Heparin Surface 

Treatment, Medical 
Instrument Protection 

and Disinfection 

(Ackart et al., 1975, 
Desai et al., 1992, 

Bridgett et al., 1992, 
Arciola et al., 1993, 
Kohnen and Jansen, 
1995, Koufaki et al., 

2011) 

Titanium 
Orthopedic and Dental 

Applications 
(Duarte et al., 2009, 
Cunha et al., 2016) 

Antibiotics 

Bactericidal 

Surface Modification 
of Polymers 

(Kohnen and Jansen, 
1995) 

Quaternary 
Ammonium 
Compounds 

Nonwoven 
Polypropylene Fibre 

Extrusion and 
Cosmetics 

(Nohr and Gavin 
Macdonald, 1994, 

Buffet-Bataillon et al., 
2012, Timofeeva and 

Kleshcheva, 2011) 

Silver 

Medical, Biosensors, 
Paints, Tissues 
Dressings and 

Cosmetics 

(Kumar and 
Münstedt, 2005, 

Ahamed et al., 2010) 

Iodine 
Medical and 
Antibiotics 

(Kristinsson et al., 
1991) 

Nylon Film Food-Packaging (Shearer et al., 2000) 

Keselowsky et al. (2003) showed that adhesion of the human cells and bacteria follow similar 

trends. Positively charged surfaces have greater adhesion than hydrophobic surfaces with 

existed blood pertains, while hydrophilic surfaces have the strongest cellular adhesion in 

comparison with the charged or hydrophobic surfaces.  

In related research, the conformation and accessibility of ligands were found to considerably 

affect the irreversible adhesion of microorganism to materials with modulated surface 

chemistry, and the biofilm will be produced as a result (MacKintosh et al., 2006). The adhesion 

and growth of bacteria in biofilms are affected by the nanostructured surface. So far, there is 

no quantitative understanding of the influence of nanoscale surface morphology on 

prokaryotic cell attachment. Singh et al. (2011) confirmed that the increase of the surface 
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roughness is proportional to the increase in surface voids aspect ratio and volume which 

improves bacteria adsorption. When the surface roughness increases up to 20 nm, bacterial 

adhesion and the biofilm formation are improved. On the other hand, the continuous increase 

in the roughness leads to considerably weak bacterial adhesion and prevents biofilm 

formation. 

4.1. Bacterial Adhesion Mechanism 

The bacteria depends during the adhesion process on the physiochemical reactions that occur 

between the bacteria’s outer surface and the implant or the biochip (Oliveira et al., 2003). 

There is two different types of bacterial adhesion: reversible and irreversible adhesion. 

 In reversible adhesion, the bacterial cell is driven towards the substrate’s surface either by 

physical forces that originate from the environment or by the appendages, such as flagella, 

fimbriae and pili, which pushes the bacteria to overcome the repulsive forces (Garrett et al., 

2008). There are many forces bacteria have to resist to achieve its attachment: van der Waals, 

steric and electrostatic (double layer) interaction forces (Rutter and Vincent, 1980). It should 

be noted that most bacteria maintain a negative charge on their outer surface which includes 

an acidic hydrophilic polymer. This may explain the preferable bacteria adhesion to some of 

the positively charged hydrophobic surfaces (Harden and Harris, 1953). However, once the 

first layer of the bacteria is established, the surface charge becomes negative, and the 

following bacteria find it a challenge, in this case, to adhere to the negatively charged layer. 

This may explain the reduction in the bacterial growth rate on some bio-surfaces in 

comparison with the initial adhesion phase (Fletcher, 1977). Regardless the type of opposing 

forces, bacteria will be able to adhere to the surface if they can overcome the hydro- and 

electro-static forces imposed by the bio-surfaces. 

In irreversible adhesion, bacteria overcome the repulsive forces and continue its way until it 

contacts the bio-surface and becomes immobilised. Once the contact is established, a 

chemical reaction, such as oxidation or hydration, takes place and the bacteria is attached to 

the substrate and colonisation begins (Kumar and Anand, 1998, Garrett et al., 2008).  

It is important to note that there are many factors contribute to the adhesion process 

including hydrophobicity/hydrophilicity, surface roughness, the chemical composition of the 

substratum, electric charge and the surrounding environment (Sousa et al., 2009). Table 3 
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summarises the different materials, bacteria type and the surface condition and charge 

investigated so far.  

Table 3. Effect of surface condition (wettability) and the electric charge on bacterial 

attachment to various materials 

Material Bacteria 
Surface 

condition  

Surface 
Electric 
Charge 

Attachm
ent 

Ref. 

Chitosan S. Aureus  

Hydrophilic 
 

N/A High 
(Estevam-

Alves et al., 
2016) 

Platinum 

Pseudomonas 
Sp. 

Positive 
Medium 

(Fletcher 
and Loeb, 

1979) 

Germanium Neutral 

Glass 

Negative Low 
Mica 

Nylon 

Epoxy 

PTFE Teflon 

Hydrophobic 

N/A 

High 

Polyethylene (PE) 
(Sterilin) 

Polystyrene (PS) 

Poly(ethylene 
terephthalate) (PET) 

Neutral 

Silicone Rubber 

Candida, 
Pseudomonas 

Streptococci and 
Staphylococci 

N/A 
 

(Sousa et 
al., 2009, 

Boswald et 
al., 1995, 

Gristina et 
al., 1988) 

Acrylic 

S. Epidermidis 
 

Low 

Expanded 
Polytetrafluorethyle

-ne 
(ePTFE) 

High 

(Oliveira et 
al., 2001) Silicone 

Medium 
Polyethylene (PE) 

Cellulose Diacetate 
(CDA) 

Low 
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Material Bacteria 
Surface 

condition  

Surface 
Electric 
Charge 

Attachm
ent 

Ref. 

Polystyrene (PS) 

Spherical Cocci, 
Rod-Shaped 
Bacteria and 
Stalked Rods 

γcritical= 33 
dyn/cm 

N/A High 
(Dexter et 
al., 1975) 

Cooper Different Species 
γcritical= 45 
dyn/cm Nickel 

Rod-shaped 
Bacteria 

 

Some investigations (Busscher and Weerkamp, 1987, Van Oss and Giese, 1995, Wiencek and 

Fletcher, 1997) stated that hydrophobicity may be the dominant factor in affecting the 

bacterial adhesion compared to the surface roughness or the chemical composition. It is 

thought that the interaction between bacteria, whom outer surface has hydrophobic 

characteristics, and the hydrophobic substrates are the more potent in the long term. This 

can be related to the hydrophobic interaction that happens when the water or the liquid is 

expelled from the contact area between the attracting surfaces. This force becomes less 

effective when one of the surfaces is hydrophilic and the liquids are attracted to the interface 

(Oliveira et al., 2001).  

As known, hydrophobicity can be fully controlled by texturing the surfaces and changing their 

roughness and topographical characters. Creating superficial features also promotes 

irreversible adhesion by allowing the bacteria to insert their cells in the holes, grooves and 

other protrusions fabricated on the surface. This immobilises the bacteria and offers an 

excellent environment for proliferation given that the size of the bacteria is smaller than the 

introduced features (Garrett et al., 2008). For instance, it was shown that the nanoscale 

morphological features have a considerable effect on biofilm formation and bacterial 

adhesion on the surface of nanostructured titanium oxide (Singh et al., 2011). 

To conclude, bacteria can irreversibly adhere to the surfaces once they are textured to 

achieve the optimum wettability and topography. The following section, therefore, will 

discuss in some detail the effect of the surface condition on the bacterial adhesion.   

4.2. Effect of Surface Wettability 

Most bacteria types have hydrophobic properties assigned to their protective wall and adhere 

more preferably at high rates to silicone than to acrylic; this is due to its higher roughness and 
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greater degree of hydrophobicity (Sousa et al., 2009). However, an opposite findings were 

presented by Ranella et al. (2010) who concluded that the low roughness values stimulate the 

bacterial adhesion regardless the chemistry and wettability of the surface. Schumacher et al. 

(2007) introduced a relationship between the characters of the fabricated topographical 

features and the bacterial cell adhesion using the so-called Engineered Roughness Index (ERI). 

This dimensionless number was found to be inversely proportional to the number of cells 

which adhered to the considered surface. The higher ERI values for a given surface, the lower 

the number of cells attached to that surface. Therefore, ERI number rises to a significant value 

for Sharklets patterned surfaces in comparison to the polished ones, indicating that the cell 

attachment density on the former is significantly less than other surfaces (Graham and Cady, 

2014). Compared to randomly texturised surfaces, uniformly engineered surface with specific 

dimensions and shapes showed a higher degree of controllable inhibition over initial cell 

adhesion (Graham and Cady, 2014). However, a contrary finding was concluded by Duarte et 

al. (2009) who compared the efficiency of textured and as-received titanium surfaces on S. 

Sanguinis adhesion reduction. The rough surfaces, which have Ra values around 700 nm, were 

found more prone to bacterial adhesion than smooth polished surfaces with Ra values less 

than 200 nm. Moreover, a rough surface treated with a metal curet and an air-powder 

abrasive jet, which is  a rough surface, was found to be less susceptible to bacterial adhesion 

in comparison with Er:YAG laser treated surfaces, which are smoother than the mechanically 

abraded surfaces (Duarte et al., 2009).  

So far, it can be seen that the relationship between surface hydrophobicity and roughness 

and bacterial adhesion is still under argument by researchers who are investigating different 

materials with surface conditions and different bacteria types. Therefore, further 

understanding is needed to clearly identify the bacterial behaviour to contrast surface 

conditions. In the following subsection, laser surface texturing technique for controlling 

bacterial behaviour is highlighted.  

4.3. Effect of Laser Texturing on Bacterial Behaviour 

Various methods have been used to modify the surface chemistry and topography to control 

and modulate DCs, adverse immune bacteria’s interaction with biomaterials and the 

macrophage phenotype towards anti-inflammatory phenotypes (Rostam et al., 2015). 
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However, laser ablation is receiving an increasing attention due to being a dry and contactless 

technique and an environment-friendly method compared to the chemical etching or 

multilevel surface modification which embraces many chemical reactions with the substrate. 

Femtosecond laser surface texturing was reported in the field of nano/micro- texturing of 

biomaterials in many studies including (Nayak et al., 2008, Ionin et al., 2013), which 

concentrated on low fluence values less than 2.5 J/cm2. Ionin et al. (2013) imprinted 

hydroxylapatite nano/micro-powder onto the prepared titanium surfaces to produce 

nano/micro-scale structures using fs laser pulses of fluences 0.5-2 J/cm2. The titanium wetting 

characteristics were also tuned towards hydrophobicity or hydrophilicity depending on the 

laser processing parameters especially the scanning speed and the pulse fluence. Despite the 

success in producing biocompatible micro/nanostructures, the research focused on the 

hydrophobicity without providing any critical evaluation of the bacterial behaviour and its 

interaction with the modified surfaces. This issue was also mentioned in (Nayak et al., 2008) 

which discussed the formation of sharp and quasi-regular pillars on titanium substrates using 

fluences in the range of 1.5-2.5 J/cm2. Fadeeva et al. (2011) clearly addressed this issue while 

introducing the lotus leaf-like microstructures on titanium and studied the influence of the 

superhydrophobic properties on the S. aureus and P. aeruginosa proliferation. P. aeruginosa 

cells were significantly prevented from fouling to the surface, while S. aureus found a safe 

environment for adhesion and colonisation in the hydrophobic features. It is pertinent to 

mention here that Fadeeva et al. (2011) used a very high fluence value of 100 J/cm2 with 50 

fs pulses (at 800 nm wavelength) for engraving the titanium substrate. It was indicated that 

such laser fluence and other parameters are necessary for producing uniform hierarchical 

structures without a clear explanation of the mechanism behind the formation of such 

structure. 

In later research, a much longer infrared laser pulses of 500 fs were utilised by Cunha et al. 

(2016) to control the adhesion and formation of S. aureus biofilm on Ti. The surface roughness 

role in controlling the bacterial adhesion was emphasised by showing that S. aureus adhered 

preferably to the low-roughness surfaces with Ra= 1-4 nm, which was also proved by other 

investigations (Wua et al., 2011, Ivanova et al., 2010). It can be concluded that the bacteria 

tend to settle down in concave regions because that provide a larger contact area in 

comparison with nano-pillars, cones and other microstructures which have a characteristic 

length smaller than the bacteria size. The little space between the nano/micro-pillars or –
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grooves not only prevents the bacteria from penetrating and colonisation but also may kill 

the bacteria either by penetrating the bacterial cell and damaging the internal components, 

such as cytoplasm, RNA and DNA, or by tearing the protective cellular wall and damaging the 

cytoplasm (Cunha et al., 2016, Song et al., 2015). Figure 1 shows an illustration of the potential 

damage some micro/nanostructures may cause to the bacterial cells. 

Perni and Prokopovich (2013) investigated the use of a microsecond laser pulses to ablate 

medical-graded silicon wafers and to produce conic shape features on the master slide’s 

surface.  An Nd:YAG (1 µm wavelength) with 10 kHz pulse repetition rate was used to ablade 

the material from a 1 mm-thick substrate and to produce 20 µm to 40 µm features with 4, 8 

and 13 µm spacing distance between them. The master silicon wafers were subsequently 

covered with MED-4850 polymer to produce silicone sheets of 1 mm thickness. The resulting 

silicone will then have conic protrusions on the surface which was later tested against 

Escherichia Coli or Staphylococcus Epidermidis Bacteria for 5 hours. The results showed that 

the bacteria aggregated at the circumference of the cones’ base and the valleys between the 

cones rather than the top of the cones. Moreover, less bacterial density was observed using 

the 20 µm to 40 µm diameter features in comparison with the 25 µm to 35 µm sized features. 

This selective aggregation can be related to the bacteria size, which is smaller than the cone 

dimensions, and to the fact that protrusions and areas with low liquid velocity provide a 

shelter for the bacterial cell to hide and grow, especially in high-velocity fluid flows (Perni and 

Prokopovich, 2013). 

Furthermore, the surface layer of polyethylene terephthalate (PET) was modified using KrF 

(248 nm wavelength) Excimer laser which generated 0.58 J/cm2 (Gillett et al., 2016). 

Compared to the research mentioned above, smaller features of 15-20 µm were produced, in 

a blind-hole form, to test the E. Coli colonisation in comparison with the untreated samples. 

The authors concluded that the laser engineered surfaces did not hinder the bacterial growth, 

but in contrary promoted the bacteria’s aggregation and proliferation at the edges of the 

micro features. It should be noted, from the figures provided in this investigation, that the 

fabricated features are not only much larger that the bacteria size but are also separated by 

a large areas between each other. Although the surfaces in this research experienced an 

increase in hydrophobicity, this did not inhibit the cells’ attachment, as reported in other 

investigations (Yan et al., 2011), due to the large smooth areas in which bacteria found a 

healthy environment for colonisation. 
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In addition to the YAG and ultrashort pulsed lasers, CO2 laser with 10 µm wavelength was 

utilised to machine PDMS substrates to investigate E. Coli behaviour in both LB-agar solid and 

liquid states (Chebolu et al., 2013). The test was conducted using two values for the feature’s 

width: 60 µm and 90 µm. The colonies density was found to be significantly less in the 

textured surfaces than that of the smooth surface samples (control), although the dimensions 

of the features produced with the CO2 laser are considered much larger than those fabricated 

with fs and ps lasers. The main advantage of using CO2 laser and of creating large-sized 

patterns is promoting the manufacturability and fabricating economic structures on polymers 

for medical purposes. 

In conclusion, various types of lasers of different wavelengths and processing parameters 

were successfully utilised in the biomaterials texturing for micro- and nanofeatures 

production. Although the bacteria’s proliferation, fouling and colonisation were 

hindered/eliminated from the laser textured surfaces, the bacterial behaviour control is still 

a new area to investigate and a better understanding of the bacteria-biomaterial interaction 

mechanism is needed in order to effectively improve the bio-surfaces in implants and medical 

devices.  

5. Conclusions 

The biological interaction between the human and bacterial cells and the biomaterial surfaces 

have been studied for many years. Due to the increased need for biocompatible materials at 

fast rate and low cost, investigations focused on effective and environment-friendly methods, 

such as lasers, for producing such surfaces. This chapter reviewed the effect of laser-induced 

surface structures on the bacterial and cellular behaviour. 

It can be concluded that the human cells response differently to the surface structure. Using 

lasers, it is possible to generate surface topographies of different geometries and sizes which 

are vital to reduce fibroblast growth and to increase the friendly human cells growth. Lasers 

were successfully able to produce surface features larger/smaller than the fibroblast size, 

various features shape, size and distribution and surfaces of high/low roughness, hence, 

variant wettability. For human cells, it can be concluded that the increase in surface 

hydrophobicity significantly reduce undesirable cell adhesion.  
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For bacterial cells, lasers also produced conical and blind-hole features on the biomaterials 

surfaces to control the surface hydrophobicity and the interaction with the bacteria. The 

laser-produced spikey features prevented the bacteria aggregation by either killing them or 

hindering their fouling by reducing the surface-bacteria contact area. Although antibacterial 

and antifouling behaviours were achieved using various features, the investigations did not 

explain the mechanism behind such behaviour. Moreover, contrary observations were 

presented regarding the effect of the surface topographical and chemical properties on the 

bacterial response. 

It can be concluded that the use of laser surface modification as a method for controlling 

cellular and bacterial behaviour is still under development, and a deep understanding of the 

phenomena involved is very needed. 
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