Immunity, Volume 51

Supplemental Information

Nephrocytes Remove Microbiota-Derived Peptidoglycan from Systemic Circulation
to Maintain Immune Homeostasis
Katia Troha, Peter Nagy, Andrew Pivovar, Brian P. Lazzaro, Paul S. Hartley, and Nicolas Buchon

Supplementary Figure 1 (Related to Figure 1). Klf15 ${ }^{\text {NN }}$ flies display improved survival against a variety of microbial infections

(A) Survival curve of Klf1 $5^{N N}$ and WT flies infected with P. rettgeri.
(B-C) Survival curves over 14 days following natural infection of WT and Klf15 ${ }^{N N}$ flies with the fungal pathogens M. anisopliae (B) and B. bassiana (C).
(D-E) Survival of flies expressing nephrocyte-specific RNAi against Klf15 throughout development (DotGal4 $>$ UAS-Klf15-IR) (D) or only during the adult stage (Hand-Gal4ts $>$ UAS-Klf15-IR) (E) after infection with E. faecalis.
The curves represent the average percent survival $\pm \mathrm{SE}$ of three biological replicates. ${ }^{*} \mathrm{p}<0.05 * * * \mathrm{p}<0.001$ $* * * * \mathrm{p}<0.0001$ in a Log-rank test.

Circulating Proteins

 Lsp1 beta \star
CG2233
CG5171
CG5397
CG9468
CG7203
CG9372
TotM
Dscam1
CG11459
Repressed
by infection
Toll target
Signal
peptide
predicted

$\overline{\text { Toll Targets }}$ Imd Target

E Hours \quad S. aureus

L

M

Supplementary Figure 2 (Related to Figure 2). The Toll pathway is turned on in Klf15NN flies

(A) Bacterial load upon death (BLUD) of wildtype and Klf15 ${ }^{N N}$ flies infected with S. aureus and E. faecalis. (B-D) Bacterial load data of control and Klf15 ${ }^{N N}$ flies following infection with S. marcescens Type strain, L. innocua, and S. typhimurium. Three repeats are graphed together, with each symbol representing an individual fly's number of colony forming units (CFU). Horizontal lines represent median values for each time point. Results were analyzed using a two-way ANOVA followed by Sidak's post-test for specific comparisons (${ }^{*} \mathrm{p}<0.05 * * \mathrm{p}<0.01$).
(E) Representative fluorescence images of the abdomens of control and $K l f 15^{N N}$ flies 3 h post-injection with pHrodo bacteria. Fluorescence was quantified and the average plotted \pm SE. ${ }^{* *} \mathrm{p}<0.01$ in a Student's t-test.
(F-G) Survival curves over 7 days of WT and $\mathrm{Klf} 15^{N N}$ flies that were pre-injected with latex beads 24 h prior to infection with the pathogens S. aureus (D) and E. faecalis I. ${ }^{* *} \mathrm{p}<0.01^{* * *} \mathrm{p}<0.001^{* * * *} \mathrm{p}<0.0001$ in a Log-rank test.
(H) Phenoloxidase activity was measured using the L-DOPA assay. WT and Klf15 ${ }^{N N}$ samples were measured in unchallenged conditions as well as following infection with E. faecalis and S. aureus. ${ }^{*} \mathrm{p}<0.05 * * \mathrm{p}<0.01$ in a Student's t-test.
(I) Comparison of Klf15 $5^{N N}$; PPO14, $2^{4}, 3^{1}$ quadruple mutants to WT, Klf15 $5^{N N}$, and $P P O 1^{4}, 2^{4}, 3^{1}$ mutants in experiments measuring survival against S. aureus. ${ }^{* * *} \mathrm{p}<0.001^{* * * *} \mathrm{p}<0.0001$ in a Log-rank test.
(J) Heat map showing a list of circulating proteins depleted (≥ 1.5-fold) in the hemolymph (insect blood) of Klf1 $5^{N N}$ flies relative to WT. A color scale on the left side of the heat map denotes whether the gene that encodes each protein is transcriptionally decreased by infection (pink), a target of the Toll pathway (blue), or predicted to possess a signal peptide (beige). Core genes are highlighted with a \star symbol (Troha et al., 2018).
(K) Whole fly RT-qPCR of Toll target genes CG18067 and CG15293 and Imd target gene AttD using unchallenged WT and Klf15 ${ }^{N N}$ samples. ${ }^{*} \mathrm{p}<0.05$ in a Student's t-test.
(L-M) Whole fly RT-qPCR of Toll target genes IM2, CG15067, and Drs and Imd target gene Dpt following infection with S. aureus (J) and E. faecalis (K). ${ }^{*} \mathrm{p}<0.05{ }^{* *} \mathrm{p}<0.01 * * * * \mathrm{p}<0.0001$ in a Student's t-test.

Supplementary Figure 3 (Related to Figure 3). Increased resistance to infection in Klf15 ${ }^{N N}$ flies is Toll-dependent

(A-B) Comparison of $K l f 15^{N N} ; ; s p z^{r m 7}$ double mutants to WT, Klf15 ${ }^{N N}$, and $s p z^{r m 7}$ single mutants in experiments measuring mRNA expression of Toll target genes CG15067 (A) and Drs (B) via RT-qPCR.
(C-G) Comparison of Klf1 $5^{N N}$;; $S P E^{S K 6}$ double mutants to WT, Klf15 $5^{N N}$, and $S P E^{S K 6}$ single mutants in experiments measuring mRNA expression of Toll target genes IM2 (C), CG15067 (D), and Drs (E) via RTqPCR as well as survival against S. aureus (F) and E. faecalis (G).
(H-I) Comparison of Klf15 ${ }^{N N}$, $p s h^{l}$ double mutants to WT, $K l f 15^{N N}$, and $p s h^{I}$ single mutants in experiments measuring mRNA expression of Toll target genes CG15067 (H) and Drs (I) via RT-qPCR.
(J-K) Comparison of Klf15 $5^{N N}$;; modSP ${ }^{l}$ double mutants to WT, Klf15 ${ }^{N N}$, and modSP ${ }^{l}$ single mutants in experiments measuring mRNA expression of Toll target genes CG15067 (J) and Drs (K) via RT-qPCR.
(L-M) Comparison of Klf15 $5^{N N}$, PGRP-SA ${ }^{\text {seml }}$ double mutants to WT, Klf15 ${ }^{N N}$, and PGRP-SA ${ }^{\text {seml }}$ single mutants in experiments measuring mRNA expression of Toll target genes CG15067 (L) and Drs (M) via RTqPCR.
(N-R) Comparison of Klf15 $5^{N N}$; GNBP3 Hades double mutants to WT, Klf1 $5^{N N}$, and GNBP3 Hades single mutants in experiments measuring mRNA expression of Toll target genes IM2 (N), CG15067 (O), and Drs (P) via RT-qPCR as well as survival against S. aureus (Q) and E. faecalis (R).
For RT-qPCR experiments, mean values of three or more repeats are given \pm SE (${ }^{*} \mathrm{p}<0.05 * * \mathrm{p}<0.01$ $* * * \mathrm{p}<0.001^{* * * *} \mathrm{p}<0.0001$ in a Student's t-test). Survival curves show the average percent survival \pm SE of three biological replicates ($* * \mathrm{p}<0.01{ }^{* * *} \mathrm{p}<0.001 * * * * \mathrm{p}<0.0001$ in a Log-rank test).
(S-T) Bacterial load data of WT, Klf15 ${ }^{N N}$, modSP ${ }^{l}$, Klfi $15^{N N} ;$ modSP ${ }^{l}$, PGRP-SA ${ }^{\text {seml }}$, and Klf15 $5^{N N}$, PGRP$S A^{\text {senl }}$ flies following infection with S. aureus and E. faecalis. Three repeats are graphed together, with each symbol representing an individual fly's number of colony forming units (CFU). Horizontal lines represent median values for each time point. Results were analyzed using a two-way ANOVA followed by Sidak's post-test for specific comparisons (${ }^{* * * *} \mathrm{p}<0.0001$).

Supplementary Figure 4 (Related to Figure 4). Nephrocytes prevent overactive immune responses to gut microbes

(A) Quantification of mRNA expression in conventional (CR), germ-free (GF), and germ-free flies recolonized with either live A. pomorum (DAP-type PGN), live L. brevis (Lys-type PGN), or live E. faecalis (Lys-type PGN). RT-qPCR measurements of Toll target gene Drs are shown.
(B) Percent SMURF flies found after feeding a diet containing 2.5\% Blue \#1 Dye for both WT and Klf15 $5^{N N}$ flies.
(C) Comparison of circulating (hemolymph) bacteria between $K l f 15^{N N}$ and control flies. Samples were plated on three separate media: De Man, Rogosa, and Sharpe (MRS), Luria-Bertani (LB), and yeast-peptoneglucose (YPG) agar.
(D) Comparison of whole fly microbiota between $K l f 15^{N N}$ and control flies. Samples were plated on three separate media: De Man, Rogosa, and Sharpe (MRS), Luria-Bertani (LB), and yeast-peptone-glucose (YPG) agar.
(E) Quantification of mRNA expression in conventional (CR), germ-free (GF), and germ-free flies fed either heat-killed A. pomorum (DAP-type PGN), heat-killed L. brevis (Lys-type PGN), or heat-killed E. faecalis (Lys-type PGN). RT-qPCR measurements of Toll target gene Drs are presented. For RT-qPCR experiments, mean values of three or more repeats are given \pm SE. ${ }^{*} \mathrm{p}<0.05 * * \mathrm{p}<0.01$ in a Student's t-test.
(F-H) Quantification of mRNA expression in flies overexpressing SPE (c564-Gal4ts $>$ UAS-SPE) in both conventional (CR) and germ-free (GF) conditions. RT-qPCR measurements of Toll target genes IM2 (F), CG15067 (G), and Drs (H) are shown.
(I) Whole fly RT-qPCR of $S P E$ using unchallenged wildtype and $K l f 15^{N N}$ samples.

Supplementary Figure 5 (Related to Figure 5). Nephrocytes uptake peptidoglycan from the hemolymph

(A) Quantification and comparison of PGN puncta per cell for CR and GF flies and flies expressing shibiretsl (Dot-Gal4 > UAS-shi ${ }^{t s I}$), Rab5 ${ }^{D N}\left(\right.$ Hand-Gal4 ${ }^{t s}>$ UAS-Rab5 $\left.5^{D N}\right)$, Rab7 $7^{D N}\left(\right.$ Hand-Gal4 ${ }^{t s}>$ UAS-Rab7 ${ }^{D N}$), Vha16-1-IR (Dot-Gal4 > UAS-Vhal6-1-IR), and Vha44-IR (Dot-Gal4 > UAS-Vha44-IR) in a nephrocytespecific manner. ${ }^{* * * *}<{ }^{\circ} 00.0001$ in a Student's t-test.
(B) Pearson correlation coefficients (PCC) from co-localization experiments.
(C) Immunostaining against PGN reveals colocalization (yellow circles) with the lysosomal marker Lamp1.

Scalebar: $10 \mu \mathrm{~m}$
(D1-D2) Control images $\left(18^{\circ} \mathrm{C}\right)$ for shibire ${ }^{t s l}$ (Dot-Gal4 > UAS-shi ${ }^{t s l}$) and Rab7 ${ }^{D N}$ (Hand-Gal4 ${ }^{t s}>$ UASRab7 ${ }^{D N}$) experiments.
(D3) Nephrocyte-specific expression of Vha44-IR (Dot-Gal4 > UAS-Vha44-IR) led to accumulation of PGN in nephrocytes when compared to control. Scalebars: $10 \mu \mathrm{~m}$
(E) Surface view: Immunostaining against Duf (labels the lacunae) shows expansion of the lacunae in shibiet ${ }^{t s I}$ (Dot-Gal4 > UAS-shi ${ }^{\text {tsl }}$) flies. Immunostaining with PGN antibody reveals that PGN is accumulating in the lacunae.

Gene	Primer Sequences	
	Forward Primer (5' to 3')	Reverse Primer (5' to 3')
$A t t C$	TGCCCGATTGGACCTAAGC	GCGTATGGGTTTTGGTCAGTTC
$D p t$	GCTGCGCAATCGCTTCTACT	TGGTGGAGTGGGCTTCATG
$D r s$	CGTGAGAACCTTTTCCAATATGATG	TCCCAGGACCACCAGCAT
$R p L 32$	GACGCTTCAAGGGACAGTATCTG	AAACGCGGTTCTGCATGAG
$I M 2$	ACCGTCTTTGTGTTCGGTCT	TGCAGTCCCCGTTGATTACC
$C G 15067$	GAGCCTGACGTTATTGGCG	CCTTTTCCACTTGTTGGCTTGT
$C G 18067$	ATGGGCTCGAACACTGGAG	TCCTCATTTCGCTGTATATTCGC
$C G 15293$	TCCTATCTACTGGCAATCTGTGT	CGGCGGATAAAGAAGTGGCA
$A t t D$	AAGGGAGTTTATGGAGCGGTC	GCTCTGGAAGAGATTGGCTTG
$T o t A$	CCCAGTTTGACCCCTGAG	GCCCTTCACACCTGGAGA

Supplementary Table 1 (Related to STAR Methods). List of oligonucleotides

