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Abstract 

Structures of seven CASP13 targets were determined using cryo-electron microscopy (cryo-

EM) technique with resolution between 3.0 and 4.0 Å. We provide an overview of the 

experimentally derived structures and describe results of the numerical evaluation of the 

submitted models. The evaluation is carried out by comparing coordinates of models to those 

of reference structures (CASP-style evaluation), as well as checking goodness-of-fit of 

modeled structures to the cryo-EM density maps. The performance of contributing research 

groups in the CASP-style evaluation is measured in terms of backbone accuracy, all-atom local 

geometry and similarity of inter-subunit interfaces. The results on the cryo-EM targets are 

compared with those on the whole set of eighty CASP13 targets. A-posteriori refinement of 

the best models in their corresponding cryo-EM density maps resulted in structures that are 

very close to the reference structure, including some regions with better fit to the density.  
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1. Introduction 

Cryogenic electron microscopy (cryo-EM) is becoming increasingly instrumental in 

solving protein structures. By the end of 2018, the number of cryo-EM structure depositions to 

the Protein Data Bank (PDB) exceeded 2700, with almost 900 structures (or roughly 1/3 of the 

entries) submitted that year alone (http://www.rcsb.org/stats/growth/em). The cryo-EM 

determined structures made up around 8% of all protein structures deposited to the PDB in 

2018. Incidentally, the share of cryo-EM structures in CASP13 was essentially the same with 

7 out of 80 evaluated targets coming from the EM structural biology groups. Thus, CASP13 

target dataset represents a proportional slice of the 2018 annual structure deposition to the PDB 

in sense of structure determination methods (Supplementary Figure S1).  

Since cryo-EM targets are typically quite different from other CASP targets (in terms 

of their size, complexity of quaternary structure composition and resolution), CASP organizers 

thought that it would be useful to conduct a separate evaluation of the participated methods on 

such targets. In this article, we analyze performance of the CASP13 tertiary and quaternary 

structure prediction methods on the cryo-EM targets only, and compare the results with those 

on all CASP13 targets (discussed in detail elsewhere in this issue). Additionally, we carry out 

analyses specific to cryo-EM derived targets by checking the fit of the submitted models to the 

cryo-EM density maps and comparing the best-fitting models refined in the density with their 

corresponding reference structures (provided by the experimentalists). 

 

2. Materials and Methods 

2.1. Cryo-EM targets in CASP13 
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Structures of seven CASP13 targets were determined by cryo-electron microscopy 

(cryo-EM) and image processing with resolution between 3.0 and 4.0 Å. Six targets are 

multimeric (T0984, T0995, T0996, T1020, H1021, H1022) and one is monomeric (T0990). 

Names of homo-multimeric targets start with ‘T’, while names of hetero-multimers start with 

‘H’. Four of the six multimeric targets (T0984, T0995, T1020 and H1021) are also part of the 

CASP/CAPRI modeling experiment, where CASP participants are joined by members of 

CAPRI1 community in modeling quaternary structure of proteins.  

With regards to the target size, all cryo-EM targets are quite large. The monomeric 

target T0990 is 552-residue long. The multimeric targets vary in length from 1504 to 5088 

residues for whole complexes, and from 149 to 848 residues for individual subunits. The 

average length of CASP13 cryo-EM targets is 2752 residues for assemblies and 462 residues 

for subunits. This is significantly different from CASP13 X-ray and NMR-derived targets, 

which are roughly five times shorter for whole targets (average length of 531 residues) and two 

times shorter for subunits (average length of 272 residues). Even though there is a substantial 

difference in the length at both whole-target and whole-subunit levels, the lengths of 

constitutive domains are comparable. The seven cryo-EM targets encompass 21 structural 

domains with an average length of 197 residues compared to 183 residues in 91 domains of the 

other 73 targets. 

To ensure fair comparison of models, CASP13 targets and their domains are assigned 

to different prediction difficulty categories. Oligomeric targets are classified into three 

categories according to the principles outlined in the CASP13 assembly assessment paper 2: 

• Easy: templates can be identified by sequence homology for whole oligomeric assemblies; 
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• Medium: only partial templates can be found by sequence-based homology searches. 

Partial means that templates can be identified for subunits, but not the whole assembly (i.e., 

no hints on how to model the interface), or that information on only parts of the subunits 

or interfaces is known (e.g., a dimeric template is available for a tetrameric complex); 

• Difficult: no templates are available for either the subunits or the assembly. 

According to this classification, three out of six oligomeric cryo-EM targets are easy 

modeling, one – medium difficulty, and two more – hard modeling targets.  

At the domain level, prediction targets are classified into difficulty categories following 

the same principles of the oligomeric categorization (i.e., based on the template availability) 

with an additional correction for the per-domain performance of the CASP participants (see 

paper 3 for details). All in all, 21 domains of CASP13 cryo-EM targets are split into two 

difficulty categories: 15 easier template-based modeling (TBM) targets, and 6 harder free 

modeling (FM) targets. 

A summary on the CASP13 cryo-EM targets is provided in Table 1. All six oligomeric 

structures are symmetric; however, this information was not provided by the experimentalists 

in advance, and thus was not relayed to predictors or used in the analysis of the results. 

2.2. Participants and predictions 

In CASP13, 93 prediction groups submitted 4079 tertiary structure predictions of seven 

cryo-EM derived targets, and 20 groups submitted 343 quaternary structure predictions of six 

oligomeric cryo-EM targets. The models were generated without knowledge of the cryo-EM 

density maps, i.e., based solely on the sequence of the target. 

2.3. Evaluation measures 
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The accuracy of models submitted for each cryo-EM target is evaluated with two broad 

classes of measures – those assessing accuracy of models with respect to their corresponding 

‘reference’ structures, and those assessing quality of model fit in the experimental cryo-EM 

density map (model-to-map goodness-of-fit). Reference structures are the models generated by 

the experimentalists using the information in the cryo-EM map. 

2.3.1. Accuracy of models with respect to reference structures 

CASP has been using a wide suite of numerical measures to assess similarity of models 

to native structures4-6. Below we describe the measures that were chosen for the evaluation of 

cryo-EM targets. 

2.3.1.1. Tertiary structure evaluation 

To assess the accuracy of the tertiary structure of models, we employ five conceptually 

different measures - a rigid-body structure superposition measure GDT_TS7,8, and four 

superposition-free measures – LDDT9, CADaa10, SphereGrinder (SG)6 and QCS11. The chosen 

set of measures provides complementary information on the accuracy of a model: GDT_TS 

reports on conformation of model’s backbone with respect to the target’s backbone, LDTT on 

similarity of inter-residue distance patterns, CADaa on difference in all-atom contact areas, SG 

on similarity of corresponding local structural neighborhoods, and QCS on topological 

similarity and relative packing of secondary structure elements. Using all these scores helps 

provide a well-rounded opinion about the overall accuracy of the inspected models. 

Importantly, for the ranking of the participating groups, absolute scores of models 

should not be considered in isolation from the target difficulty or the performance of other 

groups. For instance, a score of 0.6 can be considered ‘outstanding’ for a free modeling target 
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if all other groups score 0.4 or worse, but ‘poor’ for an easier template-based modeling target, 

where majority of modelers score 0.8 or better. Thus, using raw scores for group ranking can 

be misleading. A better practice is to work with the normalized scores quantifying relative 

performance of groups. To this end, we transform per-target raw scores into standard scores 

using the formula: 

𝑧𝑧_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚) =
𝑠𝑠𝑟𝑟𝑟𝑟_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚) –  𝑀𝑀𝑠𝑠𝑟𝑟𝑀𝑀_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑆𝑆𝑆𝑆𝑟𝑟𝑀𝑀𝑚𝑚𝑟𝑟𝑠𝑠𝑚𝑚𝑆𝑆𝑠𝑠𝑆𝑆𝑆𝑆𝑟𝑟𝑆𝑆𝑆𝑆𝑠𝑠𝑀𝑀_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 .
                                            (1) 

In CASP, each group can submit up to 5 models per target. Typically, groups are ranked either 

on the scores of their ‘first models’ (i.e., the models estimated to be the most accurate by the 

predictors), or their actual per-target best scores (based on the a-posteriori evaluation). In this 

study we use both ranking approaches, and formula (1) is applied to calculation of z_scores 

separately on each of the datasets. After the calculation of original z_scores, outliers that score 

two standard deviations or more below the mean (i.e. z_score ≤ -2) are excluded, and the 

standard scores are re-calculated based on the mean and standard deviation of the outlier-

free model set (we call these new standard scores here Zscores , starting with capital ‘Z’). 

Next, all models that score below the mean (i.e. those with negative Zscores) and outliers from 

the first stage are assigned Zscores of 0, in order not to over-penalize the groups attempting 

novel strategies12. If a group does not submit any predictions on a target, its per-target Zscores 

are set to zero. Finally, the per-target Zscores of different measures are combined and summed 

over the selected sets of targets.  

Here, we adopted the cumulative ranking formulas from the latest CASP assessments 13-

16. For template-based modeling targets (15 in CASP13) the relative group performance is 

calculated as  
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𝑇𝑇𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑇𝑇𝑇𝑇𝑀𝑀) = � �𝑍𝑍𝐺𝐺𝐺𝐺𝐺𝐺_𝐺𝐺𝑇𝑇 + 1/3 ∗ (𝑍𝑍𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺 + 𝑍𝑍𝐶𝐶𝐶𝐶𝐺𝐺𝑟𝑟𝑟𝑟 + 𝑍𝑍𝑇𝑇𝐺𝐺)�
𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟

 
𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟 ∈ 𝐺𝐺𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑇𝑇

, (2) 

while for free modeling targets (6 in CASP13) it is calculated as 

𝑇𝑇𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐹𝐹𝑀𝑀) = � [𝑍𝑍𝐺𝐺𝐺𝐺𝐺𝐺_𝐺𝐺𝑇𝑇 + 𝑍𝑍𝑄𝑄𝐶𝐶𝑇𝑇
𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟 ∈ 𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑇𝑇

] 𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟 .                                         (3) 

The TBM formula takes equal contributions from a global superposition measure (GDT_TS), 

and local-based measures (LDDT, CADaa and SG), while the FM formula weighs equally 

GDT_TS and QCS, a topology-based measure.  

2.3.1.2. Quaternary structure evaluation 

The accuracy of the quaternary structure of models is assessed relative to the subunit 

interfaces in the reference structures in terms of F1 score (a.k.a. Interface Contact Score17), 

JaccardCoefficient (a.k.a. Interface Patch score17) and QSglob score18; overall similarity of Cα 

traces in the model and the target (GDT_TSo, suffix ‘o’ stands for ‘oligo’); and similarity of 

intra- and inter- chain distance patterns (LDDTo). Ranking of the participating groups is 

performed according to the procedure described above (i.e. removal of outliers and re-

calculating of Z-scores) using the formula adopted from the CASP13 assembly assessment 2:  

𝑄𝑄𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑄𝑄𝑆𝑆_𝑆𝑆𝑟𝑟𝑠𝑠𝑡𝑡) = � �𝑍𝑍𝐹𝐹1 + 𝑍𝑍𝐽𝐽𝑟𝑟𝐽𝐽𝐽𝐽 +  𝑍𝑍𝐺𝐺𝐺𝐺𝐺𝐺_𝐺𝐺𝑇𝑇𝑇𝑇 + 𝑍𝑍𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺𝑇𝑇�𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟 .
𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟 ∈ 𝑄𝑄𝑇𝑇𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑄𝑄𝑡𝑡𝑇𝑇

                (4) 

2.3.2. Fit of model coordinates to cryo-EM density maps 

To speed-up the calculation of the model-to-map goodness-of-fit, we first superimpose 

the models (using the Biopython’s Bio.pdb module) onto the reference structures, which were 

produced by the target providers in the context of the cryo-EM density map. This procedure 

positions the models approximately in the correct region of their corresponding cryo-EM map. 

This article is protected by copyright. All rights reserved.



Next, we fine-tune the position of the models in the density map using the fit-in-map tool from 

the UCSF Chimera package19. To this end, we use a Python script (accessible at 

https://gitlab.com/ccpem/ccpem/tree/master/src/ccpem_core/chimera_scripts) that utilizes 

Chimera’s fitmap global search option, where 100 random initial positions in the map are 

searched and locally optimized. The solutions are then ranked based on the cross-correlation 

score. Note that for difficult targets, models are usually far away from the reference structure 

and thus grossly incompatible with the cryo-EM maps. In such cases, fine-tuning the fit and 

subsequent evaluation make little sense and, hence, is not attempted here.  

For assessing the goodness-of-fit, we used three software packages: PHENIX20, 

TEMPy21,22, and EMRinger23. The overall model-to-map goodness-of-fit is quantified using 

PHENIX’s real space correlation coefficients – CCvolume, CCmask and CCpeaks, – each probing 

different aspects of model-to-map fit24; TEMPY’s cross-correlation coefficients – CCC, CCCov 

, the Laplacian-filtered correlation coefficient – LAP and the average per-chain Segment-based 

Mander’s Overlap Coefficients – SMOCf and SMOCd;21,25; and EMRinger’s global score 

enumerating accuracy of side-chain placement within map density24.  

The per-residue (local) model-to-map goodness-of-fit is evaluated with PHENIX’s 

local CCbox measure24; local EMRinger score23; and TEMPy’s local SMOCf and SMOCd 

scores25. SMOCf is calculated on overlapping residue windows (sequence fragments), whereas 

SMOCd on the voxels occupied by the atoms of a specific residue. 

CASP infrastructure for running the evaluation, reporting scores and visualizing 

evaluation results for cryo-EM targets (http://predictioncenter.org/casp13/cryoem_results.cgi) 

is based on the prototype of the evaluation infrastructure26,27 developed for the cryo-EM model 
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challenge28. 

 

3. Results 

3.1. Evaluation of tertiary structure 

3.1.1. Comparison of results on EM and non-EM targets 

By evaluating models versus reference structures, we want to address the question of 

whether the results on the cryo-EM targets are substantially different from those on the other 

CASP13 targets. To answer this question, we compare the raw scores and rankings of groups 

on these two subsets of targets.  

First, we calculate the averages of per-target maximum scores (MAX) and mean scores 

(MEAN) for TBM and FM domains of EM and non-EM targets. Results of the calculations are 

provided in Supplementary Table S1 (panels A and B). Since the tendencies in the data are 

similar for the different scores, we discuss here only the GDT_TS-based results.  

Comparing averages of the MEAN scores shows that TBM domains from EM targets 

are overall harder to predict than non-EM targets (GDT_TS=47.8 on TBM/EM targets vs 55.8 

on TBM/non-EM), while FM domains are equally difficult, regardless of the experimental 

technique used for structure determination (GDT_TS=27.7 on FM/EM vs 28.3 on FM/non-

EM). For the MAX scores, this tendency holds only for the TBM domains (76.5 on TBM/EM 

vs 81.8 on TBM/non-EM), while for the FM domains the scores on EM targets are higher than 

those on non-EM (65.7 on FM/EM vs 59.8 on FM/non-EM). Thus, from the analysis of the 

highest-scoring models, FM domains from cryo-EM structures might seem easier for modeling. 

However, the data show that the difference in the ‘average of MEAN’ versus ‘average of MAX’ 
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tendencies on the FM targets can be explained by the outstandingly good results for the cryo-

EM targets (in particular T0990) by one group (A7D), which pulls the corresponding set of 

maximum scores up. To probe whether the difference in the predictive difficulty of EM and 

non-EM targets is statistically significant, we performed unpaired t-tests on the per-target 

MAX and MEAN scores. The results of the tests show that for the harder (FM) domains any 

difference in the predictive difficulty can be attributed to pure chance, while for the easier 

(TBM) domains the GDT_TS and LDDT measures are discriminative at the p=0.05 

significance level, thus confirming the conclusion that TBM domains from CASP13 cryo-EM 

targets are in general harder to predict. The complete results of the statistical tests are provided 

in Supplementary Tables S1A and S1B.  

3.1.2. Overall group performance  

To compare group performance on cryo-EM targets, we apply the ranking procedure 

described in Materials and Methods, section 2.3.1.1. Figure 1 provides a summary of the 

relative performance of groups on the TBM and FM domains (panels A and B, respectively). 

On the TBM domains, several top groups demonstrated comparable results having cumulative 

Zscores within 2 units from each other, both on first models (M1) and best results. On the FM 

domains, the top group (A7D) is an undisputable leader. Paired t-tests on the cumulative Zscores 

and on the individual evaluation scores (Tables S2 and S3, Supplementary Material), show that 

on the TBM domains the performance of McGuffin, Zhang, Seok-refine, QUARK, Zhang-

Server, A7D and MULTICOM groups is statistically indistinguishable. On the FM domains, 

the A7D group outscored all the other groups by a statistically significant margin. These results 

are in agreement with the results on all CASP13 targets reported by CASP13 TBM and FM 
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assessors15,16.  

3.2. Evaluation of quaternary structure 

3.2.1. Comparison of results on EM and non-EM targets 

Similarly to the evaluation of tertiary structure, we start our analysis on quaternary 

structure by calculating averages of the per-target maximum (MAX) and average (MEAN) 

scores, for the multimeric EM and non-EM targets. Results of the calculations are provided in 

Table S1 (panel C). Representing each CASP13 multimeric target by the average GDT_TS 

score from all groups (MEAN), and comparing the averages of the representative scores on 

different target sets shows that the interfaces in EM targets were in general easier to predict 

than those in the non-EM ones, as the interface-based scores are higher on the former (F1=20.4, 

Jaccard=30.2) than the latter (14.2 and 26.2, respectively). This result can be explained by 

lower modeling difficulty of CASP13 multimeric EM targets, where the fraction of easy targets 

(TBM) is 50% (3 out of 6) compared to only 33% (12 out of 36) for the non-EM targets. The 

overall shape of multimeric targets is predicted rather poorly on average, for both types of 

targets (EM and non-EM) as quantified by low MEAN GDT_TSo and LDDTo scores. If we 

analyze differences among the best models (MAX scores), we will see that the contact-based 

interface score (F1) is higher for the EM targets (44.9 vs 36.2 on non-EM), while all other 

scores are very similar for both types of targets (difference within 1.0 score unit). All MAX 

scores are significantly higher (around 20 units) than the corresponding MEAN scores, thus 

signifying that the best assembly predictors performed much better than the rest of the 

participants.  

3.2.2. Overall group performance 
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The relative performance of groups in predicting the quaternary structure of six 

CASP13 cryo-EM oligomeric targets is summarized in Figure 2. The cumulative ranking score 

was calculated using Eq. (4) from section 2.3.1.2. Figure 2A shows the ranking of CASP 

participants for these six targets, while Figure 2B shows the ranking of CASP and CAPRI 

groups for four out of the six targets, which were selected for the joined CASP/CAPRI 

experiment1. The Venclovas group leads the rankings among CASP-only participants and is 

also a member of a tight cluster of the top-performing groups on the CASP/CAPRI targets. 

Similarly to the outcome of the tertiary structure analysis, the results on the quaternary structure 

for cryo-EM targets are similar to the results for the complete set of all CASP13 targets2.  

3.3. Evaluation of model-to-map fit  

Evaluating the goodness-of-fit of CASP models to the experimental cryo-EM density 

maps makes sense only for targets with good homology, where high-accuracy models are 

expected. Three out of seven CASP13 cryo-EM targets – T0984o, T0995o and T1020o - were 

classified as easy for modeling (see Materials and Methods). Below we concentrate our 

attention on these three targets, all of which are oligomeric. Density maps for these targets are 

in the 3.2-3.4 Å resolution range (Table 1). Typically, maps in this resolution range contain 

enough information to reliably trace the backbone and some of the side chains. However, in 

practice even models built on such well-resolved maps are not void of structural inconsistencies 

or errors24,29.  

In this section we analyze whether CASP models, which are built without the 

knowledge of the cryo-EM density, agree with the density, and compare their goodness-of-fit 

with that of the experimentally-derived structures. We also check if consensus between the 
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models can be an indicator of the reliability of the local goodness-of-fit of the reference 

structure. Finally, we probe the utility of the best CASP models as starting points for further 

real-space refinement in the cryo-EM density map. 

3.3.1. Correlation between evaluation scores and selection of the assessment 

measures 

Since the goodness-of-fit analysis is done for the first time in CASP, we want to check 

which scores provide complementary information for the assessment of CASP models. To this 

end, we calculate the pair-wise correlation between all goodness-of-fit scores (section 2.3.2) 

and the average correlation of each score with all other scores. Figure 3 shows that some pairs 

of scores (e.g., CCmask/CCvol, SMOCd/SMOCf , CCC/CCpeaks) are highly correlated on CASP 

models. Therefore, we leave only one score from each pair (CCmask , SMOCf and CCpeaks) for 

the assessment. We also exclude the LAP and CCCov scores on the grounds of their high 

similarity to the rest of the measures (see corresponding diagonal values in Figure 3). On the 

other side of the correlation spectrum is the EMRinger score. The score has the lowest average 

correlation to all other model-to-map goodness-of-fit scores (0.45, Figure 3) as well as to the 

‘vs the reference structure’ scores (0.39, Supplementary Figure S2). The low correlation of this 

measure likely stems from the fact that EMRinger’s effective usage requires an approximately 

correct placement of the backbone and side chains within the density, which often lacks in 

CASP models. Thus, the EMRinger score can be misleading in the CASP context and is not 

used here. Following this analysis, the fit scores used for the assessment of CASP models are 

SMOCf (from TEMPy), and CCmask and CCpeaks (from PHENIX). The SMOCf score accounts 

for per-residue correlation of density values in sequential fragments surrounding each residue. 
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PHENIX’s CCpeaks compares map regions with highest density values, while CCmask uses values 

inside the mask calculated around the molecule of interest. 

3.3.2. Overall (global) goodness-of-fit 

The model-to-map global fit score is calculated as  

fit_score = 1/3 [CCmask + CCpeaks + SMOCf ],     (5) 

and ranges between -1 and 1.  

Since the cryo-EM experimental models (reference structures) are built to fit the EM 

density, it is not surprising that their fit_score is substantially higher than that of models built 

without the knowledge of experimental data. The corresponding scores of the reference 

structure and the highest-scoring CASP model are: 0.69 and 0.30 for target T0984o; 0.52 and 

0.26 for target T0995o; and 0.66 and 0.37 for target T1020o. The three main reasons behind 

such large differences are distortions and shifts of secondary structure elements, inaccurate 

modeling of interfaces (docking of subunits), and mistakes in modeling of loops and packing 

of side chains.  

Next, we investigate how well the fit_score (Eq. 5) correlates with the overall 

quaternary structure accuracy score (assembly_score) calculated as an average of individual 

scores used in Eq. 4:  

assembly _score = 1/4 [F1 + Jacc + GDT_TSo + LDDTo].    (6) 

The assembly score ranges between 0 and 1.  

We find that the answer strongly depends on the target (Figure 4). For targets with 

easier assembly organization, e.g. T0984o (dimer) or T1020o (trimer), the correlation is high 

(0.85 and 0.82, respectively) thus confirming intuitive assumption that models with better 
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overall fold should have better fit to map. However, for the target with a more complex 

organization – T0995o (octamer), the correlation between the two scores is weak (0.25). The 

latter target contains 16 outlier models with noticeably higher fit_score (>0.1) than the other 

57 models, all of which score below 0.1 (see Figure 4). Groups that contributed the better-

scoring models are Baker, Baker-ROSETTAserver, Yasara and Kiharalab_CAPRI. 

3.3.3. Per-residue (local) goodness-of-fit 

Local model-to-map fit scores can help identifying regions of poor fit, distortions and 

shifts. To evaluate the local fit, we use the per-residue SMOCf score.  

Figure 5 demonstrates the consensus among CASP models in predicting the local 

structure of the targets (the IQR score), and shows local fit scores (SMOCf) for the highest 

scoring chain in the experimentally-derived reference structure and the highest-scoring CASP 

models. SMOCf scores for all individual chains of the three analyzed cryo-EM targets (T0984o, 

T0995o and T1020o) are provided in Supplementary Figure S3. It is evident from the figures 

that the best-scoring CASP models have worse local fit to the density than the reference 

structures (dashed blue line is consistently below the solid line). An interesting question to 

consider is whether regions of higher structural consensus correspond to regions of better local 

fit in the reference structure and the CASP models. If such a correspondence was present, then 

the blue and red lines in Figure 5 should be in ‘anti-phase’ (i.e. peaks of red lines should 

correspond to dips of the blue ones). With respect to the reference structures, we do not observe 

such a tendency and therefore cannot state that regions of higher agreement between models 

are more likely to correspond to regions where the target fits the map better. However, when 

we compare the best-fitting model lines (dashed blue) with the consensus lines (solid red), we 
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notice that the lines are in anti-phase in most regions, thus indicating dependency between the 

inter-model consensus and models’ goodness-of-fit to the density, especially for targets T0995 

and T1020.  

For example, in the best oligomeric model for target T0995 (T0995TS368_5o, from the 

Baker-ROSETTAserver group) the four worst-fitting regions (dips where SMOCf <0.4) are 

regions of bad inter-model consensus (peaks where IQR>1.5 Å), while the five best-fitting 

regions (peaks where SMOCf >0.7) are regions of good consensus (valleys where IQR<0.5 Å).  

Similar situation can be observed for the highest-scoring model of target T1020 

(T1020TS004_2o from the Yasara group, shown in Figure 6A). Although this model is well 

fitted in the density overall, including the subunit interface (Figure 6B), it has several 

significant SMOCf dips, most of which correspond to distinct IQR peaks in Figure 5. The 

deepest and the widest dip of the SMOCf line is in the C-terminus region starting at residue 

475. Detailed analysis of the structure reveals that poor fit to density in this region is due to 

inaccurate modeling of loop 475-478 (Figure 6C, left) and associated shift in helix 479-511 

with respect to the reference structure (Figure 6D). Another example of the region that does 

not fit well to the T1020 density is loop 220-230 (Figure 6C, right). Figure 5 shows that SMOCf 

line has a local minimum in this region dipping to (low) SMOCf values around 0.4, while the 

IQR line attains one of its highest peaks, thus signaling substantial disagreement between the 

CASP models. Modeling problems in this region can be attributed to incorrect secondary 

structure prediction, where loop 220-230 was attempted to be modeled as a helix. It is worth 

mentioning that this loop is spatially close to the above discussed C-terminus region 475-511, 

potentially indicating a more global problem in modeling this area.  
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3.3.4. Refinement of models in the cryo-EM map 

With hundreds of models submitted for cryo-EM targets in CASP, an interesting 

question to study is whether these models can be effectively used as starting points for the 

refinement into the EM map. To examine this, we apply automated refinement protocols to 

best-fitting models, and compare the resulting refined structures with the reference ones. For 

targets T1020o and T0995o, we use PHENIX real-space refinement with default parameters 

(five macro-cycles of global real-space refinement with rotamer, Ramachandran plot, 

secondary structure and Cβ deviation restraints enabled), while for target T0984o we use Flex-

EM25 refinement followed by the PHENIX refinement. Flex-EM refinement was ran with rigid-

bodies set as secondary structure elements. In all cases, the models were refined in their 

entirety, as oligomers.  

Target T1020o: Upon refinement, the highest-scoring model for target T1020o 

(T1020TS004_2o, already analyzed in the previous subsection) shows considerable 

improvement in both the global and local fit (Figure 7). Figure 7A shows the original unrefined 

model (left), the refined model (middle) and the reference structure (right), all fitted to the map. 

It can be easily seen that quality-of-fit improves from left to right, and this is confirmed by the 

goodness-of-fit scores. The global fit score (CCmask) increases from 0.38 (for unrefined model) 

to 0.69 (for refined), stopping less than 0.1 short of the reference structure’s score of 0.78 

(Figure 7B). The local fit score also increases substantially (Figure 7C), with the average per-

residue SMOCf scores rising from 0.47 (unrefined) to 0.64 (refined) and approaching the 

reference structure’s score of 0.70. Inspection of the per-residue SMOCf plot (Figure 7D) shows 

that the refinement improves the local fit of the original model in several regions. Interestingly, 
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in two of the regions (residues 273-285 and 410-425, marked as regions 2 and 5 in panel D) 

the local fit of the refined CASP model is better than that of the reference structure. Figure 7E 

demonstrates more accurate placement of the residues D422 and Y418, where the side chains 

move more into the density after refinement as compared to their positions in the reference 

structure. Furthermore, the refinement results in forming an intra-chain hydrogen bond 

between D422-OD2 and W414-NE1, which is not present in the reference structure. Figure 7D 

also identifies four other regions (residues 222-234, 287-303, 320-340 and 473-512 marked as 

1, 3, 4 and 6, respectively), where the SMOCf scores improves by much, although the fit is still 

worse compared to that of the reference structure (see Figure 7F as an example). Additional 

cycles of refinement in PHENIX cannot improve the fits in these regions. Although not tested 

here, further improvement could potentially be achieved using other tools, such as Coot30. 

Similar results are observed in refining other chains (Supplementary Figure S4).  

Target T0995o: Upon refinement, the highest scoring model for target T0995o, 

TS368_5o (dimeric), improves considerably in both the global and local goodness-of-fit 

(Figure S5). The global fit score (CCmask) increases from 0.48 (for unrefined model) to 0.76 

(for refined), reaching very close to the reference structure’s score of 0.81 (Figure S5A). The 

local fit score also increases substantially (Figure S5B), with the average per-residue SMOCf 

scores rising from 0.54 (unrefined, average over both chains) to 0.71 (refined, average over 

both chains) and approaching the reference structure’s score of 0.72 (average over all chains).  

Target T0984o: For this target, using real-space refinement in PHENIX also 

significantly improves the global fit of the best-fitting model (TS329_1). In particular, the 

CCmask score of the model with the highest fit_score (TS329_1) increases from 0.30 to 0.58 
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(Figure 8A). However, this is still significantly lower than the CCmask for the reference structure 

(0.79). Additionally, the SMOCf curve indicates that large regions of the structure are not 

improved upon refinement (Figure 8B), with an average SMOCf score of 0.51 and 0.58 before 

and after PHENIX-only refinement, respectively. Visual inspection reveals large rigid-body 

shifts relative to the reference structure (e.g. residues 419-559) (Figure 8C). Trying to remedy 

this, we perform real-space flexible fitting with Flex-EM25,31, starting from the best-fitting 

model (TS329_1). The refined model obtained using Flex-EM is then subjected to further 

refinement with PHENIX as before. Although this protocol results in a similar global fit in the 

density as compared to the PHENIX-only refinement, the local fit improves significantly (see 

for example the region corresponding to residues 419-559, Figure 8B), with less shifts and 

distortions of rigid bodies (Figure 8D). The latter is also reflected in the average SMOCf, which 

improves from 0.51 to 0.62 (for both chains).  

Overall, we show here that the refinement of CASP models in their density maps clearly 

helps bringing the models closer to the experimentally-derived reference structures, as judged 

by the overall (multimeric) and per-chain accuracy of the backbone, packing of the side chains 

and similarity of inter-residue distances (Figure 9). Compared to the original CASP13 models, 

the backbone conformation of the refined models improves significantly as the overall 

(multimeric) GDT_TSo score increases by 13-25% (depending on target), and the per-chain 

(monomeric) GDT_TS score increases by 8-22%. The side-chain packing is also improved 

noticeably as quantified by the side-chain only version of the CAD-score (CADss)10. 

Interestingly, side-chain packing is enhanced most (25%) for the target with the smallest 

correction of the backbone (8%, T0995), and least (3%) for the target with the largest correction 
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(22%, T0984). Similarity of models’ distance patterns with respect to the targets’ ones is 

improved for all targets as the after-the-refinement LDDT scores are higher than the before-

the-refinement LDDT scores by 4-12%. Finally, we want to mention that the improvement in 

‘versus the reference structure’ scores does not necessarily translate into improvement of 

MolProbity scores32, which are better for one target (T0984), but worse for the other two. The 

MolProbity scores for the target structures and the refined best CASP models are provided in 

Table S4; the corresponding Ramachandran maps are provided in Figure S6. 

 

4. Discussion 

For the first time in CASP, a sizeable portion of targets (8%) was determined with cryo-

EM. Since cryo-EM structures are typically different from the structures derived by X-ray or 

NMR (for example, in their average size or complexity of quaternary structure), it is interesting 

to evaluate if the target determination technique affects accuracy of models, or performance of 

the predictors. Also interesting is to look at the quaternary structure prediction (although not 

unique to cryo-EM targets), and in particular at the accuracy of interfaces, as at present most 

cryo-EM structures represent large protein assemblies (here 6 out of 7 targets). This paper 

studies these issues and also explores additional assessment approaches specific to cryo-EM 

models /targets. These approaches examine fit of CASP models to the experimental density 

and check utility of the models for the refinement in cryo-EM maps. 

In terms of tertiary structure, the paper demonstrates that in comparison with the 

structures derived by X-ray or NMR, the CASP13 cryo-EM structures are in general harder to 

model on template-based domains and of approximately the same difficulty on free modeling 
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domains. For the free modeling targets, results differ significantly, depending on whether the 

analysis is based on the average scores or maximum scores. Based on the maximum scores the 

results seem to be favorable to cryo-EM targets (i.e. models are of better accuracy), but this 

conclusion is heavily influenced by the outstanding models of one group on one difficult 3-

domain target. It is worth noting that all results reported here should be taken with caution as 

there were significantly fewer cryo-EM targets in all categories of the analysis.  

The rankings of the participating groups on cryo-EM targets are consistent with those 

on all CASP13 targets. The same groups that are leading cryo-EM rankings are the top 

performers on all-target datasets. On the template-based modeling targets, seven groups topped 

the ranking - McGuffin, Zhang, Seok-refine, QUARK, Zhang-Server, A7D and MULTICOM. 

These groups showed statistically similar results. On the free modeling targets, the A7D group 

is an apparent leader, outperforming other groups in a statistically significant manner. Among 

the assembly predictors, the Venclovas group is the best. 

The comparison of different types of scores for top-ranked models shows that models 

that demonstrate the best fit to the cryo-EM density quite often have subpar ‘versus the 

reference’ scores, and vice versa. However, in general the accuracy of the best models and their 

fit to density are correlated well based on both global and local measures. Comparing local 

consensus of different models with fit to the density maps also reveals that structurally 

conserved regions are overall better fitted to experimental data. It should be noted though that 

all fit-to-map analyses are performed here on targets where models are of relatively good 

quality, and therefore the conclusions can be related only to this type of targets.  

Refinement of the submitted CASP models in the experimental density shows that the 
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models could be improved to the point of approaching the quality of the reference structures 

(and beyond in some local structural regions), thus indicating that high-quality models from 

CASP predictors can be a good starting point for structure refinement. This could potentially 

save computer time and reduce the overall effort in reaching a good model. 

  

This article is protected by copyright. All rights reserved.



 
References 

1. Lensink MF, Wodak SJ. CAPRI Evaluation in CASP13. Proteins 2019;This issue. 
2. Guzenko D, Monastyrskyy B, Kryshtafovych A, Duarte J. CASP13 assembly 

evaluation paper. Proteins 2019;This issue. 
3. Kinch L, Monastyrskyy B, Kryshtafovych A. CASP13 domain definition and 

classification. Proteins 2019;This issue. 
4. Kryshtafovych A, Monastyrskyy B, Schwede T, Topf M, Moult J, Fidelis K. CASP 

evaluation measures. Proteins 2019;This issue. 
5. Olechnovic K, Monastyrskyy B, Kryshtafovych A, Venclovas C. Comparative analysis 

of methods for evaluation of protein models against native structures. Bioinformatics 
2018. 

6. Kryshtafovych A, Monastyrskyy B, Fidelis K. CASP prediction center infrastructure 
and evaluation measures in CASP10 and CASP ROLL. Proteins 2014;82 Suppl 2:7-13. 

7. Zemla A. LGA: A method for finding 3D similarities in protein structures. Nucleic 
Acids Res 2003;31(13):3370-3374. 

8. Zemla A, Venclovas, Moult J, Fidelis K. Processing and evaluation of predictions in 
CASP4. Proteins 2001;Suppl 5:13-21. 

9. Mariani V, Biasini M, Barbato A, Schwede T. lDDT: a local superposition-free score 
for comparing protein structures and models using distance difference tests. 
Bioinformatics 2013;29(21):2722-2728. 

10. Olechnovic K, Kulberkyte E, Venclovas C. CAD-score: a new contact area difference-
based function for evaluation of protein structural models. Proteins 2013;81(1):149-
162. 

11. Cong Q, Kinch LN, Pei J, Shi S, Grishin VN, Li W, Grishin NV. An automatic method 
for CASP9 free modeling structure prediction assessment. Bioinformatics 
2011;27(24):3371-3378. 

12. Tramontano A, Morea V. Assessment of homology-based predictions in CASP5. 
Proteins 2003;53 Suppl 6:352-368. 

13. Kryshtafovych A, Monastyrskyy B, Fidelis K, Moult J, Schwede T, Tramontano A. 
Evaluation of the template-based modeling in CASP12. Proteins 2018;86 Suppl 1:321-
334. 

14. Abriata LA, Tamo GE, Monastyrskyy B, Kryshtafovych A, Dal Peraro M. Assessment 
of hard target modeling in CASP12 reveals an emerging role of alignment-based 
contact prediction methods. Proteins 2018;86 Suppl 1:97-112. 

15. Abriata LA, dal Peraro M. CASP13 evaluation of FM targets. Proteins 2019;This issue. 
16. Croll T, Read RJ. Evaluation of template-based models in CASP13. Proteins 2019;This 

issue. 
17. Lafita A, Bliven S, Kryshtafovych A, Bertoni M, Monastyrskyy B, Duarte JM, 

Schwede T, Capitani G. Assessment of protein assembly prediction in CASP12. 
Proteins 2018;86 Suppl 1:247-256. 

This article is protected by copyright. All rights reserved.



18. Bertoni M, Kiefer F, Biasini M, Bordoli L, Schwede T. Modeling protein quaternary 
structure of homo- and hetero-oligomers beyond binary interactions by homology. Sci 
Rep 2017;7(1):10480. 

19. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin 
TE. UCSF Chimera--a visualization system for exploratory research and analysis. 
Journal of computational chemistry 2004;25(13):1605-1612. 

20. Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung 
LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, 
Richardson DC, Richardson JS, Terwilliger TC, Zwart PH. PHENIX: a comprehensive 
Python-based system for macromolecular structure solution. Acta Crystallogr D Biol 
Crystallogr 2010;66(Pt 2):213-221. 

21. Farabella I, Vasishtan D, Joseph AP, Pandurangan AP, Sahota H, Topf M. : a Python 
library for assessment of three-dimensional electron microscopy density fits. J Appl 
Crystallogr 2015;48(Pt 4):1314-1323. 

22. Vasishtan D, Topf M. Scoring functions for cryoEM density fitting. J Struct Biol 
2011;174(2):333-343. 

23. Barad BA, Echols N, Wang RY, Cheng Y, DiMaio F, Adams PD, Fraser JS. EMRinger: 
side chain-directed model and map validation for 3D cryo-electron microscopy. Nat 
Methods 2015;12(10):943-946. 

24. Afonine PV, Klaholz BP, Moriarty NW, Poon BK, Sobolev OV, Terwilliger TC, 
Adams PD, Urzhumtsev A. New tools for the analysis and validation of cryo-EM maps 
and atomic models. Acta crystallographica Section D, Structural biology 2018;74(Pt 
9):814-840. 

25. Joseph AP, Malhotra S, Burnley T, Wood C, Clare DK, Winn M, Topf M. Refinement 
of atomic models in high resolution EM reconstructions using Flex-EM and local 
assessment. Methods 2016;100:42-49. 

26. Kryshtafovych A, Adams PD, Lawson CL, Chiu W. Evaluation system and web 
infrastructure for the second cryo-EM model challenge. Journal of structural biology 
2018;204(1):96-108. 

27. Kryshtafovych A, Monastyrskyy B, Adams PD, Lawson CL, Chiu W. Distribution of 
evaluation scores for the models submitted to the second cryo-EM model challenge. 
Data in Brief 2018;20:1629-1638. 

28. Lawson CL, Chiu W. Comparing cryo-EM structures. Journal of structural biology 
2018;204(3):523-526. 

29. Chen M, Baldwin PR, Ludtke SJ, Baker ML. De Novo modeling in cryo-EM density 
maps with Pathwalking. Journal of structural biology 2016;196(3):289-298. 

30. Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta 
crystallographica Section D, Biological crystallography 2010;66(Pt 4):486-501. 

31. Topf M, Lasker K, Webb B, Wolfson H, Chiu W, Sali A. Protein structure fitting and 
refinement guided by cryo-EM density. Structure 2008;16(2):295-307. 

32. Chen VB, Arendall WB, 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, 
Murray LW, Richardson JS, Richardson DC. MolProbity: all-atom structure validation 
for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 2010;66(Pt 
1):12-21. 

This article is protected by copyright. All rights reserved.



FIGURE LEGENDS 

Figure 1. Relative performance of CASP13 groups in predicting tertiary structure of cryo-EM 

targets. Data are shown for top 12 groups on (A) 15 TBM domains and (B) 6 FM EUs. 

Cumulative Zscores are calculated according to formulas (2) and (3) (see Materials and Methods) 

for TBM and FM targets, correspondingly. Blue and orange bars show the ranking scores 

calculated on first models (M1) and best results (best), correspondingly. Groups are sorted 

according to the first model scores (blue bars).  

 

Figure 2. Relative performance of CASP13 and CAPRI groups in predicting quaternary 

structure of cryo-EM targets. Data are shown for (A) top 12 CASP13 groups for all six 

oligomeric cryo-EM targets and (B) CASP13 and CAPRI groups on four CASP/CAPRI 

oligomeric targets. Cumulative Zscores are calculated according to formula (4) (see Materials 

and Methods). Blue and orange bars show the ranking scores calculated on first models (M1) 

and best results (best), respectively. Groups are sorted according to the best scores (orange 

bars). CAPRI groups in panel B are marked with an asterisk.  

 

Figure 3. Correlation between model-to-map goodness-of-fit scores based on models submitted 

for all seven CASP13 cryo-EM targets. The under-the-diagonal part of the table shows 

Spearman correlation coefficients between each pair of scores. The correlation scores are 

visualized in the upper portion of the table with color and shape (deeper colors and thinner 

ovals relate to higher correlations). Diagonal cells (shaded) show average correlation versus all 

other scores.  
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Figure 4. The global model-to-map fit_score (Eq. 5) versus assembly_score (Eq. 6) for 

CASP13 models submitted for three cryo-EM targets. Each point corresponds to a model. 

Linear trend lines are threaded through the data. The value of the coefficient of determination 

R2 is provided on the graphs.  

 

Figure 5. Local model-to-map goodness-of-fit scores of the highest-scoring chain in the 

reference structure (solid blue line) and the highest-scoring CASP model (dashed blue line) 

versus the local consensus score of all CASP models (red line) for three of the cryo-EM targets. 

Score values for red lines are provided on the left of the plot, and for blue lines – on the right. 

The goodness-of-fit score is represented by the local SMOCf score (the higher the better). The 

inter-model consensus score (the lower the better) is represented by the interquartile range of 

Cα-Cα distances (in Ångstroms) between corresponding residues in top 100 models according 

to the GDT_TS score, after their optimal superposition. The best-fitting models for the shown 

targets are: T0984TS329_1o, T0995TS368_5o and T1020TS004_2o (see 

http://predictioncenter.org/casp13/cryoem_results.cgi). 

 

Figure 6. The best CASP13 model (TS004_2o) for target T1020o fitted in the corresponding 

density map. (A) The best model colored according to the local SMOCf score (scale bar at the 

left). The region marked by a circle is zoomed-in in panel (B); the region marked by a rectangle 

is enlarged in panels (C) and (D), from slightly different spatial perspectives. (B) The 

hydrophobic residues at the trimer interface within the cryo-EM map. (C) Loops 475-478 and 
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220-230 within the density. (C) Helix 479-511 within the density. In panels (B), (C) and (D), 

the best model is colored according to the SMOCf score (red representing bad fit and blue 

representing good fit), and the reference structure is shown in green. 

 

Figure 7. Assessment of the best-fitting model (TS004_2o) for target T1020o before and after 

PHENIX refinement in the cryo-EM map. Blue color in all panels correspond to the unrefined 

model, orange to the refined one, and green to the reference structure. (A) The original model 

(left), the refined model (middle) and the reference structure (right) fitted into the cryo-EM 

map. Regions that are encircled and numbered in the refined model (middle) correspond to the 

numbered regions in panel D. (B) Global CCmask score for the unrefined model, refined model, 

and experimentally-derived structure. (C) Boxplots of per-residue SMOCf scores for chain A 

in the unrefined model, refined model, and target. (D) Per-residue SMOCf scores for chain A 

in the unrefined model, refined model, and target. Shaded strips show most notable areas of fit 

improvement. The pink-shaded strips (#2 and 5) mark areas that improved beyond the target 

structure fit, while the grey-shaded strips (#1, 3, 4 and 6) mark those that improved 

significantly, but remain still worse than the corresponding areas in the target structure. Plots 

for other chains are very similar and shown in Figure S4. (E) A region of the refined model 

that has improved over the reference structure. An intra-chain hydrogen bond between the side-

chains of D422 and W414 in the refined best-fitting model is indicated for chain C. (F) Regions 

in the refined model that are poorly fit to density even after the real-space refinement. 

 

Figure 8. Assessment of the best-fitting model (TS329_1o) for target T0984o before and after 
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refinement in the cryo-EM map using Flex-EM and PHENIX. (A) Global CCmask score for the 

unrefined model (blue), refined model with PHENIX only (pink), refined model with Flex-EM 

and PHENIX (orange), and the experimentally-derived reference structure (green). (B) 

Average SMOCf scores for chain A of the best-fitting model before refinement (blue), after 

PHENIX-only refinement (pink), after Flex-EM and PHENIX refinement (orange), and for the 

reference structure (green). The region corresponding to residues 419-559 is shown in gray 

shade. (C) The fit of the model after PHENIX-only refinement (orange) and the reference 

structure (green) in the cryo-EM map. The zoomed panel shows residues 419-559, which are 

outside of the density after refinement. (D) The fit of the model after Flex-EM refinement 

followed by PHENIX refinement (orange) and the reference structure (green) in the cryo-EM 

map. Region 419-559 is better fit to the density if Flex-EM refinement is applied first. 

 

Figure 9. Improvement in model accuracy as quantified by the multimeric GDT_TSo score and 

monomeric GDT_TS, CADss, LDDT scores for the best-fitting CASP13 models before (grey) 

and after (black) refinement in the cryo-EM map. For uniformity of the graph scale, the 

GDT_TS scores are presented as fractions rather than percentages (i.e., are divided by 100).  
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TABLES 

 

Table 1. Overview of CASP13 cryo-EM targets 

CASP 

ID 
Protein description 

Map 

resol, Å 

Stoi-

chiom 

Length 

mono 

(cmplx) 

Pred 

diffclty 

# 

Dom 
Author 

T0984 

A two-pore calcium channel 

protein playing an important role 

in regulating lysosomal 

membrane potential 

3.4 A2 
752 res  

(1504) 
Easy 2 

Xiaochen Bai, U. Texas 

Southwestern Medical 

Center, Dallas, TX, USA 

T0990 

A virulence factor modulating 

the innate immune response and 

influenza A virus pathogenicity 

4.0 A1 552 Hard 3 

Hong Zhou, 

U. California, Los 

Angeles, CA, USA 

T0995 

A cyanide dehydratase providing 

insight into substrate specificity 

and thermostability 

3.15 A8 
330 

(2640) 
Easy 1 

Bryan T. Sewell, 

U. Cape Town,  

South Africa 

T0996 

A protein likely playing role in 

bacterial outer membrane lipid 

transport 

3.0-3.5 A6 
848 

(5088) 
Medium 7 

Damian Ekiert,  

Skirball Institute, NY, 

USA 

T1020 

An anion channel with an 

important role in plant 

physiology  

3.3 A3 
577 

(1731) 
Easy 1 

Oliver Clarke,  

Columbia U., NY, USA 

H1021 

A part of the anti-feeding 

prophage (AFP) complex, which 

is a contractile ejection system 

varying 

A6 

B6 

C6 

A:149 

B:354 

C:295 

(4788) 

Hard 4 

Ambroise Desfosses, 

Institut de Biologie 

Structurale,  

Grenoble, France 

H1022 

A part of the anti-feeding 

prophage (AFP) complex, which 

is a contractile ejection system 

3.3-3.5 
A6 

B3 

A:229 

B:529 

(2961) 

Hard 3 

Ambroise Desfosses, 

Institut de Biologie 

Structurale,  

Grenoble, France 
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