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Abstract

The carbon isotopic composition of organic matter preserved in marine sediments provides a window into 

the global carbon cycle through geologic time, including variations in atmospheric CO2 levels. Traditional 

models for interpreting isotope records of marine phytoplankton assume that these archives primarily 

reflect kinetic isotope discrimination by the carbon-fixing enzyme RubisCO.   However, some in vivo and 

in vitro measurements appear to contradict this assumption, indicating that significant questions remain 

about the mechanistic underpinning of algal isotopic signatures, including the role of carbon concentrating 

mechanisms (CCMs).  Here, we present a general model to explain photosynthetic carbon isotope 

fractionation (εP) in marine red-lineage phytoplankton groups; the model reproduces existing chemostat and 

batch culture datasets with a normalized root mean squared error (nRMSE) of 6.8%.  Our framework 

proposes that a nutrient- and light-dependent step upstream of RubisCO is a kinetic barrier to carbon 

acquisition and therefore represents a significant source of isotopic fractionation. We suggest this step 

represents a carbon concentrating strategy that becomes favorable to cells under conditions of excess photon 

flux. The primary implications are that RubisCO is predicted to exert minimal isotopic control in photon-

rich, nutrient-limited regimes but becomes influential as growth becomes light-limited. This framework 

enables both environment-specific and taxon-specific isotopic predictions. By refining the mechanistic 

understanding of marine photosynthetic carbon isotope fractionation, we may begin to reconcile existing 

datasets and reexamine Phanerozoic isotope records—including the resulting CO2 reconstructions—by 

emphasizing the influence of different types of resource limitation on photosynthetic carbon acquisition.
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1. Introduction

Accurate interpretations of marine organic carbon isotope records rely on a mechanistic 

understanding of photosynthetic carbon isotope fractionation (εp). Isotopic models for phytoplankton share 

the common goal to understand εp in the context of ambient carbon dioxide concentrations [CO2(aq)] and 

algal physiology (e.g.,Sharkey and Berry, 1985; Laws et al., 1995; Cassar et al., 2006; Schulz et al., 2007; 

McClelland et al., 2017), thereby enabling efforts to reconstruct pCO2 (paleobarometry; Jasper and Hayes, 

1990; Laws et al., 2002; Pagani et al., 2011). The most widely adopted framework consists of a two-step, 

passive-diffusive supply model (Rau et al., 1992; Francois et al., 1993; Goericke et al., 1994; Laws et al., 

1995; Rau et al., 1996) that was adapted from studies on land plants (Farquhar et al., 1982, 1989). This 

model predicts that P depends on the balance between two processes with distinct isotope effects: diffusion 

of CO2 (< 1‰ in water; O’Leary, 1984) and CO2 fixation by the enzyme RubisCO (~2530‰; Table 1). 

When algal growth rates () are low or ambient CO2 concentrations are high, the rate-limiting step is 

presumed to be carbon fixation by RubisCO, and the isotope effect associated with this process sets the 

theoretical maximum value of εP, which is denoted εf (for “fixation”). When instead the supply of CO2 is 

rate-limiting, the fractionation accompanying passive diffusion of CO2 is expressed, defining the minimum 

value of εP.  These endmembers correspondingly define a line that denotes all intermediate conditions.  

Until recently, it has been assumed that the value of εf equals the fractionation measured in vitro 

for RubisCO from higher plants (Table 1; Roeske and O’Leary 1984; Guy et al., 1993; Scott et al., 2004; 

McNevin et al., 2006), adjusted slightly for the effects of anaplerotic reactions (-carboxylations; Francois 

et al., 1993).  This perspective was reinforced by nitrate-limited chemostat experiments with three species 

of eukaryotic phytoplankton that yielded εf values of ~25‰ at the limit of infinite CO2 supply or slow 

growth (Figure 1, Table 1; Popp et al., 1998). However, mounting evidence suggests that this RubisCO-

centric framework must be revisited. RubisCO exists in several catalytically and phylogenetically distinct 

forms in phytoplankton, Forms IA, IB, ID and II (Tabita et al., 2008; Whitney et al., 2011); and in particular, 

the value of RubisCO for the Form ID version in the haptophyte alga Emiliania huxleyi is reported to be only 
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11‰ (Boller et al., 2011). It now seems incorrect to interpret the in vivo f values for algal species having 

Form ID RubisCO by analogy to in vitro measurements of Form IB RubisCO from spinach (Rickaby et al, 

2015; Wilkes et al., 2017; McClelland et al., 2017). 

Indeed, other measurements in addition to Boller et al. (2011) support the suggestion that εf values 

inferred from chemostat experiments do not correspond to εRubisCO values (Table 1; Figure 1). Form ID 

RubisCO purified from the diatom Skeletonema costatum yields a value of εRubisCO of 18.5‰ (Boller et al., 

2015).  Similarly, recent chemostat incubations with a dinoflagellate employing Form II RubisCO indicate 

an εf value of 27‰ in vivo (Alexandrium tamarense; Wilkes et al., 2017).  Although consistent within error 

estimates with the ~25‰ f values for other large “red” plastid lineage algae, this result was surprising 

given the striking differences in catalytic properties, structures, and amino acid sequences between Form I 

and II RubisCOs (Rowan et al., 1996) and also the apparent similarities between dinoflagellate and 

proteobacterial Form II RubisCOs (RubisCO ≈1823‰, Form II; Robinson et al., 2003; McNevin et al., 

2007). Collectively, the observations indicate that εf values for eukaryotes from nitrate-limited chemostat 

experiments are in good agreement with one another, yet they consistently do not equal the kinetic isotope 

effects measured for purified RubisCOs from the most taxonomically similar algal or bacterial source 

(Figure 1, Table 1).

Several additional lines of evidence support a greater diversity in εRubisCO values than previously 

assumed. Observations of variable εRubisCO values are reasonable, because RubisCO’s intrinsic isotope 

discrimination has been linked empirically and mechanistically to the enzyme’s kinetic properties 

(Tcherkez et al., 2006).  McNevin et al. (2007) demonstrated that a single point mutation in the large subunit 

of Form IB RubisCO from tobacco had a dramatic effect, lowering the in vitro fractionation from 27.4‰ 

in the wild-type to 11.2‰ in the mutant.  Characterization of Form ID RubisCO kinetic properties from 11 

diatoms and 3 haptophytes also uncovered unexpected diversity (Young et al., 2016; Heureux et al., 2017).    

Such diversity makes the uniform εf value of ~25-27‰ for eukaryotic phytoplankton surprising and 

suggests the value of εf could, alternatively, reflect some other common process. 
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Here we propose a general theoretical model for εP in marine red-lineage phytoplankton to reconcile 

the apparent contradictions between εf values and εRubisCO measurements, with the aim of unifying existing 

data and models. Our model is tested against a wide range of experimental datasets – including both 

chemostat and batch-culture approaches – and is constructed such that the rate-limiting step for 

photosynthetic carbon fixation varies depending on the balance of nutrient and light availability. This work 

builds upon a long history of modeling and culturing efforts that demonstrate the importance of nutrient 

availability, energy sources, and carbon concentrating mechanisms (CCMs) to the expression of εP (e.g., 

Beardall et al., 1982; Tchernov et al., 1997; Burkhardt et al, 1999a,b; Riebesell et al., 2000a,b; Rost et al., 

2002, 2006; Cassar et al., 2006; Schulz et al., 2007; Hopkinson, 2014; Hoins et al., 2016; Holtz et al., 2017).

The primary innovation of our model is that under nutrient-limited, light-replete conditions (e.g., 

chemostat culture experiments; Popp et al., 1998; Wilkes et al., 2017, 2018), we hypothesize that the rate-

limiting step occurs upstream of RubisCO and accompanies an irreversible conversion of CO2 to HCO3
-. 

Because this reaction is taken to be the rate-limiting process, and because it is proposed to be common to 

red-lineage (larger-celled) marine algae, it can provide a constant discrimination against 13C, regardless of 

taxonomy. 

A common upstream process would mask the variable isotope effects associated with RubisCO, 

unless the cells experience alternate conditions in which RubisCO activity becomes the slow step of carbon 

fixation.  This is proposed to occur under nutrient-replete conditions in which the photon flux rate becomes 

growth-limiting.  We define this as “light-limited”, by which we mean a status of relative limitation and/or 

the presence of excess nutrients rather than an absolute threshold for a specific photon flux. The implication 

is that there are two distinct rate-limiting steps for carbon fixation, with different maximum values for εP at 

the limit of slow  and high [CO2(aq)].  Here we relate our generalized model to existing algal physiology 

models, show how it can explain existing chemostat and batch-culture data, identify plausible cellular 

mechanisms and evolutionary drivers, and consider the implications for interpreting marine εP records in 

the context of paleobarometry.  
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2. Generic Model for Marine Red-Lineage Phytoplankton

2.1 Biological structure

The model uses a simplified cellular architecture to represent a generic, red-lineage algal cell 

consisting of a cytosol, a membrane-bound chloroplast, a network of thylakoids, and a pyrenoid where 

RubisCO is concentrated (Figure 2). The pyrenoid enables buildup of CO2 around RubisCO and discourages 

entry and buildup of O2, which competitively inhibits CO2 fixation. The sites of the light reactions of 

photosynthesis—the thylakoids—are modeled as contacting or penetrating the pyrenoid. Evidence for these 

physical features is broadly distributed across eukaryotic phytoplankton groups (Badger et al., 1998; 

Tachibana et al., 2011; Engel et al., 2015; Meyers et al., 2017), with exception of a small number of cases 

in which the pyrenoid appears to be absent (Ratti et al., 2007; Darienko et al., 2015; Heureux et al., 2017). 

The internal volume of the thylakoid is acidic, while the chloroplast volume surrounding the thylakoid is 

alkaline (Raven, 1997; Höhner et al., 2016).

The model includes passive diffusion of CO2 plus two mechanisms of active carbon acquisition: 

(1) Transport of extracellular HCO3
- through the plasmalemma and chloroplast membranes using 

membrane-bound transporters. Within the chloroplast, carbonic anhydrase (CA) equilibrates 

the HCO3
- with CO2.  We call this the “gamma” () pathway.

(2) Enhanced diffusion or scavenging of CO2 via a putative hydroxylating process that promotes 

the unidirectional conversion of CO2 to HCO3
-. We assume that this process is directly coupled 

to transport of HCO3
- across the thylakoid membrane to suppress the reverse reaction and 

permit accumulation of charged bicarbonate within the thylakoid.  This approach would help 

maintain a CO2 concentration gradient between the extracellular environment and the 

chloroplast by drawing down intracellular CO2. Kinetic conversion of CO2 to HCO3
- would 

also recapture CO2 leaking away from the pyrenoid or accumulating within the chloroplast 

through mechanism (1). In all cases, the final step is the accumulation of CO2 near RubisCO 

by dehydration of the captured HCO3
- by a thylakoid-located CA that penetrates the pyrenoid.  

We call this the “omega” () pathway.
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2.2 Relationship to existing CCM definitions

RubisCO is characterized by a slow maximum catalytic turnover rate and a low affinity for CO2 

(Badger et al., 1998).  These inefficiencies are exacerbated in marine environments by the slow diffusion 

of CO2 in water and by inorganic carbon speciation favoring HCO3
-. Phytoplankton actively regulate the 

CO2 concentration around RubisCO with biophysical and biochemical CCMs to ensure efficient fixation 

(for recent reviews, see Reinfelder, 2011; Griffiths et al., 2017). One implication of this physiology is that 

the concentration of CO2 around RubisCO rarely would be predicted to reflect the concentration of CO2 

outside the cell, a prediction supported by field studies of diatoms (Kranz et al., 2015). Another implication 

is that in the absence of intracellular substructures, the CO2 diffusive gradient between internal and external 

environments generally would be inverted (intracellular [CO2(aq)] > extracellular [CO2(aq)]), an impediment 

to carbon flux unless specific strategies are employed to enhance inward-directed diffusion and/or transport 

(Raven and Beardall, 2015). The model topology used here was designed to reflect these considerations, 

including maintaining high CO2 concentrations around RubisCO (Figure S2). 

Our two active carbon acquisition mechanisms synthesize a variety of experimentally-verified 

CCM components (Table S1) into the two categories of active processes detailed above. In the commonly-

invoked CCMs, CO2 and HCO3
-
 are assumed to only substantially interconvert in the presence of carbonic 

anhydrase, i.e., as in the  pathway (Hopkinson et al., 2016; Mangan et al., 2016). Our model proposes that 

the  pathway is a distinct category of CCM: namely, a transmembrane, photon-energized or 

photosynthetically-enhanced hydroxylation of CO2 to HCO3
-. Unidirectional moieties sharing some of these 

characteristics have been described or modeled in cyanobacteria, green algae, proteobacteria, and land 

plants (Volokita et al., 1984; Fridlyand et al., 1996; Kaplan and Reinhold, 1999; Tchernov et al., 2001; 

Wang and Spalding, 2014; Eichner et al., 2015; Griffiths et al., 2017; Desmarais et al., 2019). 

Other transport mechanisms for HCO3
- are less quantitatively significant. We assume that HCO3

- 

does not diffuse through membranes to any significant extent since cell membranes restrict diffusion of 
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charged species (e.g., Davis, 1958). However, equilibration of HCO3
- with the uncharged species H2CO3 

may supply a minor, passive flux of inorganic carbon through membranes (Mangan et al., 2016). Therefore, 

HCO3
- is permitted to passively transit the membrane-bound cytoplasm and chloroplast as H2CO3 (depicted 

with dotted arrows in Figure 2) but at a rate approximately four orders of magnitude slower than passive 

diffusion of CO2. Default membrane permeability coefficients for both CO2 and HCO3
- (PC and PH)  were 

adopted from Hopkinson et al. (2011), a study which analyzed carbon fluxes in diatoms using membrane 

inlet mass spectrometry and kinetic models of 18O-exchange. Hopkinson et al. (2011) reported 

permeabilities of (3.1 ± 0.4)10-2 cm s-1 and (0.4 ± 1.0)10-6 cm s-1 for P. tricornutum. Coefficients 

optimizing model-measurement agreement were selected from these reported values, within error (PC = 

2.710-2 cm s-1 and PH = 1.410-6 cm s-1). For E. huxleyi, a lower permeability coefficient for CO2 was used 

(PC = 0.8510-2 cm s-1).

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             

2.3. Steady-state flux and isotope balance model

We developed a carbon isotope and flux-balance model following the reaction network approach 

of Hayes (2001). The model is described by coupled, first-order differential equations which are solved for 

steady-state fluxes (), intracellular concentrations of CO2 and HCO3
-, and 13C values using the ODE23s 

integrator in Matlab R2018a (SI Equations 110, 3244; Figure S1). The isotope flux balance includes 11 

carbon pools with defined isotopic compositions and masses, and 26 distinct fluxes between these pools 

(Figure S1; Table S3).

The model includes two tunable parameters to govern the fluxes through the hypothesized 

hydroxylation pathway (ω) and through the bicarbonate transporters (γ). Assigned constants include the 

rate constants for uncatalyzed and catalyzed interconversions of CO2 and HCO3
-, permeability coefficients 

governing the passive transfer of CO2 and HCO3
- through membranes, and intracellular compartment pH 

values (Table S2). Empirical inputs are instantaneous growth rates, particulate organic carbon content per 

cell, cell surface areas and volumes, and the concentrations of CO2 and HCO3 
- in the seawater medium 
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(literature data compiled in Tables S5S8). Thus, photosynthesis is prescribed in our model by experimental 

values, rather than being dynamically determined as a function of [CO2(aq)] in the pyrenoid. Modeled 

concentrations of CO2 and HCO3
- in each compartment (from solving SI Equations 110 to steady-state) 

result from steady-state fluxes between carbon pools. Parameterization of these fluxes is discussed briefly, 

below, and in detail in SI Section S3.

Under conditions of excess light energy, we assume that extra membrane potential is directed to 

hydroxylating CO2 to HCO3
-. Photon fluxes exceeding the requirement to synthesize biomass may intensify 

the pH gradient across the thylakoid membrane, with the light-induced transfer of H+ from water 

accompanied by diversion of OH- for the active hydroxylation of CO2. This process of OH--scavenging 

could serve a photoprotective function or aid intracellular pH regulation, with carbon concentration 

representing an ancillary benefit (see Discussion). Thus, this mechanism is assumed to occur constitutively 

(i.e., even when CO2 is abundant) under nutrient-limited, high-photon conditions, as its primary role would 

be to dispose photosynthetically-driven pH gradients. As the balance of energy and nutrients shifts such 

that nutrients are no longer limiting (light begins to limit growth), we assume that this strategy is less 

induced.  Instead, passive diffusion of CO2 into the pyrenoid will be the dominant mechanism by which 

CO2 accumulates around RubisCO.  Thus, diffusion is predicted to be the sole mode of CO2 entry into the 

pyrenoid in the limit of minimum photon flux.

 We define omega as a unitless parameter ( SI equations 27, 30, 31) to index the balance between 

energized (HYD) or passive (Fce-C; Figure S1) entry of CO2 into the pyrenoid.  This allows us to smoothly 

adjust the model fluxes between the endmember physiological states of relative nutrient limitation vs. 

relative light limitation. Its influence on the fluxes HYD and Fce-C is approximated by Equation 1 (for a 

complete definition, see SI). Values of  approaching 1 imply that CO2 entry into the pyrenoid occurs 

entirely via the hydroxylation mechanism, while values approaching 0 imply passive diffusion of CO2 is 

the exclusive mode of entry into the pyrenoid.

     (1)𝜔 ≈
𝐻𝑌𝐷

𝐻𝑌𝐷 + 𝐹𝑐𝑒 ― 𝐶
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Active HCO3
- uptake at the cell and chloroplast boundaries (U; Figure S1) is permitted by the 

model, but not required; it is treated as a tunable rate. The cell is assumed to employ active uptake processes 

(both HYD and U) as a fixed proportion () of the carbon fixation rate (FIX) for a given taxon and growth 

condition (Equation 2). Thus, the relative flux through the membrane-bound HCO3
- transporters (U) 

depends on , HYD, and FIX, rather than being a constant value. This parameterization implies that when 

 approaches 1 and HYD is maximized, less of the cellular carbon demand will be met through active 

HCO3
- import, since the  hydroxylation pathway is itself a form of CCM. When  approaches 0 (meaning 

HYD is absent), import of HCO3
- will supply more of the actively-acquired inorganic carbon because it will 

be the only available CCM in the cell.  

(2)𝛾 =
(𝑈 + 𝐻𝑌𝐷)

𝐹𝐼𝑋       

2.4. Kinetic isotope effects

The model approximates the kinetic isotope effects (ε) for all carbon transformations as the 

difference between δ values (Hayes, 2001). The model includes isotope effects for RubisCO, carbonic 

anhydrase, and the kinetic hydroxylation and dehydroxylation of CO2 and HCO3
-, respectively. These 

isotope effects are denoted RubisCO, HC, CH, HYD, and DEHYD and are summarized in Table S3.  

The isotope effect associated with RubisCO (RubisCO) is assigned a value between 11.1 and 19.5‰ 

depending on the taxonomic identity of the modeled cell (Table 1). For experiments with coccolithophores 

and diatoms, taxon-specific RubisCO values are available and are adopted directly from the literature (11.1‰ 

and 18.5‰, respectively, Table 1). The isotope effect for dinoflagellate Form II RubisCO has not been 

measured, so dinoflagellates are assumed to have an RubisCO value of 19.5‰, falling within the ranges 

measured for other taxa employing Form II RubisCO, R. rubrum and the Riftia pachyptila endosymbiont 

(Table 1).
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The isotope effect adopted for the unidirectional conversion of CO2 to HCO3
- (HYD) is 25‰.  This 

choice implies an isotope effect of 34‰ for the reverse process (the unidirectional formation of CO2 from 

HCO3
-, εDEHYD, Table S3) because the forward and reverse reactions must be related by the equilibrium 

fractionation (~9‰ at 25C; Zhang et al., 1995; Zeebe, 2014). Several experimental and theoretical studies 

have attempted to determine the uncatalyzed, kinetic (abiotic) fractionation during hydration or 

hydroxylation of CO2 to HCO3
- which might serve as a guideline or bound on these assumptions (Table 

S4). Unfortunately, the available data are inconsistent. The most widely-adopted values for the hydration 

of CO2 is 13‰ (O’Leary et al., 1992; Zeebe and Wolf-Gladrow, 2001). However, the primary reference for 

this value is an experimental study reporting a fractionation of only 6.9‰ for the hydration of CO2 (Marlier 

and O’Leary, 1984). Thus, two values have been cited in reference to the same study, with no explanation 

for the contradiction (c.f., Zeebe, 2014).  Furthermore, all other reported values from experiments and 

theoretical calculations are larger than 13‰, so we assume that this value, and the 11‰ value reported by 

the same group for the analogous hydroxylation reaction, may reflect a problem with back-reactions during 

their experiments. Reversibility (equilibration) is difficult to prevent and would tend to reduce the 

expression of the isotope effect (Sade and Halevy, 2017). Once these numbers are taken out of 

consideration, we select 25‰ as the most parsimonious value, falling within the ~2039‰ range theorized 

for abiotic hydration and hydroxylation reactions based on experiments by other groups and ab initio 

calculations using transition state theory  (Table S4; Siegenthaler and Munnich, 1981; Usdowski et al., 

1982; Clark and Lauriol, 1992; Zeebe and Wolf-Gladrow, 2001; Zeebe, 2014). A similar value (30‰) was 

employed in a carbon-flux study for Trichodesmium as a potential fractionation accompanying the 

cyanobacterial NDH-14 complex, which is also thought to hydrate or hydroxylate CO2 through a potentially 

irreversible mechanism (Eichner et al., 2015).  

 

2.5. Model implementation
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Experimental data for diatoms (2 species), coccolithophores (calcifying and non-calcifying strains), 

and dinoflagellates (2 species within the same genus) were compiled from the literature (Tables S5S8). 

These include nutrient-limited chemostat experiments consolidated from seven sources (Bidigare et al., 

1997; Laws et al., 1997; Popp et al., 1998; Cassar, 2003; Hoins et al., 2016; Wilkes et al., 2017, 2018), as 

well as batch cultures of the same species, compiled from an additional seven sources (Burkhardt et al., 

1999a,b; Riebesell et al., 2000a,b; Rost et al., 2002; Hoins et al., 2015, 2016).  

Empirical model input parameters were defined according to measurements reported in these 

studies (Tables S5S8) and include the instantaneous growth rate (i), corresponding to carbon fixation 

during the photoperiod (Riebesell et al., 2000a, b), and the particulate organic carbon per cell (POC). 

Together, these two inputs define the carbon-specific growth rate, FIX = iPOC, which accounts for 

differences in diel cycle and cellular carbon content between studies (Rost et al., 2002).  Experiment-

derived inputs also include cell surface area (SA), the concentrations of CO2 and HCO3
- in the medium, and 

reported εp values. In some cases, detailed in Tables S5S8, these inputs were calculated using empirical 

relationships when direct measurements were not reported. 

3. Results

3.1 Behavior of the generalized model for P

First, we demonstrate the general behavior of the model (Figures 3, 4; Figures S35) by examining 

its isotopic endmembers and their underlying physiology.  Figure 3 presents several example scenarios 

using parameters for the coccolithophore, E. huxleyi, to show how net fluxes and resulting P values 

correspond to different conditions of , , and [CO2(aq)] (see also Figures S3 and S4). In all scenarios 

depicted, the concentration of CO2 in the pyrenoid either is similar to, or significantly exceeds, external 

[CO2].  Furthermore, the concentrations in the pyrenoid can be enhanced beyond external [CO2] in all 

scenarios by increasing the active uptake of bicarbonate into the cell (parameter  ). Figure 4 presents the 
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full model P response for the dinoflagellate, A. tamarense, as well as for E. huxleyi, over a range of 

/[CO2(aq)] conditions.  The P response for the diatom, P. tricornutum, is shown in Figure S5.   

Under high light, nutrient-limited growth, the model generates intercepts of 25‰ for all taxa 

because this number reflects the full expression of the isotope effect associated with the hydroxylation 

mechanism (condition d, Figure 3; Figure 4). Physiologically, this endmember represents slow  and/or 

high [CO2(aq)], under conditions of high photosynthetic activity ( = 1). This intercept manifests when 

virtually all the CO2 entering the chloroplast leaks back out again, permitting continuous replenishment of 

12CO2 around the hypothesized hydroxylating enzyme. 

By contrast, the model predicts a diversity of maximum P values during nutrient-replete growth 

under conditions of light limitation ( < 1), such as in batch culture experiments. When  is slow 

(corresponding to the lowest photon flux densities, PFD, E m-2 s-1), condition a (Figure 3) reflects the full 

expression of the isotope effect associated with each taxon-specific RubisCO, and different taxa are 

predicted to have different intercepts (Figure 4). In this scenario, CO2 enters the pyrenoid solely by passive 

diffusion, and subsequently most leaks out, again due to slow growth () and/or high [CO2(aq)].

As the ratio /[CO2(aq)] increases (conditions b, c, and e, Figure 3; Figure 4), the slope and curvature 

of the P relationship reflect the ratio of inorganic carbon leaking from the chloroplast relative to the gross 

inorganic carbon flux into the chloroplast.  If CO2 enters and leaves by diffusion alone, P is a linear function 

of the ratio /[CO2(aq)]. Because [CO2(aq)] in the chloroplast equals [CO2(aq)] outside the cell, P solely reflects 

the balance between two rate-limiting steps with distinct kinetic isotope effects: passive diffusion of CO2 

in water (~0‰) and either fixation by RubisCO (11-30‰, Table 1) or hydroxylation by HYD (25‰, Table 

S3). If instead active pumping of HCO3
- into the cell is significant (a relatively high  value), P is a 

curvilinear function of the ratio /[CO2(aq)] because dehydration of HCO3
- in the chloroplast changes the 

internal concentration of CO2 compared to the extracellular environment. When external [CO2(aq)] is low, 

[CO2(aq)] in the chloroplast is higher (as enabled by HCO3
- import and subsequent equilibration using CA), 

and a larger fractionation is expressed than would be predicted based on passive diffusion alone. In both 
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cases, however, the most important control on P  is whether the standing stock of CO2 inside the chloroplast 

(but external to the thylakoids and pyrenoid) experiences RubisCO or HYD as the rate-limiting step, and 

how much of this CO2 subsequently leaks out of the cell—not whether the carbon atoms fixed into biomass 

were originally sourced from a pool of HCO3
- versus CO2. 

The predicted isotopic behavior also is influenced by the permeability coefficients for CO2 and 

HCO3
- (PC and PH; Figure 4). Adjusting PC and PH would influence the trajectory of P values when plotted 

as a function of i/CO2 in a manner similar to adjusting the value of  (compare dashed vs. solid lines in 

Figure 4). Thus, either permeabilities or active import of bicarbonate could be treated as tunable parameters 

in our model. We treat PC and PH as fixed parameters, constrained by measurements of passive (dark) fluxes 

in the diatom P. tricornutum (Hopkinson et al., 2011) to minimize the degrees of freedom in the model. 

3.2 Simulation of chemostat and batch culture data

Figures 58 show model fits to literature data. Experiments were included only where growth was 

limited specifically by nitrate or phosphate (Bidigare et al., 1997; Laws et al., 1997; Popp et al., 1998; 

Cassar, 2003; Hoins et al., 2016; Wilkes et al., 2017, 2018) or light (Burkhardt et al., 1999a,b; Riebesell et 

al., 2000a,b; Rost et al., 2002; Hoins et al., 2015, 2016), rather than another resource. Species were selected 

if both nutrient-limited chemostat and light-limited batch culture data were available; the exception is P. 

glacialis, for which there are no batch culture experiments for comparison.  The batch culture data were 

sorted further into groups based on light intensity and diel cycle length (separated by lines in Tables S4 

S7).

When i, [CO2(aq)], [HCO3
-], POC, and SA are known from experiments, the only free parameters 

in the model are  and .  To simulate the data,  and  were optimized for each experiment (nutrient 

availability, light intensity, and diel cycle combination) to minimize the sum of the squared residuals 

between modeled and measured P values. We emphasize that these parameters were optimized by 

experimental condition rather than data point by data point: a single value of  was selected for a given 
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species and growth rate limiting resource (e.g., all experiments with P. tricornutum grown in light-limited 

batch cultures are represented by a single value of ). Values of  were permitted to vary between 0 and 1 

and were optimized by light condition (e.g., all experiments with E. huxleyi grown at PFD = 80 and a 16:8 

L:D cycle are fitted using a single value of ). The optimal values of  generally increase with increasing 

photon flux density and daylength for each taxon (Figures 58). All resulting fits for  and  are reported 

in Table S9 and in the captions for Figures 58.

More data are available for the diatom P. tricornutum (n = 66) and the haptophyte E. huxleyi (n = 

56) than for other taxa. These are also the datasets that yielded the best agreement between modeled and 

measured P values (Figures 5 and 6). The model reproduces the curvature of the P values for the P. 

tricornutum chemostat experiments with respect to i/[CO2(aq)] (Figure 5b) and the steeper P responses of 

the more strongly light-limited batch cultures (Figure 5e). It predicts that active HCO3
- import will comprise 

0.6  52% of the gross carbon fluxes entering at the cell boundary for the chemostat experiments and 

3  44% for the batch cultures (Figure S6).  For E. huxleyi, the model predicts P values in good agreement 

with all datasets (Figure 6), except it fails to fully reproduce the shallow slope of the lowest light condition 

(PFD = 30; 16:8; n = 4; modeled  = 0.70). The model predicts a gross HCO3
- import of 0.8  3.8% for the 

E. huxleyi chemostat experiments, and a range of 5  51% for the batch cultures (Figure S6). 

The taxa with smaller data sets (Alexandrium spp., n = 13 and P. glacialis, n = 7) show poorer 

agreement between modeled and measured P values (Figures 7 and 8). The model effectively reproduces 7 

of the 9 data points from nitrate-limited chemostat cultures of Alexandrium. The model does not require 

any HCO3
- import to explain the Alexandrium chemostat experiments, but it can accommodate low levels 

of gross HCO3
- import (< 10%) and still produce reasonable model fits.  The model predicts HCO3

- import 

of 10  49% of the gross carbon influx for the batch cultures of Alexandrium (Figure S6). For P. glacialis, 

bicarbonate import is predicted to account for 10  44% of the gross carbon fluxes entering the cell (Figure 

S6).
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3.3 Assessing model performance

The model is most effective at predicting P values for E. huxleyi, with a normalized root mean 

squared error (nRMSE) of 6.4% across all batch and chemostat culture data (n = 56). The combined P. 

tricornutum datasets (n = 66) also are reproduced well (nRMSE of 7.2%). The full set of Alexandrium 

experiments has a larger error (nRMSE of 22.5%) but omitting the two outliers brings this error down to 

5.2%. The model is least effective at predicting P values for P. glacialis (nRMSE of 25.9%).  Among the 

combined data (n = 140; after excluding the two Alexandrium outliers), the greatest deviation between 

modeled and empirical P is an 8.6‰ overestimation for one of the chemostat experiments with P. glacialis. 

Overall, the model reproduces the 140 experiments with an average nRMSE of 6.8% and R2 = 0.89 (Figure 

9). The model is best at predicting P values at low and intermediate values of the ratio /[CO2(aq)]. It is less 

effective at predicting P values in the higher ranges of /[CO2(aq)], possibly because in these ranges growth 

rates are actually limited by CO2 availability rather than light or nutrient delivery, representing a distinct 

physiological state not encompassed by our model.

4. Discussion

While molecular and physiological evidence indicates that phytoplankton deploy a wide range of 

CCMs to ameliorate the kinetic limitations of RubisCO, the details of these mechanisms, their isotopic 

expression under natural environmental conditions, and their relevance to geochemical signatures of global 

carbon cycling are still debated (Reinfelder, 2011, Matsuda et al., 2011, Bolton and Stoll, 2013, Pagani 

2014, Hopkinson et al., 2016, Stoll et al., 2019). Here we assume that the dominant processes influencing 

organic carbon signatures in marine red-lineage phytoplankton can be captured by a single, simplified 

carbon isotope flux-balance model, because in chemostat culture studies, representatives from three red-

lineage clades with different RubisCOs and life strategies (including presence and absence of 

biomineralization) display similar isotopic responses to µ/[CO2(aq)] (Figure 1).  Our model posits the 

importance of a catalyzed process capable of drawing down intracellular CO2 to maintain an inward-

directed diffusional gradient and/or to channel inorganic carbon directly to RubisCO in the pyrenoid.  We 
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further suggest that this mechanism is distinct from a conventional carbonic anhydrase (CA), and instead 

propose it is intimately coupled to the thylakoid and its associated, photosynthetically-activated membrane 

potential.

The primary advantage of such a framework is its ability to explain four major observations: (1) f 

values, inferred from the intercepts of in vivo measurements, do not match in vitro measurements of  RubisCO, 

(2) P values respond to cellular surface area and volume (SA/V), consistent with a primarily diffusive mode 

of CO2 acquisition and loss from/to the extracellular environment, (3) the availability of nutrients and light 

affects the expression of P, and (4) virtually all eukaryotic phytoplankton taxa are known to use CCMs. 

Therefore, it can provide a simple and general mechanistic explanation for why—in aggregate—algal 

paleobarometry has a largely taxon-independent response (e.g., Plancq et al., 2012, Witkowski et al., 2018).

4.1 Influence of light and nutrient conditions on εp

A variety of light- and nutrient-dependent mechanisms previously have been invoked to explain 

the variable responses of εp between chemostat (nutrient-limited) and batch (light-limited) culture 

conditions. The largest values of εp (25-27‰) occur in chemostat experiments. It has been suggested that 

complementary light-limited batch experiments may converge with these data (i.e., form a single curve) 

after accounting for variations in instantaneous- and cell-specific growth rates (Rost et al., 2002).  However, 

for most datasets, differences persist even after applying these corrections, and thus there must be other 

influences on εp. 

One additional factor may be the proportion of cyclic to linear electron flow. Large εp values had 

been interpreted to result from CO2 saturation and leakage around a RubisCO with a large εf  value (~25 to 

27‰; e.g., Popp et al., 1998, Riebesell et al., 2000a, Cassar et al., 2006, Hoins et al., 2016), where CO2 

saturation was thought to be promoted by an undefined, but ATP-dependent, CCM (Riebesell et al., 2000a, 

Cassar et al., 2006). Because relative ATP levels are enhanced through cyclic electron flow, large εp values 

have been explained as resulting from an ATP-driven, CO2-pumping CCM localized to the chloroplast 
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(Riebesell et al., 2000a, Cassar et al., 2006). However, this explanation warrants re-examination due to the 

recent discovery that cyclic electron flow contributes negligibly to photosynthesis and the regulation of 

ATP/NADPH in diatoms (Baullier et al., 2015).  It also warrants re-examination because RubisCO is not 25 

to 27‰ for any of the planktonic taxa measured to-date.

Instead, rates of active carbon acquisition (net CCM-like activity) are known to be enhanced by 

light and thus responsive to the balance of energy and nutrients (e.g., Hopkinson et al., 2011, 2014; Yamano 

et al., 2010; Mitchell et al., 2014, 2017).  Such regulation has been proposed to mediate the expression of 

εp (e.g., Hopkinson et al., 2011; Hopkinson, 2014). Our generalized model adapts and simplifies this idea 

by introducing the parameter  to quantify a postulated light-dependent hydroxylation. Its unidirectional 

nature and physiological association with the thylakoid membrane imply that such a “photo-CCM” directly 

connects the light reactions of photosynthesis with the dark reactions of CO2 fixation.  

4.2 Reconciling existing CCM models: cellular mechanisms and evolutionary pressures 

A generalized strategy of photocatalytic hydroxylation is plausible among red-lineage eukaryotic 

phytoplankton because light-dependent pH gradients within cells provide uniform physiological pressures 

that could support the convergent evolution of enzymes and/or cofactors catalyzing this process. When cells 

are illuminated, an electric field is generated across the thylakoid membrane. While this gradient is used by 

ATP synthase to produce ATP, an additional, direct role in carbon concentrating mechanisms also has been 

speculated (Pronina and Borodin, 1993; Raven, 1997, 2014; Thoms et al., 2001; Moroney and Ynalvez, 

2007; Kikutani et al., 2016; Holtz et al., 2017; Matsuda et al., 2017).  The alkaline chloroplast stroma is 

naturally suited for hydroxylation reactions, while the acidic thylakoid lumen and its proximity to the 

pyrenoid would favor protonation and dehydration of accumulated HCO3
- near RubisCO (Raven, 1997; 

Thoms et al., 2001; Sinetova et al., 2012). This possibility is supported by the recent discovery of lumen-

localized, θ-CAs in diatoms (Kikutani et al., 2016), which are analogous to the α-CAs found in the lumen 

of freshwater green algae (Table 2) and suggest convergent evolution of CCM function of the thylakoid 
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lumen among eukaryotic phytoplankton (Matsuda et al., 2017; Tsuji et al., 2017; Griffiths et al., 2017). 

Moreover, a thylakoid-energized CCM would take advantage of an intrinsic feature of oxygenic 

photosynthesis: namely, it would allow cells to exploit their access to an unlimited supply of electron donor 

to simultaneously improve their ability to access carbon. 

Light-enhanced carbon fluxes are known in other contexts.  Light-enhanced calcification is well-

established for corals and foraminifera (Cohen et al., 2016) and has been documented for E. huxleyi 

(Barcelos e Ramos et al., 2012).  Carbonate production and calcification are thought to serve as 

supplementary pathways, used to dissipate electrochemical gradients that are generated when excess light 

is harvested. Similarly, photorespiration appears to respond to excess light in plants and phytoplankton 

(Parker et al., 2004). These examples point to the universality of light involvement in regulating carbon 

fluxes within cells.

Another driver for the evolution of a photo-CCM may be protection from photodamage. Cells have 

evolved numerous strategies to deal with excess photon flux,  and these strategies may include enhanced 

active uptake of HCO3
- or the energized interconversion of HCO3

- and CO2 specifically to consume excess 

ATP or proton gradients (Tchernov et al., 1997, 2001, 2003; Kaplan and Reinhold, 1999; Tchernov and 

Lipschultz, 2008; Eichner et al., 2015).  Kaplan and Reinfeld (1999) speculate that these energy disposal 

mechanisms could have originated early in phytoplankton evolution before decreases in CO2 levels became 

physiologically limiting and were only subsequently adapted for carbon acquisition. An ancient origin could 

explain why this energized mechanism could exist within multiple eukaryotic clades. 

By contrast, spontaneous reaction cannot be invoked directly as the source of a unidirectional 

source of HCO3
- to the thylakoid lumen (Zeebe and Wolf-Gladrow, 2001; Schulz et al., 2006; Mangan et 

al., 2016). The abiotic hydroxylation of CO2 is kinetically very slow, with a rate constant for the uncatalyzed 

conversion of CO2 to HCO3
- of 4  10-2 s-1 (298.15 K, Salinity = 35; Schulz et al., 2006), ca. 106 slower 

than a typical carbonic anhydrase (Bundy, 1986; Hopkinson et al., 2011).  Thus, our model proposes that 

CO2 import and conversion to HCO3
- by the photo-CCM must be catalyzed. 
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One possibility is that this process occurs via non-enzymatic catalysis (Keller et al., 2015), a 

strategy that might be more favorable for the cell when nitrogen for protein synthesis is scarce. However, 

the more likely possibility is that non-enzymatic catalysis has provided a template for the selective evolution 

of enzymes. In Chlamydomonas, the LCIB/LCIC protein complex structurally resembles a -CA (Jin et al., 

2016). This complex is hypothesized to convert CO2 to HCO3
-, potentially with active regulation that 

minimizes subsequent dehydration (Wang and Spalding, 2014; Jin et al., 2016). Cyanobacteria also have 

an analogous strategy. The NAD(P)H dehydrogenase (NDH-1) complexes of cyanobacteria are essential 

for CO2 uptake, are coupled to cyclic electron flow around photosystem I, and are expressed in a light-

dependent manner (Ogawa, 1992; Ogawa and Mi, 2007). Some of these complexes are thought to catalyze 

the conversion of CO2 to HCO3
- (Volokita et al., 1984; Kaplan and Reinhold, 1999; Tchernov et al., 2001; 

Eichner et al., 2015), potentially rendering the process irreversible through the transport of a proton across 

the thylakoid membrane (Maeda et al., 2002; Price et al., 2002; Zhang et al., 2004). Unlike in our model, 

cyanobacteria appear to exhibit no physical cooperation between the thylakoid and the cyanobacterial 

analogue of the pyrenoid—the carboxysome—so the resulting HCO3
- accumulates in the cytosol. This 

difference in cellular architecture may help to explain why the cyanobacterium Synechococcus, grown in 

chemostat cultures, displays a markedly different pattern of isotopic fractionation compared to the 

eukaryotes studied (Popp et al., 1998; Figure S7).  Although specific involvement of NDH in hydroxylation 

remains unknown for red-lineage phytoplankton such as diatoms and haptophytes, a functional homologue 

of this enzyme or the LCIB protein may be utilized.  Our invoked hydroxylation step is similar to previously 

proposed roles for CAs (e.g., the “chloroplast pump model”; Hopkinson, 2014), but with the important 

distinctions that it would be irreversible and would respond directly to photon flux.   

Available genomic and physiological evidence indicates that the other CCM components invoked 

in our model—namely the association of the thylakoids with the pyrenoid, plus collocated CAs—have 

evolved multiple discrete times in phytoplankton. For example, new phytoplanktonic CAs, lacking 

sequence homology to known forms but with similar activities, are still being discovered (Kikutani et al., 

2016; Jin et al., 2016; Hopkinson et al., 2016; Shen et al., 2017; Jensen et al., 2019).  Yet, collectively, the 
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behavior of P in cultures and in the marine record is surprisingly coherent, indicating that in most cases the 

similar physiological functions of these convergently-evolved CCMs reduce to a common set of isotopic 

consequences. 

4.3 Physiological predictions of the model

Increases in photon flux correspond to an increase in the relative amount of the hydroxylation 

reaction (higher ). This implies an increase in CO2 availability at RubisCO compared to predictions based 

on passive diffusion alone (e.g., Rau et al., 1996). Physiologically, this implies that P will get larger at a 

given [CO2(aq)], due to greater expression of HYD relative to RubisCO. Such reasoning can explain the apparent 

conundrum that P values in light-limited, nutrient-rich batch cultures of E. huxleyi become larger when 

growth rates are increased by lengthening the photoperiod or by increasing the light source intensity (Rost 

et al., 2002): the directional change in P is an increase due to higher , while the concomitant, -induced 

increase in internal CO2 supply also increases  (and therefore /[CO2(aq)]).  In batch cultures of P. 

tricornutum, P also appears to increase with increasing growth rates in response to a longer daylength or 

increased light intensity; however, the pattern is less pronounced (Riebesell et al., 2000). This taxonomic 

difference may be explained by the larger isotope effect associated with diatom RubisCO (18.5‰) 

compared to E. huxleyi (11‰): the diatom RubisCO value is closer to the HYD endmember (25‰), making 

-induced changes in P more difficult to resolve. 

In chemostat cultures, growth rate is controlled by the delivery of nutrients, so excess light can be 

directed to hydroxylation to meet carbon demand at all growth rates. In the model, this is indexed as ω  1 

(a constant), and the slow step of carbon acquisition is always predicted to have  = 25‰. This means that εf

P always will decrease with increasing growth rates, consistent with measurements from chemostat cultures 

(Popp et al., 1998; Wilkes et al., 2017).  

The model also predicts the relative fluxes of CO2 and HCO3
- across the cell membrane, which 

have been the focus of many studies of algal physiology (e.g., Colman et al., 2002, Tchernov et al., 2003, 
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Hoins et al., 2016b). For most of the taxa and culture conditions considered in this study, we find that HCO3
- 

import is predicted to represent an increasing percentage of gross inorganic carbon uptake as [CO2(aq)] 

declines (Figure S6). This uptake is sometimes accompanied by a net efflux of CO2 from the cell, an 

outcome consistent with measurements using membrane-inlet mass spectrometry (MIMS) which can 

occasionally show a net efflux of CO2 (Tchernov et al., 2003). Physiologically, a net efflux of CO2 in our 

model implies that the  pathway is recapturing and directly channeling imported carbon to RubisCO in 

the pyrenoid, rather than facilitating diffusive CO2 entry at the cell boundary. This prediction about the  

pathway is consistent with a growing consensus in the literature asserting the importance of thylakoid-based 

CCMs for CO2 recapture around RubisCO (Matsuda et al., 2017; Tsuji et al., 2017; Griffiths et al., 2017). 

However, the model’s prediction of net CO2 efflux for some experimental conditions disagrees with 

a significant body of other MIMS measurements indicating a predominantly net influx of inorganic carbon 

into phytoplankton cells (e.g., Hopkinson et al., 2011; Hoins et al., 2016b). The disagreement between some 

of our model results (predicted net efflux) and these studies (predicted net influx) may indicate that our 

assumptions about fixed permeability coefficients or  values across growth conditions are too rigid. If 

different membrane permeabilities or  values are adopted for different taxa or growth conditions, our 

predictions for the significance of HCO3
- import and CO2 influx vs. efflux change. For example, increasing 

PC from 0.0085 to 0.027 cm s-1 for E. huxleyi in chemostat cultures also produces an excellent model fit but 

requires a more prominent role for bicarbonate import and associated efflux of CO2, whereas decreasing PC 

below 0.0085 would decrease bicarbonate import and promote CO2 influx.  Matsui et al. (2018) recently 

demonstrated that even in P. tricornutum, for which permeability coefficients have been measured, 

aquaporins can be expressed in a nitrogen- and CO2-dependent manner, altering the permeability of the cell 

to CO2.  Moreover, Mangan et al. (2016) demonstrate that membrane permeabilities to HCO3
- are likely 

dynamic, influenced by pH gradients across membranes. Thus, permeability measurements for more taxa 

acclimated to a wider range of growth conditions would help to clarify the best choices for these model 
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parameters and reconcile outstanding questions regarding the importance, energetic efficiency, and 

regulation of HCO3
- import.  

5. Conclusions: Implications for interpreting paleoenvironmental conditions

The experimentally determined relationship, P_maximum = εf ≈ 25‰, influences both the 

paleoenvironmental and the evolutionary conclusions drawn from paired organic and inorganic carbon 

isotope records.  Estimates of P for the Phanerozoic consistently do not exceed this value (Hayes et al., 

1999; Witkowski et al., 2018), which has been argued to establish an upper limit of sensitivity of P to 

changes in CO2 concentrations that is ~8-10 times pre-industrial atmospheric levels, or ~2200 ppm CO2 

(e.g., Freeman, 2001; Freeman and Pagani, 2005; Pancost et al., 2013). Within this framework, any 

variability in sedimentary P records would imply that pCO2 is below 2200 ppm, regardless of the algal 

taxonomic source or nutrient environment (Freeman, 2001).  Conversely, if temporal records of P are 

approximately 25‰ and do not vary, this would argue that atmospheric pCO2 is above the threshold of 

sensitivity.

The model presented here suggests another cause for variations in P values, even under high pCO2 

atmospheres: a relative limitation of growth by photon flux. In this resource condition, P values would still 

scale directly with pCO2, but the maximum value of P, even at the limit of very high CO2, would be 

influenced by the taxonomic identity of the phytoplankton contributing to carbon export and burial, as well 

as how and where they grow. This may help to reconcile apparent contradictions in the sedimentary record. 

For example, it may help to explain time intervals (e.g., the Cambrian through the Devonian, or the late 

Jurassic) when geochemical models predict pCO2 exceeded 2200 ppm globally (Berner and Kothavala, 

2001), yet reconstructed P values are < 25‰ and show variability (Hayes et al., 1999, Kuhn, 2007, Pagani, 

2014, Witkowski et al., 2018). Variations in P during these times might reflect enhanced nutrient 

availability coinciding with major ecological transitions, including the diversification and radiation of 

coccolithophores and dinoflagellates during the Jurassic (Wiggan et al., 2018). Alternatively, P variability 
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might simply reflect changes in habitat depth within the photic zone and/or other physical factors affecting 

the rate of photon flux.  

In the modern ocean, nutrient conditions influence p values through associated changes in  

(Bidigare et al., 1997; Pagani, 2014). In our model, the distinction is that when nutrients are replete or light 

availability is low, the maximum expression of p becomes dependent on RubisCO, which has taxonomic 

variability. While accounting for both taxonomy and resource limitation certainly complicates 

interpretation of the sedimentary record, it also adds a dimension of predictive power with respect to 

prevailing growth conditions. For example, where P records do reach a maximum of 25‰, this implies 

both high ambient CO2 levels and a resource environment low in nutrients (i.e., oligotrophy).

Field studies in the modern environment demonstrate these points. For example, our model suggests 

a revised explanation for why modern coastal diatoms growing in upwelling zones are relatively 13C-

enriched, even though [CO2(aq)] is higher in upwelling zones compared to offshore regions or gyres (Pancost 

et al., 1997, Rau et al., 2001, Tolosa et al., 2008).  Their values of  may be near zero and f may be 

approaching RubisCO.  The result would be greater 13C enrichment regardless of the uncertain or variable 

extent of active HCO3
- uptake (Fry and Wainright, 1991, Pancost et al., 1997; Tolosa et al., 2008; Hansman 

and Sessions, 2015). Conversely, to illustrate the nutrient-limited principle, modern haptophyte algae 

growing in oligotrophic waters produce P values as large as ~19‰ (Laws et al., 2001; Tolosa et al., 2008; 

Pagani, 2014), clearly exceeding the 11‰ value of RubisCO.  

The best examples of P approaching RubisCO may be the present-day Peru upwelling zone. Here, 

alkenone-based P values from nitrate-replete waters correlate with [CO2(aq)] and reach a maximum 

measured value of 11.2‰ under the highest CO2 condition (~29 mol kg-1; Bidigare et al., 1997; Pancost 

et al. 1997). This is in excellent agreement with the ~11‰ value of RubisCO for E. huxleyi (Boller et al., 

2011), which would be predicted to be the dominant isotopic control as 0 in this high nutrient flux 

setting. Simultaneously, diatom P values (from diatom biomarkers; Pancost et al., 1997), exhibited P 

values with a less well-defined relationship to CO2, but reaching a maximum value of 19.3‰. This agrees 
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with the in vitro isotope effect for diatom RubisCO (18.5‰). Nearly all of the diatom and alkenone-based 

P measurements from this location are smaller than would be predicted using the classic εP  = εf – µ/[CO2(aq)] 

equation applied to the ambient conditions (Laws et al., 1995; Pancost et al., 1997). Thus, the Peru 

upwelling results can be understood in terms of the influence of RubisCO on the expression of P in these 

low- conditions.

Contrasting with the Peru data, alkenone-derived εP values from oligotrophic systems are large 

(~1419‰), even though [CO2(aq)] in these systems is lower than in the Peru upwelling zone (Bidigare et 

al., 1997; Tolosa et al., 2005). Our model predicts that this is due to a greater relative flux through the 

hydroxylation mechanism (higher ), i.e., εP is controlled primarily by  and . 

Overall, our generalized phytoplankton model can account for the important features of carbon 

isotope fractionation in red-lineage eukaryotic phytoplankton, both in cultures and in the environment. It 

incorporates CO2 levels, algal physiology, and consensus observations from the literature regarding CCMs. 

The model performs better with accurate estimates of cellular surface area and volume, indicating that 

strategies for measuring these parameters from the geologic record and modern ocean are important. To 

this end, new approaches that involve analyzing organic matter bound to size-sorted fossilized components 

of phytoplankton (e.g., the silica frustules of diatoms, the calcite liths of coccolithophores, or the organic 

cysts of dinoflagellates; Mejía et al., 2017; Sluijs et al. 2017; Wilkes et al., 2018) are being developed. 

However, our model introduces clear endmember predictions that are independent of these considerations 

in the limit as /CO2  0, potentially providing information about multiple facets of past environments 

(CO2, growth conditions, and/or algal community composition). The model also provides a physiological 

explanation for why pCO2 approaches appear to work in some contexts yet yield ambiguous results in 

others. 

It also is essential to explore whether the isotopic patterns invoked here can be extended to green-

lineage phytoplankton, picoeukaryotes, and other taxa that are not yet adequately represented by in vivo 

and in vitro carbon isotope studies. This will permit assessment of P values earlier in Earth history. Our 
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model underscores the need to know the isotope effects associated with algal RubisCOs in vitro—both to 

test the hypothesis underpinning our model and to interpret the marine isotope record in high-nutrient 

environments.  However, overall, the mechanisms for control of p suggested here point to the central 

importance of understanding carbon uptake, transformation, and intracellular sequestration. These 

processes may respond directly to photosynthetic activity in aquatic organisms via links between the 

energetics of photosynthesis and the uptake of inorganic carbon.  
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Tables & Figures

Table 1. Compiled εRubisCO and εf values for different RubisCO forms. 

RubisCO Biological Organism
εRubisCO 
(‰) Reference

εf
(‰) Reference

Form Source Type (in vitro) (in vivo)

IA Solemya velum 
symbiont γ-Proteobacterium 24.5 Scott et al. (2004) 

Prochlorococcus 
marinus MIT9313 Cyanobacterium 24 Scott et al. (2007) 

Synechococcus sp. Cyanobacterium   17 Popp et al. 
(1998)

IB Spinacia oleracea Higher Plant 2630

Roeske & O’Leary 
(1984); Guy et al. 
(1993); Scott et al. 
(2004); McNevin et al. 
(2006)



Gossypium Higher Plant 27.1 Wong et al. (1979) 

Nicotiana tabacum Higher Plant 27.4 McNevin et al. (2007)
Synechococcus PCC 
6301a Cyanobacterium 2122 Guy et al. (1993); 

McNevin et al. (2007) -

ID Emiliania huxleyi Coccolithophore 11.1 Boller et al. (2011) 25 Bidigare et 
al. (1997)

Skeletonema 
costatum Diatom 18.5 Boller et al. (2015) 

Phaeodactylum 
tricornutum Diatom   25 Laws et al. 

(1997)

Porosira glacialis Diatom   25 Popp et al. 
(1998)

II Riftia pachyptila 
symbiont γ-Proteobacterium 19.5 Robinson et al. (2003) 

Rhodospirillum 
rubrum α-Proteobacterium 1823

Roeske & O’Leary 
(1985); Guy et al. 
(1993); McNevin et al. 
(2007)



Alexandrium 
tamarense

Peridinin-containing 
Dinoflagellate   27 Wilkes et al. 

(2017)
a Freshwater cyanobacterium. PCC 6301 is a strain synonym for Anacystis nidulans and Synechococcus PCC 6301.
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Figure Captions

Figure 1. Comparison of εRubisCO values measured in vitro with εf values determined in vivo. The data 

show the ~25‰ intercept (εf values) that result from plotting P as a function of μ/[CO2(aq)] for eukaryotic 

phytoplankton grown in nitrate-limited chemostats. Lines represent geometric mean regression analysis. 

Black squares indicate the diatom Phaeodactylum tricornutum (Form ID RubisCO; Laws et al., 1997); dark 

grey triangles, calcifying and non-calcifying clones of the coccolithophore Emiliania huxleyi (Form ID 

RubisCO; Bidigare et al., 1997); light grey circles, dinoflagellate Alexandrium tamarense (Form II 

RubisCO; Wilkes et al., 2017); white diamonds, diatom Porosira glacialis (Form ID RubisCO; Popp et al., 

1998). Ranges of εRubisCO measured in vitro (purified enzyme) are shown on the left side of the figure for 

RubisCO forms IA, IB, ID, and II (data, Table 1), with boxes shaded to correspond to the most similar 

chemostat-grown species.  

Figure 2. Model structure.  Dashed arrows indicate passive (diffusive) fluxes, thick solid arrows indicate 

either active transport processes or enzymatic conversions, and thin solid arrows indicate uncatalyzed 

chemical conversions. The invoked enzymes are RubisCO, carbonic anhydrase (CA), and a putative 

enzyme or other non-enzymatic process catalyzing the active hydroxylation of CO2 to HCO3
- (HYD). The 

interaction of photons with the thylakoid membrane is shown with a jagged arrow near the process of 

hydroxylation. 

Figure 3. Net fluxes and isotopic compositions as a function of ω. (a-e) Carbon fluxes for a generic algal 

cell for the five (/CO2) conditions highlighted in blue in Figure S3; C = CO2; H = HCO3
-. The cell is 

assumed to have an εRubisCO value of 11‰. The parameter , governing active bicarbonate uptake, is 

uniformly assigned a value of 1.5 (except for case (c), in which  = 10).  The arrow widths and directions 

are scaled to represent net fluxes, with wider arrows corresponding to larger fluxes. Dotted grey arrows are 

used to represent non-zero fluxes that are several orders of magnitude smaller than the thinnest black 
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arrows. The relative isotopic compositions and CO2 concentrations of the carbon pools are illustrated with 

the shading of each carbon pool or cellular compartment: darker blue corresponds to a higher degree of 13C 

enrichment and darker grey corresponds to a higher [CO2(aq)].  Interconversion of CO2 and HCO3
- by CA is 

bidirectional; here the unidirectional arrows (e.g., Hc→Cc) show only the net, not gross, fluxes. Gross fluxes 

are depicted in a corresponding supplementary figure, S4. (f) εP vs. /CO2 outcomes for cases a-e.

Figure 4. Behavior of the generalized model for A. tamarense (a, b, c) and E. huxleyi (d, e, f). Panels 

show the model sensitivity to parameters , γ, PC, PH, and empirical inputs representative of each taxon. 

The dinoflagellate A. tamarense was modeled with RubisCO = 19.5‰, SA = 4300 m2, V = 26500 m3, POC 

= 3500 pg C cell-1, and default membrane permeability coefficients of PC = 2.7010-2 cm s-1 and PH = 

1.410-5 cm s-1; [CO2(aq)] was varied from 0.25 to 150 mol kg-1 and i was uniformly assumed to equal 0.1 

d-1. The coccolithophore E. huxleyi was modeled with RubisCO = 11.1‰, SA = 88 m2, V = 77 m3, POC = 

8.3 pg C cell-1, and default membrane permeability coefficients of PC = 0.8510-2 cm s-1 and PH = 1.410-5 

cm s-1 ; [CO2(aq)] was varied from 0.5 to 100 mol kg-1 and i was uniformly assumed to equal 0.4 d-1. (a, 

d) Influence of the parameter γ, controlling the flux of actively imported HCO3
-: high γ = 4.5 (solid lines) 

for both taxa vs. low γ = 3 for A. tamarense and 1.8 for E. huxleyi (dashed lines).   (b, e) All cell and culture 

parameters are identical to (a, d), except γ is held constant at the taxon-specific “low” value and membrane 

permeabilities to CO2 are varied: high PC = 2.7010-2 cm s-1 (solid lines) or low PC = 0.8510-2 cm s-1 

(dashed lines). (c, f) All cell and culture parameters are identical to (b, e), except membrane permeabilities 

to HCO3
-
 are varied: high PH = 1.410-5 cm s-1 (solid lines) or low (default; Table S1) PH = 1.410-6 cm s-1 

(dashed lines).  

Figure 5.  Modeled vs. measured P values for the diatom P. tricornutum. (a) Measured P values from 

nitrate and phosphate-limited chemostat cultures (Cassar, 2003; Laws et al., 1997) (b) Modeled P values, 
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with  = 3.8 and ω = 1.0. (c) Comparison of modeled vs. measured P values from (a) and (b). (d) Measured 

P values from nutrient-replete batch cultures (Riebesell et al., 2000a; Burkhardt et al., 2000a,b). (e) 

Modeled P values with  = 5.0 and ω = 0.04 –0.89 (listed in the legend). (f) Comparison of modeled vs. 

measured P values for (d) and (e). The horizontal dashed lines correspond to RubisCO = 18.5‰ (in vitro; 

Table 1). Results are detailed in TableS9. 

Figure 6. Modeled vs. measured P values for the haptophyte E. huxleyi (a) Measured P values from 

nitrate-limited chemostat cultures (Bidigare et al., 1997; Wilkes et al., 2018). (b) Modeled P values, with 

 = 1.8 and ω = 1.0. (c) Comparison of modeled vs. measured P values from (a) and (b). (d) Measured P 

values from nutrient-replete batch cultures (Riebesell et al., 2000b; Rost et al., 2002). (e) Modeled P values 

with  = 4.5 and ω = 0.70 – 0.99 (listed in the legend). (f) Comparison of modeled vs. measured P values 

from (d) and (e). The horizontal dashed lines correspond to RubisCO =  11.1‰ (in vitro; Table 1). Results 

are detailed in Table S9. 

Figure 7. Modeled vs. measured P values for Alexandrium dinoflagellate species (a) Measured P 

values from nitrate-limited chemostat cultures (Hoins et al., 2016; Wilkes et al., 2017). (b) Modeled P 

values, with  = 1.02 and ω = 1.0.  (c) Comparison of modeled vs. measured P values from (a) and (b). The 

linear fit omits the two outliers (circled). (d) Measured P values from nutrient-replete batch cultures (Hoins 

et al., 2015). (e) Modeled P values with  = 4.3 and ω = 0.99. (d) Comparison of modeled vs. measured P 

values from (d) and (e), omitting the two outliers circled in (a). The horizontal dashed lines correspond to 

RubisCO = 19.5‰ (in vitro; Table 1). Results are detailed in Table S9.

Figure 8. Modeled vs. measured P values for the diatom P. glacialis. (a) Measured P values from 

nitrate-limited chemostat cultures (Popp et al., 1998). (b) Modeled P values, with  = 30 and ω = 1.0. (c) 

Comparison of modeled vs. measured P values from (a) and (b).  Results are detailed in Table S9.
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Figure 9. Modeled vs. measured P values for all taxa and conditions (n = 140). This fit omits the two 

dinoflagellate data points (circled in Figure 7). 
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Tables & Figures

Table 1. Compiled εRubisCO and εf values for different RubisCO forms. 

RubisCO Biological Organism
εRubisCO 
(‰) Reference

εf
(‰) Reference

Form Source Type (in vitro) (in vivo)

IA Solemya velum 
symbiont γ-Proteobacterium 24.5 Scott et al. (2004) 

Prochlorococcus 
marinus MIT9313 Cyanobacterium 24 Scott et al. (2007) 

Synechococcus sp. Cyanobacterium   17 Popp et al. 
(1998)

IB Spinacia oleracea Higher Plant 2630

Roeske & O’Leary 
(1984); Guy et al. 
(1993); Scott et al. 
(2004); McNevin et al. 
(2006)



Gossypium Higher Plant 27.1 Wong et al. (1979) 

Nicotiana tabacum Higher Plant 27.4 McNevin et al. (2007)
Synechococcus PCC 
6301a Cyanobacterium 2122 Guy et al. (1993); 

McNevin et al. (2007) -

ID Emiliania huxleyi Coccolithophore 11.1 Boller et al. (2011) 25 Bidigare et 
al. (1997)

Skeletonema 
costatum Diatom 18.5 Boller et al. (2015) 

Phaeodactylum 
tricornutum Diatom   25 Laws et al. 

(1997)

Porosira glacialis Diatom   25 Popp et al. 
(1998)

II Riftia pachyptila 
symbiont γ-Proteobacterium 19.5 Robinson et al. (2003) 

Rhodospirillum 
rubrum α-Proteobacterium 1823

Roeske & O’Leary 
(1985); Guy et al. 
(1993); McNevin et al. 
(2007)



Alexandrium 
tamarense

Peridinin-containing 
Dinoflagellate   27 Wilkes et al. 

(2017)
a Freshwater cyanobacterium. PCC 6301 is a strain synonym for Anacystis nidulans and Synechococcus PCC 6301.
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Figure Captions

Figure 1. Comparison of εRubisCO values measured in vitro with εf values determined in vivo. The data 

show the ~25‰ intercept (εf values) that result from plotting P as a function of μ/[CO2(aq)] for eukaryotic 

phytoplankton grown in nitrate-limited chemostats. Lines represent geometric mean regression analysis. 

Black squares indicate the diatom Phaeodactylum tricornutum (Form ID RubisCO; Laws et al., 1997); dark 

grey triangles, calcifying and non-calcifying clones of the coccolithophore Emiliania huxleyi (Form ID 

RubisCO; Bidigare et al., 1997); light grey circles, dinoflagellate Alexandrium tamarense (Form II 

RubisCO; Wilkes et al., 2017); white diamonds, diatom Porosira glacialis (Form ID RubisCO; Popp et al., 

1998). Ranges of εRubisCO measured in vitro (purified enzyme) are shown on the left side of the figure for 

RubisCO forms IA, IB, ID, and II (data, Table 1), with boxes shaded to correspond to the most similar 

chemostat-grown species.  

Figure 2. Model structure.  Dashed arrows indicate passive (diffusive) fluxes, thick solid arrows indicate 

either active transport processes or enzymatic conversions, and thin solid arrows indicate uncatalyzed 

chemical conversions. The invoked enzymes are RubisCO, carbonic anhydrase (CA), and a putative 

enzyme or other non-enzymatic process catalyzing the active hydroxylation of CO2 to HCO3
- (HYD). The 

interaction of photons with the thylakoid membrane is shown with a jagged arrow near the process of 

hydroxylation. 

Figure 3. Net fluxes and isotopic compositions as a function of ω. (a-e) Carbon fluxes for a generic algal 

cell for the five (/CO2) conditions highlighted in blue in Figure S3; C = CO2; H = HCO3
-. The cell is 

assumed to have an εRubisCO value of 11‰. The parameter , governing active bicarbonate uptake, is 

uniformly assigned a value of 1.5 (except for case (c), in which  = 10).  The arrow widths and directions 

are scaled to represent net fluxes, with wider arrows corresponding to larger fluxes. Dotted grey arrows are 
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used to represent non-zero fluxes that are several orders of magnitude smaller than the thinnest black 

arrows. The relative isotopic compositions and CO2 concentrations of the carbon pools are illustrated with 

the shading of each carbon pool or cellular compartment: darker blue corresponds to a higher degree of 13C 

enrichment and darker grey corresponds to a higher [CO2(aq)].  Interconversion of CO2 and HCO3
- by CA is 

bidirectional; here the unidirectional arrows (e.g., Hc→Cc) show only the net, not gross, fluxes. Gross fluxes 

are depicted in Supplementary Figure S4. (f) εP vs. /CO2 outcomes for cases a-e.

Figure 4. Behavior of the generalized model for A. tamarense (a, b, c) and E. huxleyi (d, e, f). Panels 

show the model sensitivity to parameters , γ, PC, PH, and empirical inputs representative of each taxon. 

The dinoflagellate A. tamarense was modeled with RubisCO = 19.5‰, SA = 4300 m2, V = 26500 m3, POC 

= 3500 pg C cell-1, and default membrane permeability coefficients of PC = 2.7010-2 cm s-1 and PH = 

1.410-5 cm s-1; [CO2(aq)] was varied from 0.25 to 150 mol kg-1 and i was uniformly assumed to equal 0.1 

d-1. The coccolithophore E. huxleyi was modeled with RubisCO = 11.1‰, SA = 88 m2, V = 77 m3, POC = 

8.3 pg C cell-1, and default membrane permeability coefficients of PC = 0.8510-2 cm s-1 and PH = 1.410-5 

cm s-1 ; [CO2(aq)] was varied from 0.5 to 100 mol kg-1 and i was uniformly assumed to equal 0.4 d-1. (a, 

d) Influence of the parameter γ, controlling the flux of actively imported HCO3
-: high γ = 4.5 (solid lines) 

for both taxa vs. low γ = 3 for A. tamarense and 1.8 for E. huxleyi (dashed lines).   (b, e) All cell and culture 

parameters are identical to (a, d), except γ is held constant at the taxon-specific “low” value and membrane 

permeabilities to CO2 are varied: high PC = 2.7010-2 cm s-1 (solid lines) or low PC = 0.8510-2 cm s-1 

(dashed lines). (c, f) All cell and culture parameters are identical to (b, e), except membrane permeabilities 

to HCO3
-
 are varied: high PH = 1.410-5 cm s-1 (solid lines) or low (default; Table S1) PH = 1.410-6 cm s-1 

(dashed lines).  
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Figure 5.  Modeled vs. measured P values for the diatom P. tricornutum. (a) Measured P values from 

nitrate and phosphate-limited chemostat cultures (Cassar, 2003; Laws et al., 1997) (b) Modeled P values, 

with  = 3.8 and ω = 1.0. (c) Comparison of modeled vs. measured P values from (a) and (b). (d) Measured 

P values from nutrient-replete batch cultures (Riebesell et al., 2000a; Burkhardt et al., 2000a,b). (e) 

Modeled P values with  = 5.0 and ω = 0.04 –0.89 (listed in the legend). (f) Comparison of modeled vs. 

measured P values for (d) and (e). The horizontal dashed lines correspond to RubisCO = 18.5‰ (in vitro; 

Table 1). Results are detailed in Table S9. 

Figure 6. Modeled vs. measured P values for the haptophyte E. huxleyi (a) Measured P values from 

nitrate-limited chemostat cultures (Bidigare et al., 1997; Wilkes et al., 2018). (b) Modeled P values, with 

 = 1.8 and ω = 1.0. (c) Comparison of modeled vs. measured P values from (a) and (b). (d) Measured P 

values from nutrient-replete batch cultures (Riebesell et al., 2000b; Rost et al., 2002). (e) Modeled P values 

with  = 4.5 and ω = 0.70 – 0.99 (listed in the legend). (f) Comparison of modeled vs. measured P values 

from (d) and (e). The horizontal dashed lines correspond to RubisCO =  11.1‰ (in vitro; Table 1). Results 

are detailed in Table S9. 

Figure 7. Modeled vs. measured P values for Alexandrium dinoflagellate species (a) Measured P 

values from nitrate-limited chemostat cultures (Hoins et al., 2016; Wilkes et al., 2017). (b) Modeled P 

values, with  = 1.02 and ω = 1.0.  (c) Comparison of modeled vs. measured P values from (a) and (b). The 

linear fit omits the two outliers (circled). (d) Measured P values from nutrient-replete batch cultures (Hoins 

et al., 2015). (e) Modeled P values with  = 4.3 and ω = 0.99. (d) Comparison of modeled vs. measured P 

values from (d) and (e), omitting the two outliers circled in (a). The horizontal dashed lines correspond to 

RubisCO = 19.5‰ (in vitro; Table 1). Results are detailed in Table S9.
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Figure 8. Modeled vs. measured P values for the diatom P. glacialis. (a) Measured P values from 

nitrate-limited chemostat cultures (Popp et al., 1998). (b) Modeled P values, with  = 30 and ω = 1.0. (c) 

Comparison of modeled vs. measured P values from (a) and (b).  Results are detailed in Table S9.

Figure 9. Modeled vs. measured P values for all taxa and conditions (n = 140). This fit omits the two 

dinoflagellate data points (circled in Figure 7). 
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