
M22 - A Modern Visual Novel Framework
Samuel Lynch

Creative Technology
Bournemouth University, UK
i7420737@bournemouth.ac.uk

Fred Charles
Creative Technology

Bournemouth University, UK
fcharles@bournemouth.ac.uk

Karsten Pedersen
Creative Technology

Bournemouth University, UK
pedersenk@bournemouth.ac.uk

Charlie Hargood
Creative Technology

Bournemouth University, UK
chargood@bournemouth.ac.uk

ABSTRACT
This paper presents a modern, open-source game engine/frame-
work for the visual novel genre of interactive narrative. It takes
the insights from the engines of visual novel games and the prod-
ucts made with them to produce a free engine that contains all the
features and components required of a standard visual novel, and
demonstrates its capabilities with a demo artefact. Visual novels
provide authors with a powerful way of presenting their fiction and
narratives, yet they are often considered less viable due to the costs
required against the profit in sales, or because of their technical
requirements to use. The M22 engine aims to address both these
issues.
ACM Reference format:
Samuel Lynch, Fred Charles, Karsten Pedersen, and Charlie Hargood. 2019.
M22 - AModern Visual Novel Framework. In Proceedings of 8th International
Workshop on Narrative and Hypertext, Hof, Germany, September 17, 2019
(NHT’19), 5 pages.
https://doi.org/10.1145/3345511.3349284

1 INTRODUCTION
Visual novels are a type of interactive narrative, typically used by
game developers in Asia to present a non-linear, interactive story.
However, the genre is gaining popularity amongst independent
developers in the West due to the relatively low budget required
for their development. There are a variety of features typical of a
visual novel game, which will be detailed further on, however these
features are generally minimalistic and therefore the majority of
the effort in creating such a game is in the writing and scripting.
There exists open source software development kits for creating
visual novels, however they are limited in number, each with their
own strengths and weaknesses. And these weaknesses are generally
common amongst each other. Chiefly, these are their accessibility to
developers, their platform flexibility, and script/game extensibility.
By leveraging a minimalistic scripting language, the Unity Engine
[3] as a base, and script language extensions via C#, the M22 engine
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
NHT’19, September 17, 2019, Hof, Germany
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6901-5/19/09. . . $15.00
https://doi.org/10.1145/3345511.3349284

aims to resolve these weaknesses, whilst maintaining the expected
feature set of a visual novel engine.

Visual novel games— while holding a very minor position in
western markets (there are approximately 1625 titles tagged “Visual
Novel" on Steam, out of 30,000 as of 2019 [19])— are still financially
viable representations of prose in eastern markets, particularly
Japan’s. However, these are relatively monopolised by large com-
panies producing the games together with a popular franchise (for
example, a television series or a film) or popular seiyuus (voice-
over artists). As such their engines receive investments of time and
money, and are made proprietary to protect this. There exists a
market of independent game developers in Japan, self-publishing
games (dōjinshi) in small quantities who have limited options in
the way of free, open-source solutions to producing visual novels.
These options— limited as they are— are still viable, but may deter
certain individuals without a background in programming. Gen-
erally, interactive narrative authors will have had programming
experience in some form creating these narratives, however prose
authors wishing to experiment with interactive narrative via visual
novels would likely find difficulty in the setup of these existing
visual novel solutions.

Our aims are to produce an original, open-source visual novel en-
gine that uses more modern, more familiar technology than that of
other engines; and to make the engine’s ease-of-use and barrier-to-
entry as optimised and minimal as possible. By making the engine
easy to use and setup, the hope is that narrative authors with little to
no programming knowledge can hit the ground running, whilst also
not making the engine limiting to those with existing knowledge
of programming or visual novels creation.

2 RELATEDWORKS
The visual novel games chosen for their feature sets were Clannad
[14], Katawa Shoujo [8], Steins;Gate [11], NEW GAME! -The Chal-
lenge Stage- [10], Clannad: Side Stories [15], and Re:Zero -DEATH
OR KISS- [9]. These games were picked for their “typicality” as
visual novels, regarding features. While NEW GAME! and Re:Zero
are modern examples of visual novels. Clannad: Side Stories is an
example in minimalism (i.e. minimal features) and is a kinetic novel
rather than a visual novel (i.e. no branching decisions). Clannad,
Katawa Shoujo, and Steins;Gate are in the top 100 most popular
visual novels of all time, as ranked by the Visual Novel Database
[5].

Figure 1 shows that the three most popular visual novels in the
selected games lacked gameplay elements (any player interaction

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bournemouth University Research Online

https://core.ac.uk/display/228122795?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3345511.3349284
https://doi.org/10.1145/3345511.3349284

Figure 1: Comparison of existing visual novels.

with game-like elements that change the story), character facial ani-
mations (where the character’s mouthmoves with the text onscreen,
or the eyes blink), and multiplatform capability (at launch). This
indicates that these features are not a necessity for developing a
successful visual novel. Additionally, the presence of multiplatform
capability in the two newer titles indicates that multiplatform was a
difficulty in the past (Unity, for example, offers one-button building
to multiple platforms with minimal setup required). However, these
features should be implemented regardless, albeit on low-priority.

Due to the popularity of the first and third titles in Figure 1,
their engines are available as reverse-engineered. This enables the
ability to see how the features of these games were implemented
on a technical level, in addition to the core engine components (e.g.
script language/compiler). The engine used by Katawa Shoujo is the
Ren’Py engine [2]; a freely available, open-source engine written
in Python. It’s touted as relatively easy to use, despite having what
is called [13] a text-based narrative authoring system; arguably the
least accessible authoring system, in addition to narrative being
written in a programming language. However, it could also be said
that Python contributes to its ease of use, as non-programmers
could quickly learn enough to write interactive narrative. How-
ever, it faces the limitation of the language in performance; Python
maintains small code sizes but is generally regarded as ten to one
hundred times less performant than a compiled language such as
C [18], but has the benefit of being slightly easier to port to other
platforms due to it being an interpreted language.

Steins;Gate, New Game!, and Re:Zero all use a variation of the
same engine, of which its older versions are reverse-engineered
[7]. libnpengine takes a much more programmatic approach to
authoring the narrative than Ren’Py, though it is written in C,
which allows it to be far more performant. More difficult to port
to other platforms, but if ported would allow the games to run on
lower-spec devices.

Previous attempted iterations of the project engine, as previously
mentioned, were C++ and Lua. Both versions used the same custom
script language for writing the narrative, but the C++ version was
more performant than the Lua version (in both memory and CPU
usage), while the Lua version was more easily ported (PS Vita [6]
to PC took one day). Additionally, the C++ version was difficult to

extend/maintain as it was much lower-level than the Lua iteration.
rlvm [4] is a free reimplementation of the VisualArt’s RealLive
engine/visual novel script interpreter (used in Clannad), which
does not contain a compiler nor decompiler for the scripts, as the
engine is simply an interpreter that expects a specific file, and as
such is only useful for seeing how to implement certain visual novel
features. Written in C++, it may be useful for seeing performant
code to present certain features (e.g. character animation).

The primary outcomes from this is that text-based narrative
authoring systems can still be successful engines, so long as their
feature set is varied enough, and is accessible in other aspects. It is
also important to be accessible to the user; by using an interpreted
language like C in an engine like Unity, the resulting software
should be performant enough to manage anything that a visual
novel author would require.

3 SYSTEM OVERVIEW
When creating the Unity version, the engine structure was kept
similar to the style of the original C++ version, with modifications
made where C#/Unity could run more efficiently. However, the
main focus was that the system was designed to be as easy to setup
and use as possible. The assumption is that developers using the
system have an elementary working knowledge of Unity— only to
the extent of being able to setup a new Unity project. From a default,
blank Unity scene, the user can simply attach the M22 master C#
script to their main camera, and everything barring content/as-
sets will already be configured appropriately. From the technical
side, this master script initializes the visual novel/narrative system
thusly:

• Initialize required submodules (chiefly script, character/back-
ground, audio, and text/narrative handling)

• Initialize the required 2D canvases, to which the narrative/as-
sets will be rendered

• Load, compile, and (optionally) execute the entry-point script
In Figure 2, the M22 Master Script is the start of the “water-

fall" flow of the engine described above. By attaching the main
script to a camera in a Unity scene, the script handles the instanti-
ation of required components (chiefly the main interpreter script,
ScriptMaster), as well as the required objects in the Unity scene
(i.e. the canvases for backgrounds/characters, audio sources, the
visual novel textbox). This method of setting up the framework for
the developer was designed for ease of use (only required step is
to drag the script onto the camera), but also so that the framework
could be instantiated as needed. This makes the framework viable
for conveying narrative in Unity games that aren’t visual novels by
simply adding the script to the camera and turning off autostart for
the entrypoint script. This is complementary to the goal of making
the framework viable for “power-users", or experienced visual novel
developers.

The rest of engine is self-explanatory from their component
names; audio is handled by the AudioMaster, input is handled by
the InputWrapper, and visual novel elements such as backgrounds,
characters, and text rendering are handled by the VNHandler. “Func-
tion scripts" corresponds to the individual visual novel functions in
the script language, which are stored as C# classes with uniform
syntax, and queried by the ScriptMaster when the corresponding

Figure 2: A top-level diagram of engine composition for the
Unity iteration. Note: ScriptCompiler is a static class.

function is called in code. The ScriptCompiler is written in pure-
C# (hence the necessity for the UnityWrapper class; for wrapping
functionality such as loading text files) and is a static class. This
was done to have the compiler be portable C# code that could be
exported as a library or simply transplanted into future projects,
for re-usability. Having previously written the compiler in C++,
Lua, and JavaScript, this was seen as a good move for the long-term
health of the project.

Character/background rendering is handled by a parent class
(their respective handlers) which simply spawn instances of char-
acters and backgrounds— based on the parameters— into the scene,
leveraging Unity’s prefab system. Eventually, a character or back-
ground is just a Unity 2D Sprite drawn onto a canvas layer, with
methods for manipulating it via game script (e.g. adjusting position
with/without animation, transitioning between different forms of
the same sprite, etc.). The reason why a character handler does
not appear in Figure 2 while the BackgroundMaster script does is
because characters are streamed assets (as opposed to pre-loaded)
and therefore handle themselves independently. The audio was
implemented very simply, also leveraging Unity’s audio source and
listener functionality, which enabled such a simple implementa-
tion. Video was implemented similarly to the audio; just passing a
Unity-compliant video file to the Unity video API.

The aforementioned canvas layers are separated by what is con-
tained within them; there are multiple canvases for both back-
grounds and characters, to be able to layer characters on top of
other characters, etc. There are extra layers marked for effects—
both foreground and background— which are not used by default
but can be interfaced with via script extensions.

3.1 The M22 Scripting Language
The compiler simply takes an input script file and compiles an
object in as memory-friendly a way as possible. It recognises key-
words to construct tightly-packed function payloads; data objects
that tell the script interpreter what function to execute, with what
parameters. Dialogue/narrative is simply the fallback if no keyword

Figure 3: Ren’Py (left) andM22 (right) script language syntax

was detected, which makes the script more error-prone to user-
error (such as a typo), but also makes non-dialogue text look more
natural when writing. For most intents and purposes, a character’s
name is treated as a keyword, however this is checked after failing
to detect a function keyword, and before defaulting to narrative
text. This could be seen as inefficient, but this process only takes
place at script compilation during runtime; it does not affect the
performance after this point (i.e. during gameplay). This is also be-
cause the compiler hashes the function keywords/character names
so that at runtime, the interpreter can more quickly lookup and
execute the appropriate functionality. Because the compiler simply
compiles a script file into a standardized data object, it is not infeasi-
ble to create parsers/compilers for pre-existing script languages (for
example, Ren’Py’s form of Python) that are interpreted the same
way, and this has been experimented with before in the RPY-eBook
project [16], which was capable of receiving .rpy, SEEN.txt (from
visual novels made by KEY [1]), or the .m22 format of script, and
produce an eBook-friendly, readable output. However, the current
focus is on refining the custom language before supporting others.

The script language (Figure 3) is not dissimilar to Ren’Py, with
only a few key differences. This was deliberate, as Ren’Py has a
script language that many people see as easy-to-use (or at the very
least, easy to get started), as well as making the M22 language
approachable to existing/former Ren’Py developers, so there were
quite some syntax decisions taken from the Ren’Py language. For
example, functions were abstracted into single keywords rather
than chains of keywords like in Ren’Py. “play music track fadein
1.0" becomes “PlayMusic track 1.0", with the fade-in aspect implic-
itly declared by the absence of fade speeds (the third parameter).
Another example would be the handling of comments— or any text
in the script file that isn’t explicitly narrative. In Ren’Py, text that
isn’t explicitly declared as a string/as narrative is ignored (i.e. narra-
tive declaration is explicit), however in M22, narrative declaration
is implicit. In addition, M22 has no requirements on indentation,
whereas Ren’Py relies on indentation for code blocks in the same
way Python does. This makes M22’s script language look cleaner
and closer to traditional narrative, at the cost of the “failing loudly"
paradigm that Ren’Py has (the approach of ’if it can fail, then at
least make it fail loudly so it can be caught quicker’).

3.2 Extending the Functionality of the Engine
The script extension system involves using C# to extend script
language functionality by associating new keywords with a C# class.
From there, an advanced user can manipulate the Unity engine from
the script language. An example used in the demo software was
a function that would utilise the background effect layer to hold
a particle emitter for leaves blowing in the wind, and by using
this with a background that has transparency, the resulting effect

creates a sense of separation between the protagonist’s microcosm
and the outside world, by animating the exterior while keeping the
interior static.

The more complex features required a more manual implemen-
tation. Perhaps the most complicated of these was the transition
effects. A key, subtle part of visual novel games is how they handle
the transitions between settings, environments, characters, etc. One
could think of them similarly like slide transitions on PowerPoint;
no one would use a star-wipe transition during a presentation on,
say, charity fundraisers for life-threatening diseases. And the same
is true for transitions in narrative; during a particularly intense
scene, one requires a particularly intense transition. For a dream
sequence, one might use a swirling fade-to-black transition. As this
is such a crucial element, great care was taken in developing the
feature. After reversing older visual novels such as Snow Sakura
[12] and Katawa Shoujo, it was evident that the primary method-
ology used for this feature was using greyscale images— images
with pixels of values between 0 and 255— to define the pattern
and speed at which the transition occurs. Previous iterations of
the M22 framework (barring the JavaScript iteration) transitioned
between backgrounds or characters via per-pixel CPU operations;
an intensive operation that scales linearly with larger resolutions.
With the Unity and JavaScript versions, this process is handled by
shaders; leveraging hardware acceleration to the point where the
operation is trivial. An author can define how quickly the transition
occurs, and what to transition into (keywords such as “black" and
“white" exist, but the author can also transition to any other image).
The shader was first developed for backgrounds but is used in a
similar capacity for transition operations on character sprites.

4 DISCUSSIONS
For testing engine features and overall stability, a specific game
was ported as a test/demo software; Katawa Shoujo [8]. As it is
a Ren’Py game, porting it to the M22 framework would also be a
testament to the ease-of-use for the porting process. Additionally,
the game makes full use of the minimum expected feature set of a
visual novel outlined in Figure 1, meaning that— once created— the
demo software could function as a feature implementation test; by
running through the software and noting anything that behaves
as if it shouldn’t according to the game as if it were running on
Ren’Py. For example, there is a scene in Katawa Shoujo that contains
chained character sprite changes, inline functionality (i.e. script
functions run in the middle of text as it appears), an animated
background, and branching narrative based on a decision made
shortly before. This scene functions as an excellent stress test for
the character/background systems, as well as core script language
functionality.

This test proved to be extremely helpful in the development of
the engine for highlighting non-working features, and also resulted
in a demo artefact for the engine. There was a tool made in the past
[17] that could compile Ren’Py script to M22-Lua format, and said
tool would need little modification to do so, however it was felt that
porting the Ren’Py script by hand would give better understanding
of how .rpy script is written. The process of converting the scripts
was painless, although the knowledge of the M22 framework would

Figure 4: A scene in Katawa Shoujo running on M22, with a
script snippet of how the scene is created

bias this. Nevertheless, another look at Figure 3 shows great sim-
ilarity in the two languages; likely the most difficult part of the
process was the mapping of Ren’Py-specific functions to M22, as
well as writing the script language extensions for functionality that
the Katawa Shoujo developers implemented specifically for their
game.

4.1 Features Implemented
Overall, our work sufficiently implements most planned features
outlined in Figure 1. Saving and loading of game progress is unfor-
tunately not implemented yet, but since games with short stories
(e.g. Clannad Side Stories) do not implement the feature— as well as
it not being necessary for demo software— it was considered unnec-
essary for a minimum-viable-product or demo artefact. Previous
iterations possessed save-load functionality, although they were all
flawed in some way. The C++ version possessed the most straight-
forward implementation, storing the current state as a binary file
and simply restoring the state later, but this also was flawed since
the point the game restores at may not require all the assets of the
script, as the player may have passed the last point those assets
were utilized, yet they are still loaded. The Lua version stored save
data as an executable Lua file that initialized the required variables
to restore the state, which was a security concern; this would not
be permitted on any closed platforms such as the PlayStation 4. The
JavaScript implementation exported the state to a JSON-format file
and restores it later, which is also a security concern as the file is
in plaintext and easily editable.

There were a number of difficulties encountered during devel-
opment; issues that arose as a result of design choices, or issues
that forced redesigns. There were the issues encountered in pre-
vious iterations of the engine under C++, Lua, and JavaScript as
aforementioned, but the the Unity version had its own problems
during development. The first issue was a result of attempting to
incorporate the “drag-and-drop" approach of the previous engines

(i.e. a user could simply drop assets in one folder, scripts in another,
and run the game). Unity utilizes two key methods of loading as-
sets from code (as opposed to using the Unity systems), which is
via the Resources folder and the StreamingAssets folder. The key
difference between the two is that the Resources folder is packaged,
compressed, and bundled with the rest of the application, while
StreamingAssets are files that are not changed in any way between
building the game and playing it (i.e. they are not compressed or
bundled into archives). To maintain the drag-and-drop approach,
StreamingAssets makes the most sense, as it allows developers to
place new scripts without recompiling the entire software. How-
ever, because it does not do any compile/build-time processing, it
can result in large or sub-optimal games. In addition, to have script
files loaded from StreamingAssets could be a security concern as it
means anyone with filesystem access to inject malicious content
with minimal difficulty (made worse when considering secure plat-
forms such as Nintendo Switch). To that end, it was necessary to
support both approaches; StreamingAssets for development/author-
ing, and Resources for production. An improvement that could be
made would be to automatically change assets from StreamingAs-
sets to Resources when compiling a production build. This would
solve issues that could arise from simply forgetting this step when
shipping production versions of software.

Another issue encountered during development was the overall
project/engine structure/architecture; the Unity iteration was not
originally intended to be the final iteration, but just another of the
iterative steps. Once decided that the Unity version would in fact be
the definitive iteration of the engine, substantial refactoring of the
codebase was required. The first working prototype of the engine
did not have the ease of setup that the final version possessed.
While the final version requires a prospective developer to attach a
single script to the camera, the prototypical version required up to
five scripts to be attached and configured on the main camera, as
well as attaching the relevant canvases to which the visual novel
would be rendered. This was eased by having a Unity prefab of
the main camera with all these scripts pre-attached, however they
would still require configuration, and this setup was not ideal for
developers who already had a game setup and merely required
the M22 framework for narrative. Therefore, it was necessary to
implement the more straightforward approach of a single script,
which automatically sets up the entire framework on the camera
that it is attached to; the only requirement beyond this is actually
supplying the game scripts and assets for it to interpret.

5 CONCLUSIONS
We have created a visual novel engine with modern technology,
taking full advantage of Unity functionality; from a top-level such
as playing videos using their video system, to the language-level of
structuring the engine as Unity-compliant C# code. It uses shader
capabilities to serve transition effects, as well as making full use of
the 2D UI/canvas systems that Unity offers, which results in a highly
optimal visual novel engine that is fully capable of interpreting a
large visual novel script (1000+ lines).

The next step will be to conduct appropriate and extensive user
evaluation, though the engine bears striking similarities to the
Ren’Py syntax, assumedly making the language approachable to

existing developers of visual novels via Ren’Py. However, for users
who have not written visual novels before— at the least, not with
one of similar syntax— it would require user evaluation before
being able to conclusively state how effective the syntax-styling
of the M22 language is for these users. However, what can be said
is that due to the nature of the development of the accompanying
demo software (Katawa Shoujo Act 1), porting Ren’Py games to
M22 is relatively easy. Most common functionality was simply
in need of re-working to the syntax of M22, with the more in-
depth functionality replicated using the script extension system
(for example, snow_effect for creating a snow particle effect).

Multiplatform capabilities was achieved through the use of Unity;
the developer can forego configuration of each platform (i.e. use
the default settings) and compile the same visual novel for any
platform with a touch-screen and/or any device with widescreen
aspect ratios without any required changes (as the engine and Unity
handle all of this). Because of this, theoretically less time is spent
on these compatibility issues— lowering costs— and the increased
variety of target platforms increases profits due to a wider reach to
the audience.

REFERENCES
[1] 1998. KEY - A Japanese visual novel studio. http://key.visualarts.gr.jp/. (1998).

Accessed: 2019-07-23.
[2] 2004-2019. Ren’Py - Python Visual Novel Interpreter. https://renpy.org. (2004-

2019). Accessed: 2019-05-05.
[3] 2005-2019. Unity. https://unity.com/. (2005-2019).
[4] 2006. rlvm. https://github.com/eglaysher/rlvm. (2006). Accessed: 2018-12-01.
[5] 2007-2019. VNDB - The Visual Novel Database. https://vndb.org. (2007-2019).

Accessed: 2019-05-05.
[6] 2011. Sony PlayStation Vita. https://www.playstation.com/en-gb/explore/

ps-vita/. (2011). Accessed: 2019-07-23.
[7] 2013. libnpengine. http://dev.pulsir.eu/krofna. (2013). Accessed: 2018-12-01.
[8] 4LeafStudios. 2012. Katawa Shoujo. https://www.katawa-shoujo.com/. (2012).

Accessed: 2019-05-05.
[9] 5pb. Games. 2017. Re:ゼロから始める異世界生活 -DEATH OR KISS- . PlaySta-

tion 4, PlayStation Vita. (2017).
[10] 5pb. Games. 2017. New Game! -The Challenge Stage!-. PlayStation 4, PlayStation

Vita. (2017).
[11] 5pb., Nitroplus. 2009. Steins;Gate. [CD-ROM]. (2009).
[12] D.O. 2003. 雪桜 (Snow Sakura). https://vndb.org/v71. (2003). Accessed: 2019-05-

05.
[13] Daniel Green, Charlie Hargood, and Fred Charles. 2018. Contemporary Issues in

Interactive Storytelling Authoring Systems. Interactive Storytelling Lecture Notes
in Computer Science (2018), 501–513. https://doi.org/10.1007/978-3-030-04028-4_
59

[14] VisualArts KEY. 2004. Clannad. [CD-ROM]. (2004).
[15] KEY, VisualArts, Prototype. 2010. Clannad - 光見守る坂道で. [CD-ROM].

(2010).
[16] Sam Lynch. 2016. A C++ application to convert Ren’Py script to eBook-compliant

narrative. https://github.com/Slynchy/RPY-eBook/. (2016).
[17] Sam Lynch. 2016. A C++ application to convert Ren’Py script to M22-Lua.

https://github.com/Slynchy/March22-Lua/tree/master/sdk/RPYtoLua/. (2016).
[18] Jean Francois Puget and IBM. 2005-2019. A speed comparison of

C, Julia, Python, Number and Cython on LU Factorization. https:
//www.ibm.com/developerworks/community/blogs/jfp/entry/A_Comparison_
Of_C_Julia_Python_Numba_Cython_Scipy_and_BLAS_on_LU_Factorization.
(2005-2019). Accessed: 2019-05-05.

[19] RockPaperShotgun. 2019. Half of all games on Steam came out since 2017. https:
//www.rockpapershotgun.com/2019/01/15/how-many-games-are-on-steam/.
(2019). Accessed: 2019-05-05.

http://key.visualarts.gr.jp/
https://renpy.org
https://unity.com/
https://github.com/eglaysher/rlvm
https://vndb.org
https://www.playstation.com/en-gb/explore/ps-vita/
https://www.playstation.com/en-gb/explore/ps-vita/
http://dev.pulsir.eu/krofna
https://www.katawa-shoujo.com/
https://vndb.org/v71
https://doi.org/10.1007/978-3-030-04028-4_59
https://doi.org/10.1007/978-3-030-04028-4_59
https://github.com/Slynchy/RPY-eBook/
https://github.com/Slynchy/March22-Lua/tree/master/sdk/RPYtoLua/
https://www.ibm.com/developerworks/community/blogs/jfp/entry/A_Comparison_Of_C_Julia_Python_Numba_Cython_Scipy_and_BLAS_on_LU_Factorization
https://www.ibm.com/developerworks/community/blogs/jfp/entry/A_Comparison_Of_C_Julia_Python_Numba_Cython_Scipy_and_BLAS_on_LU_Factorization
https://www.ibm.com/developerworks/community/blogs/jfp/entry/A_Comparison_Of_C_Julia_Python_Numba_Cython_Scipy_and_BLAS_on_LU_Factorization
https://www.rockpapershotgun.com/2019/01/15/how-many-games-are-on-steam/
https://www.rockpapershotgun.com/2019/01/15/how-many-games-are-on-steam/

	Abstract
	1 Introduction
	2 Related Works
	3 System Overview
	3.1 The M22 Scripting Language
	3.2 Extending the Functionality of the Engine

	4 Discussions
	4.1 Features Implemented

	5 Conclusions
	References

