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Abstract 

Two different processing routes were used to investigate the microstructure 

and strength of commercial purity (CP) titanium of grade 4 processed by equal-

channel angular pressing (ECAP).  In the combined temperature (CT) route the 

specimens were pressed at 723 K in the first pass and at 373 K in the second pass 

but in the warm temperature (WT) route the specimens were pressed through two 

passes at 723 K.  Both routes led to an inhomogeneous microstructure with average 

grain sizes of ~1.5 and ~1.7 m after the CT and WT routes, respectively.  Both 

routes gave improved strengthening and higher hardness but the CT route with a 

lower temperature step gave the highest ultimate tensile strength of ~790 MPa.  The 

inclusion of a lower temperature processing step may be important for optimizing the 

strength of CP Ti for use in medical implants.           
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1. Introduction  

 

Experiments over the last three decades have established that the processing of 

metals using procedures based on the application of severe plastic deformation 

(SPD) provides an opportunity for achieving very significant grain refinement, 

typically to the submicrometer or even the nanometer range, combined with 

exceptional strengthening [1]. Processing by SPD refers specifically to the 

introduction of very high strains without incurring any significant changes in the 

overall dimensions of the work-pieces [2]. Although various SPD procedures are now 

available, the two primary processes are equal-channel angular pressing (ECAP) and 

high-pressure torsion (HPT) [3]. In practice, ECAP refers to the pressing of a bar or 

rod through a die constrained within a channel which is bent through an abrupt angle 

[4] whereas HPT denotes the torsional straining of a sample, usually in the form of a 

thin disk, during the application of a high applied pressure [5]. Both of these 

procedures produce excellent ultrafine-grained (UFG) microstructures but ECAP has 

an advantage because it entails the processing of larger samples which may provide 

opportunities for use in industrial applications. Furthermore, ECAP can be easily 

combined with other processes such as Conform for the production of relatively long 

rods of the UFG material [6, 7]. 

      Commercial purity (CP) titanium is an excellent biomaterial but in practice it is 

generally strengthened with aluminum and vanadium to give the classic Ti-6Al-4V 

alloy which is used in many orthopedic and dental implants [8]. It is important to 
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recognize that this alloy was developed originally for use in aerospace applications 

and in practice there are long-term potential health problems associated with the 

release of Al and V ions into the human body so that these implants are generally 

restricted to service lifetimes of not more than 10-15 years [9]. One method for 

avoiding, or at least alleviating, the problem of inherent toxicity is to develop titanium 

alloys without the presence of any significant Al or V [10-13]. Yet another approach is 

to use SPD methods and other associated processing techniques in order to refine 

the grain size and thereby strengthen the commercial purity titanium without the 

addition of any alloying elements [14].  

There are now several examples of this approach. For example, CP Ti of grade 4 

was processed by ECAP and then subjected to thermo-mechanical processing in the 

form of forge stretching, drawing and annealing to give rods of 3 m length that were 

effectively cut for use as dental implants [15,16]. A CP Ti of grade 2 was subjected to 

ECAP and then cold rolled at a subzero temperature (173 K) to produce a tensile 

strength which slightly exceeded the traditional Ti-6Al-4V alloy [17]. Similarly, a CP Ti 

of grade 1 was successfully processed by ECAP at room temperature for 4 passes 

and then tested following the recommended standard for dental implants 

(International Organization of Standardization ISO 14801) to show that the fatigue life 

was significantly improved [18].  

Accordingly, the present experiments were initiated in order to compare the 

potential for using a two-step processing route in which ECAP is used for two passes 

either at the same high temperature for both passes or with a significant drop in 

temperature for the second pass, where a major drop in temperature was selected to 

follow the earlier demonstration of the success of processing through the use of 

subzero rolling [17]. A CP Ti of grade 4 was selected for this investigation since this 
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represents the optimum pure material which may be used for medical implants based 

on considerations of toxicity.  

 

2. Experimental material and procedures 

 

The experimental material was commercial purity titanium (CP-Ti) of grade 4 

which was annealed at 973 K for 4 h to give an initial average grain size of ∼58 μm. 

According to the commercial specifications, the chemical composition of the material 

is given in Table 1. 

 

Table 1 Composition of the commercially pure titanium grade 4 

 

 Billets for ECAP processing were cut as cylinders with lengths of 20 mm and 

diameters of 5 mm. These billets were processed using an ECAP die having an 

internal channel angle, Φ, of 110° and an outer arc of curvature, Ψ, close to 0°. 

These angles produce a strain of ∼0.81 on each separate pass through the die [19]. 

After pressing for one pass, the billet was rotated about the longitudinal axis by 90˚ 

following the conventional processing route Bc [20]. Three sets of specimens were 

used in these experiments. First, and for comparison purposes, samples were 

examined directly without processing by ECAP. Second, billets were pressed for up 

to 2 passes using a ram speed of 0.1 mm/s following two different temperature 
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schemes: in the combined temperature (CT) scheme the specimens were initially 

pressed at 723 K in the first pass and then the second pass was conducted at 373 K 

whereas in the warm temperature (WT) scheme the specimens were pressed 

through two passes at 723 K. A lubricant containing MoS2 was used for both sets of 

ECAP samples. 

 

             

Figure 1 Schematic show of measurement points for hardness mapping. 

The microstructures of all specimens were examined with an optical microscope 

and with a scanning electron microscope (SEM) on both polished and etched 

surfaces.  The precipitate composition was examined at a 15 kV working voltage 

using an EDS spectra module of JED-2300, JCM 6000. For EBSD observations, a 

Tescan Lyra 3 SEM equipped with a NordlysNano EBSD detector was used with an 

accelerating voltage of 20 kV. The EBSD data were subsequently analyzed with HKL 
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Channel 5 software (Oxford Instruments). In order to determine the misorientations 

between grains, grain angles at and above 15° were designated high-angle grain 

boundaries (HAGBs) and angles between 2-15° were designated low-angle grain 

boundaries (LAGBs). For transmission electron microscopy (TEM), standard 3 mm 

disks were cut from the ECAP-processed billets and thin regions were prepared 

using double-jet polishing in a methanol-perchloric acid bath having a ratio of 4:1. 

The TEM observations were conducted in a JEOL JEM 1200 EX II microscope 

operating at 120 kV.   

Dog-bone shape tensile specimens were cut from the central regions of the 

pressed billets with gauge lengths of 15.0 mm lying parallel to the pressing axes and 

with gauge widths and thicknesses of 4.0 and 1.5 mm, respectively. Specimens were 

cut by wire erosion and the surfaces were ground to remove any effects from the 

machining operation. A special tensile testing apparatus was fabricated to 

accommodate these small specimens in the tensile machine. Tensile tests were 

performed at room temperature under conditions of constant cross-head 

displacement using an initial strain rate of 1.0  10-3 s-1 and the stress-strain curves 

were then examined to determine the yield strength, σys, the ultimate tensile strength, 

σUTS, and the elongation to failure, δ%.  

A Vickers microhardness tester (HVS1000) was used to obtain hardness maps 

over the cross-sections of billets on surfaces cut perpendicular to the pressing 

direction. Measurements were taken at 85 different points on each surface using an 

array of 0.4 mm steps as depicted schematically in Figure 1 with each measurement 

taken using a load of 200 g for a dwell time of 10 s. These measurements were used 

to construct color-coded maps which provide visual displays of the microhardness 

values. 
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3. Experimental results  

 

3.1 Microhardness measurements and tensile testing 

The measured values of the mean microhardness for samples processed under 

these two processing conditions were Hv  272 for CT and Hv  245 for WT where, 

by multiplying by 9.807 N/mm2, these values correspond to hardnesses of ~2670 and 

~2400 MPa, respectively. By comparison, there was a measured microhardness of 

Hv  180 (~1770 MPa) for the initial annealed material without ECAP processing. 

Thus, processing by ECAP produces a significant increase in strength and hardness 

after only a single pass as noted also in earlier experiments conducted on a number 

of commercial aluminum-based alloys [21].   

 

                                (a)                                                    (b) 

Figure 2 Hardness mapping in ECAP processed samples under (a) CT and (b) WT 

conditions. 
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The homogeneity of the hardness measurements over the cross-sectional planes 

of the ECAP billets is shown by the color-coded maps presented in Figure 2 for 

processing under (a) CT and (b) WT conditions, respectively, where the data are 

plotted such that the X and Y scales are perpendicular orientations positioned 

arbitrarily such that the points (0,0) are located at the centers of the cross-sections of 

the two billets; the absolute values of the hardness values are indicated by the keys 

on the right of each diagram. Thus, the hardness is consistently higher for the CT 

scheme rather than the WT scheme and this is reasonable because of the potential 

for grain growth when pressing at higher temperatures.  Nevertheless, there is a 

reasonable hardness homogeneity throughout the cross-sections for both processing 

conditions and there is no evidence for any regions of lower hardness, typically 

having thicknesses of ~0.5 mm, lying adjacent to the lower surfaces of the billets as 

reported earlier after processing of an Al-6061 alloy by up to 6 passes of ECAP at 

room temperature [22].   

 

Table 2   Results from mechanical testing of specimens in the initial condition and 

after ECAP processing using the CT and WT processing routes. 

Sample Yield 

stress 

(MPa) 

Ultimate tensile 

strength 

(MPa) 

 Ductility  

(δ/%) 

Hardness 

(Hv) 

Initial 550±13 610±15  32±0.2 180±5 

CT 760±9 790±11  18±0.5 272±7 

WT 710±6 760±7  22±0.3 245±3 
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In order to determine the strength of the specimens, tensile testing was conducted 

at room temperature using an initial strain rate of 1.0 × 10−3 s−1. From these tests, the 

values of the yield stress (YS) and ultimate tensile strength (UTS) were recorded for 

the CT and WT conditions and the results are shown in Table 2 where the upper row 

corresponds to the initial annealed condition without ECAP processing. Thus, and 

consistent with the microhardness data, there is an increase in strength after ECAP 

processing and this increase is larger when processing following the CT scheme.  

 

3.2 Microstructural evolution 

Representative microstructures, obtained with optical microscopy and EBSD 

methods, are shown in Figures 3 and 4. The optical microscope images are given in 

Figure 3 for (a) the initial stare and (b) the CT and (c) WT states. As seen from the 

images in (a), (b) and (c), two passes of ECAP processing leads to a significant 

decrease in grain size. EBSD images are given in Figure 4 for samples processed 

under (a) CT and (b) WT conditions. Inspection of both images shows that there are 

inhomogeneous microstructures formed by a mixture of areas of ultrafine grains 

containing predominantly HAGBs and some exceptionally large grain areas 

containing predominantly LAGBs. Detailed inspection in EBSD suggests that Figure 

4(a) contains a higher ratio of HAGBs than Figure 4(b). This is consistent with TEM 

observations where the microstructure in Figure 4(b) for the WT condition contained 

more subgrains and the ultrafine grain sizes tended to be relatively smaller than for 

the CT condition.   
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(c) 

Figure 3 Optical microscope images of (a) initial state (b) CT and (c) WT conditions. 

The grain size distributions are shown in Figure 5 for samples processed for 2 

passes under (a) the CT and (b) the WT schemes. For the CT condition, the ultrafine 

grains occupy up to ~20 % of the total area and this is larger than for the WT 

condition. Nevertheless, several grains exceeding 10 μm were found in the CT 

microstructure and these large grains occupied ~30 % of the investigated area in this 

sample. The mean grain size in the CT sample was ~1.5 μm with no grains larger 

than ~17 μm whereas the mean grain size in the WT condition was ~1.7 μm with no 

grains larger than ~22.5 μm. Based on statistical analysis, the fraction of HAGBs in 

Figure 4(a) was estimated as ~45% and this is similar to, but slightly higher than, 

Figure 4(b) where it was ~40%. 
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(b) 

Figure 4 The EBSD orientation maps of samples processed by ECAP under (a) CT 

and (b) WT conditions. 
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(b) 

Figure 5 Grain size distribution in samples processed by ECAP under (a) CT and (b) 

WT conditions. 

Figure 6 shows the inverse pole figures in (a) the CT sample and (b) the WT 

sample where (c) shows a schematic illustration of the ECAP die and (d) defines the 

coordinate system in the ECAP billet. In the CT sample in Figure 6(a), the basal 

poles of grains are tilted about 20-45° away from the Y axis and the many of the 

grains have a tendency to orient to {101�2} planes parallel with the pressing direction 

of the last pass where this corresponds to the longitudinal plane XZ parallel to the 

channel side wall. The < 112�0 > directions are oriented nearly parallel with the 

pressing direction which corresponds to the X axis. Thus, this microstructure for the 

CT sample has a relatively strong {101�2} < 112�0 > microtexture. In the WT sample, 

Figure 6(b) shows the predominant tendency is to orient in the < 112�0 > directions 

parallel to the pressing direction and in the majority of grains there is a tendency to 

form basal poles parallel with the Y axis, where this means with {0001} planes 

parallel with the pressing direction of the last pass which corresponds again to the 

longitudinal plane XZ parallel to the channel side wall. Nevertheless, the texture of 

the WT sample appears more random than the CT sample and in the WT sample the 

microstructure has both relatively strong {0001} < 112�0 > and weak {101�0} <

112�0 > microtextures.  
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                                    (c)                                                  (d) 

Figure 6 Inverse pole figures obtained for the pressing direction (axis X) and 

longitudinal section (axis Y) in (a) CT sample; (b) WT sample; (c) ECAP die and (d) 

ECAP processing axis.  
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Figure 7 (a) TEM images of initial state of the sample and (b) SEM-EDS data 

showing precipitation. 

In the initial unprocessed condition the average grain size was ~58 m and there 

was evidence for some precipitate particles within the grains which can be seen in 

the TEM image of the initial state in Figure 7 (a). The precipitate composition was 

determined with SEM-EDS and the result is given in Figure 7 (b). Figure 8(a) shows a 

low magnification TEM image of material processed by ECAP under the CT scheme 

and a higher magnification image is shown in Figure 8(b). The non-uniform levels of 

shading in these images suggest the presence of high internal stresses which are a 

direct consequence of the SPD processing, where this is consistent with the detailed 

synchrotron X-ray microbeam diffraction measurements reported earlier for samples 

of an Al-1050 alloy processed by multiple passes of ECAP at room temperature [23]. 
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Thus, there are almost no sharp changes in the strain contours which is a direct 

consequence of the residual stresses. From these observations, it is reasonable to 

conclude that there is only a single grain in the field of view in Figure 8(a). In the 

higher magnification image in Figure 8(b) there is a high density of dislocations within 

the observed area and these dislocations are relatively homogenously distributed. 

Again, the strain contours show non-uniform diffraction conditions in relatively small 

areas. It should be noted also that the dark contours are continuous so that there are 

no dislocation walls or LAGBs within this image.  
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(b) 

Figure 8 TEM images of CT sample with (a) lower and (b) higher magnifications 
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(a) 

 

(b) 

Figure 9 TEM images of WT sample with (a) lower and (b) higher magnifications 

Similar sets of lower and higher magnification images are shown in Figure 9(a) 

and (b) for the WT conditions. In the lower magnification image in Figure 9(a) there 

are features that were not apparent in the CT images in Figure 8. Thus, the level of 

shading is again non-uniform over the whole image but there are sharp changes, 

marked with arrows, which denote the presence of LAGBs. In the higher 

magnification image in Figure 9(b) there are sub-grains filled with reasonably 

homogenously distributed dislocations and the neighboring grains vary in their 

contrast within the matrix which suggests slight differences in their individual 

orientations and/or in the local dislocation densities. 
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4. Discussion 

 

These experiments examined two different processing routes for CP titanium of 

grade 4 where the CT route denotes an ECAP pass at 723 K followed by a pass at 

373 K and the WT route denotes two consecutive passes at 723 K with all processing 

conducted using route BC.  In the unprocessed condition the Vickers microhardness 

was Hv  180 but after ECAP there was significant strengthening with values for Hv 

of ~272 and ~245 for the CT and WT routes, respectively.  This increase in hardness 

was matched by an increase in the YS in tensile testing.  For the unprocessed grade 

4 material the measured YS was ~550 MPa which is close to the value of ~530 MPa 

reported earlier for CP Ti of grade 4 [24] but after processing the YS increased to 

~760 and ~710 MPa for the CT and WT conditions, respectively.  These values of the 

YS are generally high for CP Ti but they are lower than the reported values of ~915 

MPa after 6 passes of ECAP and cold rolling [16], ~1006 MPa after 8 passes of 

ECAP and cold rolling [24] and ~1200 MPa after ECAP and a thermomechanical 

treatment involving forging and drawing [24].   

All of these results are consistent and they demonstrate that some additional 

processing is required after ECAP in CP Ti in order to achieve the maximum YS. By 

contrast, high values of the YS may be achieved in appropriate Ti alloys after 

processing by ECAP without any additional processing: for example, a YS of ~1134 

MPa was reported in a Ti-5.7Al-3.8Mo-1.2Zr-1.3Sn alloy after ECAP processing 

through 2 passes using a die with a channel angle of 120 at a temperature of 1023 

K [26]. 

Examinations of the microstructures revealed inhomogeneity after both the CT and 

WT processing routes but this is reasonable since the processing was continued only 
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to 2 ECAP passes. Nevertheless, the average grain size was reduced from an initial 

value of ~58 m to values of ~1.5 and ~1.7 m after the CT and WT processing 

routes and there was a slightly higher fraction of ultrafine grains visible within the CT 

microstructure.   

From early experiments on the processing of pure titanium by ECAP, it was 

concluded that the processing required a high pressing temperature of at least ~550 

K [27] because, due to the limited number of active slip systems in titanium, 

processing at lower temperatures leads to a segmentation of the ECAP billets 

wherein the samples either break [27] or they became divided into discrete segments 

that are held together by small portions of material lying along the bottom surfaces of 

the billets [28]. In another study, experimental design was used to determine the 

optimal ECAP parameters for pure titanium of grade 4 and it was concluded that 573 

K is the optimal processing temperature for a reasonably homogeneous 

microstructure [29].  

Nevertheless, some other experiments demonstrated the feasibility of conducting 

the ECAP processing of CP-Ti of grade 1 at room temperature by using a low 

pressing speed, a higher channel angle of 120 or 135 and/or a special composite 

lubricant [30-33].  These experiments gave values for the YS of ~680 MPa after one 

pass [30] and after 8 passes it was ~710 MPa with a UTS of ~790 MPa [31].  A UTS 

of ~765 MPa was also reported after 4 passes at room temperature [33].  These 

latter values are very similar to the UTS values recorded in Table 2 after processing 

for 2 passes but the grain sizes were significantly smaller after the room temperature 

processing with values of ~0.20 m [31] and ~0.15 m [33], respectively.  In practice, 

it is instructive to note that higher hardness values and even smaller grain sizes may 

be achieved when processing by HPT: for example, a grade 2 CP-Ti gave a grain 
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size of ~105  12 nm and a hardness of Hv  320  6 after processing by HPT for 20 

turns at room temperature using an applied pressure of 6.0 GPa [34].   

The various results obtained in the present experiments from tensile testing and 

hardness measurements, combined with the measured grain sizes, confirm that the 

CT processing route is preferable to the WT route for achieving optimum strength 

and mechanical properties. Therefore, it is reasonable to conclude that the 

introduction of a processing step at a lower temperature, either by conducting ECAP 

for at least one pass at a lower temperature as in the CT route or by subsequently 

introducing a new type of processing such as cold-rolling [17], may be advantageous 

in attaining the maximum strength when preparing CP Ti for use in aerospace 

applications or for medical implants.   

 

5. Summary and conclusions 

 

1.  It is well known that CP is an excellent candidate material for use in 

biomedical implants but strengthening is required using a procedure such as ECAP.  

2. CP Ti of grade 4 with an initial grain size of ~58 m was processed using two 

different routes: a combined temperature (CT) route of an ECAP pass at 723 K and a 

second pass at 373 K and a warm temperature (WT) route of two ECAP passes at 

723 K. 

3. Both routes lead to improved strength, high hardness and an ultrafine 

microstructure but the CT route is preferable and the results demonstrate the need to 

include a lower temperature processing in order to optimize the strengthening effect. 

4. The final grain sizes were ~1.5 and ~1.7 m after the CT and WT routes, 

respectively, but both microstructures exhibited significant inhomogeneity. 
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The effect of combined low (373 K) and warm temperature (723 K) route effect on microstructure and 
mechanical properties are determined for CP Ti. After two passes the samples have an 
inhomogeneous microstructure and hardness distribution. For the lower temperature route, the 
specimen has the highest strength. The inclusion of a lower temperature processing step is important 
for optimizing the strength of CP Ti. 
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