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ABSTRACT

CASP (Critical Assessment of Structure Prediction) assesses the state of the art in 

modeling protein structure from amino acid sequence. The most recent experiment 

(CASP13 held in 2018) saw dramatic progress in structure modeling without use of  

structural templates (historically ‘ab initio’ modeling). Progress was driven by the 

successful application of deep learning techniques to predict inter-residue distances.  In 

turn, these results drove dramatic improvements in three-dimensional structure 

accuracy: With the proviso that there are an adequate number of sequences known for 

the protein family, the new methods essentially solve the long-standing problem of 

predicting the fold topology of monomeric proteins.  Further, the number of sequences 

required in the alignment has fallen substantially. There is also substantial improvement 

in the accuracy of template-based models. Other areas - model refinement, accuracy 

estimation, and the structure of protein assemblies - have again yielded interesting 

results. CASP13 placed increased emphasis on the use of sparse data together with 

modeling and chemical crosslinking, SAXS, and NMR all yielded more mature results.  

This paper summarizes the key outcomes of CASP13. The special issue of PROTEINS 

contains papers describing the CASP13 assessments in each modeling category and 

contributions from the participants. 
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INTRODUCTION

CASP (Critical Assessment of Structure Prediction) is a biennial community experiment 

to determine the state of the art in modeling protein structure. Participants are provided 

with amino acid sequences of target proteins, and build models of the corresponding 

three-dimensional structures. Submissions are compared with experiment by 

independent assessors. The experiment is double blinded - participants have no access 

to the experimental structures and assessors do not know the identity of those making 

the submissions. In addition to structure models, a number of other aspects of protein 

modeling are assessed as well: refinement of an approximate structure closer to the 

experimental one, estimates of the accuracy of an overall structure model and of each 

residue, modeling the structure of protein oligomers, the ability to improve models using 

a variety of sparse data types, and the accuracy of protein structure features related to 

deducing aspects of function. Here we summarize the current state of the art in each of 

these areas as determined in the CASP13 experiment (2018). Papers in this special 

issue of PROTEINS provide detailed analysis by the independent assessors in each 

modeling area and contributions from some of the more successful participants. 

In CASP13, a total of 98 research groups from 21 countries tested 185 modeling 

methods and submitted over 57,000 predictions in six prediction categories, maintaining 

the previous high level of participation. There were 90 modeling targets for tertiary 

structure prediction (80 assessed), and 45 for quaternary structure prediction (42 

assessed), including 13 hetero-complexes (12 assessed). The 80 tertiary structure 

modeling targets were parsed into 111 evaluation units, which were assessed as 
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separate targets 1. Models are solicited in two initial stages. First on a short (72 hour) 

time scale, intended for automated model building servers, then on a three-week time 

scale, allowing time for more complex procedures and human input (though the latter 

now appears to be rare). Relatively easy targets are only released for the server phase. 

For evaluation, targets are divided into two main categories: template based (TBM), for 

those where one or more structural templates can be identified by sequence search, 

and template free (FM), for targets with no sequence detectable template. Some targets 

fall into a grey area between these categories, and are labeled TBM/FM. One significant 

change in target composition in CASP13 was from the ongoing revolution in high 

resolution cryo electron microscopy (EM) 2. There are EM targets for a total of six 

complexes (four heteromeric) and one protein monomer. These targets tend to be 

considerably larger than typical in CASP, but once parsed into evaluation domains are 

less unusual 3. A fuller account of the procedures used in CASP is available in 4

PROGRESS IN CASP13

The overall accuracy of models improved dramatically in CASP13, especially for the 

more difficult targets where comparative modeling cannot be used. Figure 1 shows the 

trends in backbone accuracy for the best models received in each CASP, as a function 

of target difficulty (the extent to which a target or target domain is related to the 

sequence and structure of other proteins with already known structures 5  - 

supplementary figure S1 gives more data on target difficulty). The vertical axis shows 

backbone accuracy in terms of GDT_TS 6,7). With this measure, 100% is exact 

agreement of the Cα co-ordinates of a model with those of the experimental
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structure, and a random model typically has a GDT_TS of between 20 and 30%.  As a 

rule of thumb, models with values greater than about 50% have correct overall topology, 

and models with values greater than ~75% have many correct atomic level details. As 

the trend lines show, early CASPs saw rapid improvement, but started from very low 

accuracy. Until CASP13, most recent CASPs have shown very limited overall 

improvement by this measure (though more fine-grained analysis shows improvement 

in specific areas 4). Dramatically, the CASP13 trend line, instead of plunging 

downwards, continues horizontally to the most difficult targets, with a sustained 

GDT_TS greater than 60. Supplementary figure S2 shows a similar (though not quite so 

pronounced) CASP13 trend for average GDT_TS over the six best  performing groups 

on each target, indicating that multiple groups have improved substantially. Below, we 

discuss the methodological advances that drove this progress. 

PREDICTING CONTACTS IN PROTEIN STRUCTURES

For a quarter of a century 8, attempts have been made to predict three-dimensional 

contacts between residues in proteins, based on correlations in amino-acid substitutions 

found in protein family protein sequence alignments 9. 

For many years, the precision of these methods as measured in CASP was stalled at 

20% or a little higher. Figure 2 summarizes progress in recent CASPs. Starting in 

CASP11 (2014), and much more successfully in CASP12, statistical methods that 

consider all pairs of residues simultaneously to address transitivity effects 9  began to 
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improve accuracy, resulting a best overall precision of 47% in CASP12 - almost 

doubling in one CASP round - one of the biggest single improvements in any metric 

seen in any CASP. Some predictors combined the statistical models with machine 

learning, for instance 10,11. But the key algorithmic advance appears to be the proper 

treatment of transitivity. A limitation of those methods is that at least several hundred 

appropriate sequences are needed to produce accurate predictions. 

In CASP13, there is another large advance in precision, to 70%, again with several 

groups delivering similar performance. This time it is clear the improvement came from 

the use of deep neural network methods (discussed further in a CASP13 special issue 

paper 12). These techniques have of course been very effective in other areas, 

particularly image analysis 13 14 and speech recognition 15. Contact prediction uses a 

similar methodology, treating the contact matrix (an L by L matrix for a sequence length 

L, with 1 for elements representing contacting residues pairs and 0 for non-contacting 

ones) as an image. The network is trained on a large set of known structures, typically 

with multiple sequence alignment information, secondary structure prediction, co-

evolution analysis, and related features as input and the contact matrices as output. 

Input of information for a new protein then generates an approximate contact map. 

These methods were already being tested in CASP12 and promising benchmarking has 

since been published 16. But as is often the case, they took some time to mature to the 

point where improvements in performance are clearly measurable (very clearly in this 

instance!). 
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Although the data representation in the advanced statistical methods and deep learning 

approaches are very different, both rely on correlations in amino acid substitutions for 

contacting residue pairs. As a result, a limitation of both is the need for a substantial 

depth of sequence alignment. The effect of this can be seen in figure 3, where trend 

lines for contact precision slope upwards as a function of normalized alignment depth. 

But this dependency is greatly reduced with the CASP13 deep learning methods, 

resulting in higher accuracy over a wide range of alignment depths. In CASP13, 

inclusion of metagenomics sequence data increased alignment depth for some targets. 

For example, metagenomics data as described in 17 18 increases alignment depth for 

two free modeling targets from marginally adequate (less than 1L) to greater than 2L. 

But generally, addition of these data has had only a modest impact so far. 

TEMPLATE FREE MODELING

In CASP13, the largest improvement in model accuracy is for the most difficult, free 

modeling, targets (Figure 1, right hand side) where no structural template could be 

detected using sequence. Figure 4 shows an example for a free modeling target where 

a number of groups produced good models. 

If a sufficiently reliable set of contacts are predicted, these can be used as restraints to 

obtain more accurate three-dimensional models. Figure 5 shows the relationship 

between main chain accuracy and normalized alignment depth for template free 

modeling targets in the most recent CASPs. There is a strong dependency of accuracy 

on alignment depth, consistent with the major jumps in contact performance driving the 

Page 7 of 42

John Wiley & Sons, Inc.

PROTEINS: Structure, Function, and Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

3D improvement for free modeling targets. The trend line for CASP13 is well above that 

for CASP12, consistent with the more accurate contact predictions from deep learning. 

In CASP13, all FM targets with Neff/L greater than 1 (effective sequence alignment 

depth equal or greater than the length of the target) have a GDT_TS greater than 50, 

indicating a correct topology. The majority of targets with Neff/L > 0.1 also have GDT_TS 

>50. As discussed later, a number of the less accurate models are affected by inter-

molecular protein interactions, something current methods are not able to handle.  

(Earlier CASPs already showed a link between contacts and 3D structure accuracy 4, 

but not nearly to this extent). 

Part of the three-dimensional accuracy improvement in CASP13 comes from not only 

more accurate prediction of contacts but also prediction of inter-residue distances at a 

range of thresholds, something deep neural networks are capable of and the statistical 

methods are not. Approaches vary 19,20, but in essence, ‘contact’ maps are predicted for 

each of a set of inter-residue distances - say atoms within 6, 8, 10…20… Angstroms. 

Properly normalized, these predictions allow an effective potential of mean force to be 

derived between every pair of residues in a structure (that is, up to L*L/2 - L potentials 

for an L residue long sequence). These potentials can then be used to drive a structure 

folding procedure. One group, A7D from DeepMind20, appear to have very successfully 

deployed this technique, and had the most accurate results overall. It is not fully clear 

what current deep learning procedures are ‘learning’ about protein architecture. The 

ability to predict inter-residue distance probabilities as well as contacts suggests that the 

topology of helices and beta-sheets and inter-secondary structure packing are captured 

Page 8 of 42

John Wiley & Sons, Inc.

PROTEINS: Structure, Function, and Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

in some form. But so far there is no published analysis and indeed such an analysis 

may not be meaningfully possible. There are many potential variations on the type of 

residual networks currently being deployed, as well as other variables that have yet to 

be evaluated, such as the best use of dilation and dropout 21. This and other aspects of 

the methods will likely be further developed and refined by the next CASP and it will 

very interesting to see how much further improvement can be made. 

By definition, all free modeling targets are cases where no template structure can be 

easily detected from sequence. But there may nevertheless be similar folds already 

known. An alternative approach to using predicted contacts as restraints is to survey a 

library of known structures, assessing which, if any, are most compatible with the 

contact set. Supplementary Figure S3 shows the dependency of backbone accuracy on 

the nearness of structural templates. Both CASP 12 and 13 show clear dependency, but 

it is substantially reduced in CASP13, suggesting that template searches were less 

competitive with folding algorithms, probably because greater contact accuracy and the 

use of more general inter-residue distance prediction made the latter approach more 

effective. 

As always in CASP, care is needed to make sure that apparent progress is not an 

artifact of different target difficulty in successive rounds. The insert in supplementary 

figure S1 shows only very small differences in average free modeling (FM) target 

difficulty in the most recent three CASPs. Additionally, supplementary figure S3 shows 

that the average similarities of CASP 12 and 13 FM targets to structural templates are 
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also nearly identical. The figure also shows the underlying CASP12 and 13 distributions 

of target/template similarity values are close, further supporting similar target difficulty. 

TEMPLATE BASED MODELING

As the number of experimentally determined structures grows, so does the number of 

sequences for which it is possible to directly use structural templates to build a model, 

using comparative modeling techniques. Figure 6 shows the relationship between 

backbone accuracy of best models received for the template-based modeling category 

in the three most recent CASPs. For the easiest targets (left hand side) with a high level 

of sequence identity to a known structure there is no apparent improvement by this 

measure. For harder targets, CASP12 is improved over CASP11, and CASP13 is 

substantially further improved. Given the major accuracy advance in template-free 

modeling from improved inter-residue distance predictions, an obvious question is 

whether those methods are contributing here too. Supplementary Figure S4 shows the 

relationship between backbone accuracy and alignment depth for the template-based 

targets. CASP13 shows a mild dependence of accuracy on alignment depth, suggesting 

that contacts are also playing some role in this regime. However, as expected for these 

targets, almost all the alignments are deep enough for good contact prediction, which 

may obscure a larger signal.  Conversely, there may be a tendency for targets with 

deeper alignment to have more useful templates, which would also tend to contribute to 

the signal seen in the figure. Further support for contact prediction contributing to the  

TBM improvement comes from a post-CASP analysis comparing the performance of 
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one method with and without contact prediction included - contact information leads to 

higher accuracy for a number of targets (Yang Zhang, personal communication).

Typically, structure templates do not provide complete coverage of a target structure, 

and overall accuracy depends not only on the appropriateness of the templates but also 

on modeling of regions with no template. As Figure 7 shows, by this measure, there was 

modest improvement between CASP5 in 2002 and CASP12, but a much larger 

improvement between CASP12 and CASP13. As we have discussed before 4, earlier 

improvements resulted from two principal modeling strategies: identification of other 

templates with the correct structure in these regions or in some sense building these 

substructures from scratch.  Note that one would not expect the improvement to come 

from better contact prediction: by definition these are regions that are not structurally 

conserved within the protein family, and contact prediction generally relies on such 

conservation. Though it is possible that more accurate modeling of the structurally 

conserved regions creates a more accurate context for modeling non-template regions. 

REFINEMENT

Models generated in both the template-free and template-based modeling sections of 

CASP are approximate, and there is an end-game problem of further improving 

agreement with experiment. To address this challenge, CASP includes a section on 

refinement, where participants are provided with an initial model and asked to submit a 

more accurate version. Performance has improved enormously over the succession of 

experiments, from initial attempts that marginally improved some of the targets 22 to 
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impressive examples of structure correction in recent rounds 23 24,25. But it is still the 

case that no single method improves every target. In the three most recent CASPs 23 

24,25, the best groups have returned improvements for 60 to 70% of the targets. One 

probable reason for limited performance is that the area suffers from a serious Red 

Queen problem. Refinement methods that have been shown to be useful are 

increasingly incorporated in initial modeling pipelines so that the starting point structures 

supplied are already partly refined. Thus, methods must improve every round just to 

appear as effective as previously.  This particularly affects those who participate in both 

initial structure modeling and refinement, as their models may be selected as starting 

structures for refinement.  As a consequence, metrics of improved structure accuracy 

may not be very useful for measuring refinement performance. Nevertheless, the three 

groups who have been consistently successful in recent CASPs do show modest 

improvement in performance over successive rounds 25. A more qualitative judgement 

of progress is to analyze the type of structural features that are corrected. A few CASPs 

ago, success with minor repositioning of secondary structure elements became 

common, for example 26. More recently, and especially in this CASP 25, larger range 

corrections (for example a 7.5 Angstrom helix shift in target R0981-D4) and significant 

repacking (for example in R0974s1) have been achieved. 

A persistent feature of refinement performance is that some targets are more refine-able 

than others, and there are always some for which no group achieves a significant 

improvement (10 to 15% of targets in recent CASPs). This has been a puzzle. The most 

recent assessment provides partial insight into that phenomenon, with clear examples 
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where the non-inclusion of interactions with other protein domains or binding partners 

limits accuracy 25. As will be apparent again later, the modeling field has now advanced 

to the point where there is a critical need for methods that effectively include the full 

molecular environment.  

As in previous CASPs, there are  differences among the most successful refinement 

methods. These range from a major focus on molecular dynamics 27 to hybrid Monte 

Carlo/sampling method 28, to methods dominated by sampling 29. But overall, there is an 

increasing emphasis on the importance of conformational sampling.

ACCURACY ESTIMATION

Although modeling methods have improved enormously, models still greatly vary in 

accuracy, both globally and in different parts of a structure. For any application it is 

critical to know the accuracy of a model, and so CASP includes a section on estimating 

model accuracy. As detailed in 30, these predictions are very useful, and have been for 

some rounds of CASP. The methods roughly fall into two categories - consensus 

methods that rely on the degree to which a model is similar both overall and in detail to 

others, and so-called ‘single model’ methods that use some form of structure-based 

scoring function, often together with machine learning. Both approaches have 

performed well and comparably in recent CASPs. In CASP13, the assessor observed a 

relationship between the reliability of single model accuracy estimates and the methods 

used to generate a model, particularly for models created with high reliance on contact 

prediction related methods 31, apparently because of method-specific characteristics of 
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the models. To address this, some groups are now developing method-specific 

accuracy estimation approaches. CASP already requires that models are accompanied 

by detailed accuracy estimates, and in future, more emphasis may be placed on these. 

PROTEIN ASSEMBLIES

As noted earlier, the enormous progress in domain and monomeric protein structure 

modeling has highlighted the next bottleneck - limitations on initial model accuracy and 

on refinement imposed by no or inadequate inclusion of the larger molecular 

environment.  More generally, most proteins exist as part of complexes, and function is 

often dependent on the assembly. One aspect of the problem, the ability to dock 

subunits of proteins to each other, has been evaluated by CASP’s sister organization, 

CAPRI (http://www.capri-docking.org/) since 2001. In the three most recent CASPs, 

CAPRI and CASP have worked together to engage both communities in the broader 

problem of protein assembly, including the use of protein models. Assessment papers 

from both organizations are included 32,33 in the CASP13 special issue. Participation 

from both communities increased over CASP12, showing growing interest in this 

important problem. The CASP13 assessor found evidence of some improvement 

compared to CASP12 33.

Assembly is most successful when there is a template for the complex, presenting an 

assembly comparative modeling problem 34, and that was again demonstrated in this 

CASP, where the CASP13 assessor concluded that availability of good assembly 

templates usually results in good models. Next most successful is assembly of 

Page 14 of 42

John Wiley & Sons, Inc.

PROTEINS: Structure, Function, and Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

complexes where the experimental structure of all the components is known, and there 

is little or no conformational change associated with assembly. ‘Free’ docking methods 

can be effective for these 35, but these targets do not generally occur in CASP. 

Relatively few complexes do not involve significant conformational changes of at least 

side chains and local regions of structure, and without an assembly template, current 

methods are unable to cope with these situations. Add to this the complications of 

working with approximate models for assembly components, and the problem is 

daunting.  As the CASP13 assembly assessor points out 33, because of the importance 

of conformational changes on assembly formation, the current standard procedure of 

first building monomer structures in isolation and then attempting to dock them is 

flawed. The assessor found seven of the heteromeric CASP13 assembly targets have 

substantial interdependences between monomers, in a variety of ways. Figure 8 shows 

an example for target H0953, an A3B1 multimer, where the trimer assembly generates 

strong subunit interdependencies. In other targets (T0973, 991, 998), a helix is swapped 

between subunits. 

The obvious message is that successful assembly methods will have to take subunit 

interdependences into account and not rely exclusively on modeling isolated subunits. 

Following the emergence of powerful deep learning methods for monomers in CASP13, 

there is intense interest in whether these approaches may be adaptable to the problem. 

Of note in this regard is that the assembly assessor found prediction of inter-subunit 

contacts in homo-assemblies was ‘surprisingly successful’ 33. It’s not clear how these 

predictions were made, but they may be useful in identifying first, which regions are in 
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contact even in the absence of a good three-dimensional model of the monomers, and 

second, possibly where there are conformational interdependencies. Deep learning 

methods for image analysis have been shown to be very robust to noise12, for example 

see https://clarifai.com/demo.  It will be very interesting to see in the next CASP whether 

any examples of contact driven non-trivial assembly can be achieved, particularly with 

the use of deep learning. 

DATA ASSISTED MODELING

Even high-resolution experimental structures incorporate aspects of modeling, making 

use of bond length and bond angle restrictions, avoidance of steric clashes, and 

sometimes imposing reasonable electrostatic interactions. Lower resolution methods - 

SAXS, chemical cross-linking coupled with mass spectrometry, and sparse NMR - 

depend critically on modeling to make maximum use of the experimental data. Since 

CASP11, CASP has experimented with providing these types of data to participants 

after data-free models have been obtained, and assessing whether the sparse data can 

be effective in increasing model accuracy. This area has great promise, but is proving 

challenging to successfully implement. First, additional data must be generated by the 

experimental community. A number of groups have been very co-operative and 

supportive, but still, protein samples are only available for a few targets, and those 

targets may not be ideal. Second, it requires specialized expertise to make optimum use 

of these types of data. In spite of vigorous efforts to provide webinars and other material 

in CASP13, rather few predictors have so far moved into this area. Third, because of 

low participation, the newer contact prediction and deep learning methods were not 
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used together with the sparse data. As a result, more accurate models were obtained 

without use of the experimental information. 

NMR: The Gaetano Montelione and Antonio Rosato  groups produced simulated sparse 

NMR data for 12 proteins or protein domains, in the form of ambiguous interatomic 

contact lists, chemical shifts, and RDCs . They also provided real sparse NMR data for 

one CASP target, N1008. The data provided are intended be similar to that available for 

large structures, and are insufficient for structure solution by standard NMR techniques 

36. Nine groups took part in NMR-assisted modeling, three of whom were controls from 

the Montelione lab. Generally, the models submitted are of similar accuracy to the best 

unassisted models received, but for one target, N0981-D2, a model built using the 

simulated data is over 30 GDT_TS units better than the best unassisted, a notable 

success. The target with experimental NMR data, N1008, is a designed protein 37, and 

even though there are no sequence homologs, was very accurately modeled by a 

number of groups, without the use of the data. As a result, the NMR assisted models 

were not as accurate. That outcome illustrates how tricky it is to choose targets in which 

to invest experimental effort. Of the nine groups submitting NMR assisted structures, 

two (Laufer and Meiler) had markedly better results than the controls. Laufer used 

molecular dynamics with a filtering technique to remove non-consistent restraints 38. We 

hope the encouraging results will lead to larger scale participation in this category in 

CASP14.
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SAXS: Data were generated for 11 targets in all, including 7 complexes. This was a very 

impressive contribution from the experimental group (Susan Tsutakawa, Greg Hura and 

John Tainer). 13 groups submitted models using these data. A number of teething 

troubles that plagued the first SAXS experiment in CASP12 39 were avoided or greatly 

reduced, so that a more meaningful assessment of the contribution from the SAXS data 

could be made. 

For no target was the best data assisted structure as accurate as the best unassisted, 

although there are some examples of improved inter-subunit relationships. Again, the 

issue here may be the relatively low participation, so that the results are not necessarily 

representative of the newest unassisted methods. Several groups did develop 

interesting pipelines incorporating SAXS data, and as is often the case in CASP, it may 

take further iterations before the power of these can be properly assessed.  Methods 

typically take the full set of server models available for a target and evaluate the fit of 

these the SAXS data, often also using additional accuracy estimations. One group also 

investigated the use of normal mode driven structure changes. 

Comparison of the SAXS envelopes with the X-ray structures suggests that for up to 

half the targets there could be differences between the solution and crystal structures. 

Such differences may in principle limit the accuracy that modeling can achieve using the 

crystal structure as the gold standard. But there could be a number of explanations for 

the discrepancies, including sequence differences between crystal and SAXS samples, 

more disorder in solution, and the inherent difficulties of interpreting SAXS data. 
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Chemical crosslinking and mass spectrometry:  Experimental data derived from two 

different cross-linking chemistries were provided. Alexander Leitner and Ruedi Abersold 

(ETH, Zurich) used a predominantly Lys primary amine-oriented (BS3) chemistry and 

Adam Belsom and Juri Rappsilber (University of Edinburgh and Berlin Technical 

University) employed the heterobifunctional, photoactivable cross-linking chemistry. 

One data set was also provided by Marcus Hartmann, using disuccinimidyl suberate 

(DSS) chemistry. Altogether data were collected for eight different protein samples, 

including three hetero-multimers, two homo-multimers, and three single chain proteins. 

Based on these data, five heteromeric targets and 17 single-sequence targets 

(monomers or subunits of multimers) were released for prediction. An analysis by the 

assessor 40 shows that a surprisingly high fraction of cross-links appear not to be 

compatible with the targets’ X-ray structures (27-47%). In total, 14 prediction groups 

participated. For the monomeric protein domains and subunits, there are many 

instances where the data-assisted models are more accurate than the corresponding 

un-assisted models from the same participants. But this comparison likely provides too 

optimistic a view, since the groups with the greatest improvement started from scratch 

in utilizing the cross-link data, ignoring their initial submissions, and instead making use 

of the full set of server models available for each target. A more stringent criterion, 

comparing the data-assisted models to the best received for each target from any group 

generally shows all the cross-link assisted models are less accurate. For the complete 

complexes, there is one instance of a significant improvement, for X0957, a bacterial 

toxin/immunity protein complex, where several inter-subunit crosslinks helped select a 
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more appropriate overall assembly33, an encouraging result.  The results illustrate both 

the promise and the challenges of using cross-link information to improve models. Many 

cross-links are misleading in that they conflict with the corresponding X-ray structure 

and some can be false positives. Further, the  large variation in distance between 

crosslinked residues 40 makes the technique inherently low-resolution, and so likely best 

suited to complexes, as the result for X0957 illustrates. 

Pilot experiments were also conducted with FRET data on one target (generously 

provided by Claus Seidel and Mykola Dimura) and SANS on another (provided by Anne 

Martel). We expect to include more data of these types in CASP14.

DISCUSSION

Successful use of relatively standard deep learning techniques for predicting not only 

three-dimensional contacts but more general inter-residue distance distributions was the 

outstanding development of CASP13 and caused much excitement and creative 

thinking at the CASP meeting. There is an expectation that similar approaches can be 

applied to other areas of structure modeling, particularly improved estimates of both 

global and local model accuracy, improved model refinement by allowing focus on 

regions of maximum error, and recognition and prediction of protein-protein interfaces. 

We will have to wait until CASP14 in 2020 to see which of these bears fruit. CASP14 is 

also likely to see further progress in 3D structure modeling based on deep learning 

approaches. Several modeling groups are developing servers that will make the new 
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methods available to broader community. It’s likely that the impact on the usefulness of 

modeling will be large. 

The major progress in modeling domains and monomeric proteins without direct use of 

a structural template is a very significant break-through: for these proteins, the long-

standing problem of ‘protein folding’ (generating a model with the correct topology) is 

essentially solved, albeit it in way that early work in the field never imagined. An 

alignment with of at least a few dozen sequences is usually needed for the methods to 

work, but most protein families are now that large. Success with topology prediction has 

increased focus on the remaining problems - we are still a long way from the accuracy 

of X-ray structures or from enabling structure-based drug design, and more complex 

structures are the norm in biology. CASP already has well-established categories in the 

relevant areas, particularly refinement and protein assemblies, and as already noted it 

will be exciting to see what impact deep learning and related approaches have on 

those. Other areas, such as conformational change in response to ligand binding and 

environmental conditions, remain future challenges. 

CASP continues to experiment with other aspects of modeling. Of note this round was 

the expanded number of targets for which sparse experimental data were available. 

Although the results in terms of more accurate models are not impressive, it is clear that 

much more development is possible, and we have already seen several groups 

introduce methods specifically tailored to particular data types. CASP continues to  

investigate the best ways of assessing how effectively functional information can be 
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derived from models41,42, and in this round, solicited assessment comments from those 

who provided  the prediction targets 43. An interesting development during CASP13 was 

the introduction of a CASP commons experiment 

(http://predictioncenter.org/caspcommons/). Biologists were canvased to identify a total 

of 35 small proteins for which structure would be particularly useful for their research. 

The Montelione group cloned and expressed these, with the goal of determining which 

are suitable for NMR structure determination, and in parallel the CASP community was 

invited to submit models. So far one experimental structure has been obtained 37. A new 

round of modeling is now beginning, using the new free modeling methods from 

CASP13. 

We plan to hold CASP14 in 2020, with a similar timetable to previous rounds. The 

prediction season will be spring and summer, and the  conference will be at the end of 

the year. Details will be posted on the Prediction Center web site as they become 

available.
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FIGURE CAPTIONS

Figure 1: 

Trend lines of backbone accuracy for the best models in each of the 13 CASP 

experiments. Individual target points are shown for the two most recent experiments. 

The accuracy metric, GDT_TS, is a multiscale indicator of the closeness of the Cα 

atoms in a model to those in the corresponding experimental structure. Target difficulty 

is based on sequence and structure similarity to other proteins with known experimental 

structures (see 5 for details). There is a striking improvement in model accuracy in 

CASP13 (top black line), particularly for the more difficult targets.  

Figure 2: 

Best contact prediction precision in recent CASPs. CASPs 9 and 10 continued a long 

trend of low precision. CASP11 shows a small advance, while the two most recent, 

CASP12 and 13, show dramatic improvements. In CASPs 11 and 12 progress is the 

result of more sophisticated statistical models, together with largely conventional 

machine learning. The further jump in CASP13 is the result of the effective deployment 

of deep learning methods. (Average fraction of correctly predicted contacts for the most 

confidently predicted L/5 contacts 24 or more residues apart in the sequence, where L 

is target length. Free modeling targets, average for the best performing group in each 

CASP. Contacting residue pairs defined as those with less than 8 Angstroms between 

C atoms).
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Figure 3: 

Contact prediction precision trend lines as a function of sequence alignment depth and 

target length. In CASP13 there is a reduced dependency on alignment depth, resulting 

in more accurate results for shallow alignments as well as higher precision overall. 

Strikingly, for ten out of the 31 free modeling  targets, the best predictions achieved 

100% precision for this subset of contacts (see figure 2 for definitions). The effective 

alignment depth, Neff, includes metagenomic sequences compiled as described in 17 18. 

Neff was calculated using a 90% sequence identity cutoff and a minimum of  60% 

sequence coverage (details in 44). 

Figure 4: 

Crystal structure of a 354 residue domain of  a free modeling target (T0969-D1), 

ESKIMO 1, a probable xylan acetyltransferase, PDB 6CCI (left panel) and the most 

accurate CASP model (right panel). Most of the structure core is modeled to a Cα 

accuracy of better than 1 (cyan) or 2 Angstroms (green). Irregular loop regions are less 

accurate (yellow, better than 4 Angstroms or orange, up to 8 Angstroms error. Some 

residues (red) in external loops have larger errors.

Figure 5:

 Best model main chain accuracy (GDT_TS) as a function of sequence alignment depth 

and target length for CASPs 12 and 13. Accuracy depends on alignment depth, as is 

expected if the result is dominated by contact prediction accuracy and related 
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advances. Across all alignment depths, CASP13 models are on average more accurate 

than those in CASP12. 

Figure 6:

 Best model backbone accuracy (GDT_TS) as a function of target difficult for template-

based models in recent CASPs. CASP13 shows a marked improvement in accuracy 

compared to previous CASP. Targets are those where there is clear sequence 

relationship to a known structure (termed TBM) and those with a marginal relationship 

(TBM/FM).

Figure 7:

 Trend lines for the fraction of non-principal template (’loop’) residues correctly modeled. 

There is a substantial improvement in CASP13.  (Best models received for each target, 

3.8 Angstrom Cα atom agreement or better considered correct, TBM and TBM/FM 

targets).

Figure 8:

Part of the experimental structure of target H0953 (PDB 6F45), the adhesin tip complex 

of a bacteriophage tail fiber, illustrating subunit structure interdependence.  One of the 

two protein chains contributing to this assembly forms a trimer (colored red, green and 

blue), with the N terminal five strand beta sheets of the three monomers packing against 

each other.  The C terminal three beta strands of each monomer inter-digitate with each 

other. The C terminal stands also form an interface with the helical end of another 
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subunit (green). Impressively, in spite of the apparent interdependency of the five-strand 

beta-sheets, accurate models were returned for that part of the structure.  But failure to 

consider the even more intimate subunit interactions of the three N terminal strands 

resulted in incorrect models for that subdomain. 
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Figure 1: Trend lines of backbone accuracy for the best models in each of the 13 CASP experiments. 
Individual target points are shown for the two most recent experiments. The accuracy metric, GDT_TS, is a 
multiscale indicator of the closeness of the Cα atoms in a model to those in the corresponding experimental 

structure. Target difficulty is based on sequence and structure similarity to other proteins with known 
experimental structures (see 5 for details). There is a striking improvement in model accuracy in CASP13 

(top black line), particularly for the more difficult targets.   
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Figure 2: Best contact prediction precision in recent CASPs. CASPs 9 and 10 continued a long trend of low 
precision. CASP11 shows a small advance, while the two most recent, CASP12 and 13, show dramatic 

improvements. In CASPs 11 and 12 progress is the result of more sophisticated statistical models, together 
with largely conventional machine learning. The further jump in CASP13 is the result of the effective 
deployment of deep learning methods. (Average fraction of correctly predicted contacts for the most 

confidently predicted L/5 contacts 24 or more residues apart in the sequence, where L is target length. Free 
modeling targets, average for the best performing group in each CASP. Contacting residue pairs defined as 

those with less than 8 Angstroms between C atoms). 
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Figure 3: Contact prediction precision trend lines as a function of sequence alignment depth and target 
length. In CASP13 there is a reduced dependency on alignment depth, resulting in more accurate results for 

shallow alignments as well as higher precision overall. Strikingly, for ten out of the 31 free modeling 
 targets, the best predictions achieved 100% precision for this subset of contacts (see figure 2 for 

definitions). The effective alignment depth, Neff, includes metagenomic sequences compiled as described in 
17 18. Neff was calculated using a 90% sequence identity cutoff and a minimum of  60% sequence coverage 

(details in 44). 
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Figure 4: Crystal structure of a 354 residue domain of  a free modeling target (T0969-D1), ESKIMO 1, a 
probable xylan acetyltransferase, PDB 6CCI (left panel) and the most accurate CASP model (right panel). 
Most of the structure core is modeled to a Cα accuracy of better than 1 (cyan) or 2 Angstroms (green). 
Irregular loop regions are less accurate (yellow, better than 4 Angstroms or orange, up to 8 Angstroms 

error. Some residues (red) in external loops have larger errors. 

153x70mm (300 x 300 DPI) 
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Figure 5: Best model main chain accuracy (GDT_TS) as a function of sequence alignment depth and target 
length for CASPs 12 and 13. Accuracy depends on alignment depth, as is expected if the result is dominated 

by contact prediction accuracy and related advances. Across all alignment depths, CASP13 models are on 
average more accurate than those in CASP12. 
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Figure 6: Best model backbone accuracy (GDT_TS) as a function of target difficult for template-based 
models in recent CASPs. CASP13 shows a marked improvement in accuracy compared to previous CASP. 

Targets are those where there is clear sequence relationship to a known structure (termed TBM) and those 
with a marginal relationship (TBM/FM). 
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Figure 7: Trend lines for the fraction of non-principal template (’loop’) residues correctly modeled. There is a 
substantial improvement in CASP13.  (Best models received for each target, 3.8 Angstrom Cα atom 

agreement or better considered correct, TBM and TBM/FM targets. 
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Figure 8: Part of the experimental structure of target H0953 (PDB 6F45), the adhesin tip complex of a 
bacteriophage tail fiber, illustrating subunit structure interdependence.  One of the two protein chains 

contributing to this assembly forms a trimer (colored red, green and blue), with the N terminal five strand 
beta sheets of the three monomers packing against each other.  The C terminal three beta strands of each 

monomer inter-digitate with each other. The C terminal stands also form an interface with the helical end of 
another subunit (green). Impressively, in spite of the apparent interdependency of the five-strand beta-

sheets, accurate models were returned for that part of the structure.  But failure to consider the even more 
intimate subunit interactions of the three N terminal strands resulted in incorrect models for that 

subdomain.   

Page 42 of 42

John Wiley & Sons, Inc.

PROTEINS: Structure, Function, and Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


