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ABSTRACT

The combined detection of a binary neutron-star merger in both gravitational waves (GWs) and elec-

tromagnetic (EM) radiation spanning the entire spectrum – GW170817 / AT2017gfo / GRB170817A

– marks a breakthrough in the field of multi-messenger astronomy. Between the plethora of modeling

and observations, the rich synergy that exists among the available data sets creates a unique opportu-

nity to constrain the binary parameters, the equation of state of supranuclear density matter, and the

physical processes at work during the kilonova and gamma-ray burst. We report, for the first time,

Bayesian parameter estimation combining information from GW170817, AT2017gfo, GRB170817 to

obtain truly multi-messenger constraints on the tidal deformability Λ̃ ∈ [302, 860], total binary mass

M ∈ [2.722, 2.751]M�, the radius of a 1.4 solar mass neutron star R ∈ [11.3, 13.5]km (with additional

0.2 km systematic uncertainty), and an upper bound on the mass ratio of q ≤ 1.27, all at 90% con-

fidence. Our joint novel analysis makes use of new phenomenological descriptions of the dynamical

ejecta, debris disk mass, and remnant black hole properties, all derived from a large suite of numerical

relativity simulations.

1. INTRODUCTION

The combined detection of a GW event, GW170817 (Ab-

bott et al. 2017a), a gamma ray burst (GRB) of short

duration, GRB170817A (Abbott et al. 2017b) accompa-

nied by a non-thermal afterglow, and thermal emission

(“kilonova”) at optical, near-infrared, and ultraviolet

wavelengths, AT2017gfo (e.g. Abbott et al. (2017c); Ar-

cavi et al. (2017); Coulter et al. (2017); Lipunov et al.

(2017); Soares-Santos et al. (2017); Tanvir et al. (2017);

Valenti et al. (2017) from a binary neutron star (BNS)

merger has enabled major leaps forward in several re-

search areas. The latter include new limits on the

equation of state (EOS) of cold matter at supranuclear

densities (e.g. De et al. (2018); Abbott et al. (2018a);

Radice et al. (2018c); Coughlin et al. (2018); Margalit &

Metzger (2017)). One of the main goals of the nascent

field of “multi-messenger astronomy” is to obtain com-

plementary observations of the same object or event.

These observations, potentially across a variety of wave-

lengths and particle types, probe different aspects of the

system. In the case of GW170817, GW detectors such
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as LIGO and Virgo provide a highly accurate measure-

ment of the binary chirp massM = 1.186M�, but leave

the mass ratio, q, poorly constrained.

A variety of studies over the last year focused on

the properties of this first detection of a BNS system,

including detailed analyses of the GW signal by the

LVC (e.g. Abbott et al. (2017a, 2018b,a,c)) and exter-

nal groups (e.g. De et al. (2018); Finstad et al. (2018);

Dai et al. (2018)), relying on different parameter esti-

mation techniques and a variety of GW models. Despite

this diversity of methods, all of the published works pre-

dict small tidal deformabilities, favoring relatively soft

EOSs and placing upper limits on the radii of NSs. For

this first BNS system the GW analyses broadly agree,

and studies indicate that systematic errors are below

the statistical errors (Abbott et al. 2018b; Dudi et al.

2018; Samajdar & Dietrich 2018). However, this might

not be the case for future GW observations with larger

signal-to-noise ratios, thus emphasizing the need for fur-

ther improvements in the current infrastructure and GW

modeling.

Fortunately, deficiencies in the available GW informa-

tion can sometimes be supplemented with EM obser-

vations, potentially improving the measurements of key

parameters. For instance, the results of numerical rel-
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Figure 1. Flow chart of the analysis showcasing how the analysis of GW170817, AT2017gfo, and GRB170817A. At the bottom
of the panel, we show KDE posterior distributions of the tidal deformability (left panel) and the mass ratio (right panel). The
final multi-messenger result is shown as a shaded region, where the 90% confidence interval is shaded darker. For the mass
ratio, we assume a 90% upper limit and for the tidal deformability we mark the 5 and 95 percentiles.

ativity simulations were used to argue against the EOS

being too soft, as the mass of the remnant accretion disk

and its associated wind ejecta would be insufficient to

account for the luminosity of the observed kilonova, e.g.,

Radice et al. (2018a); Bauswein et al. (2017); Coughlin

et al. (2018). Combining GW and EM observations thus

provides an opportunity to independently constrain the

binary parameters, place tighter bounds on the EOS,

and obtain a better understanding of the physical pro-

cesses and outcomes of BNS mergers.

One of the first multi-messenger constraints on the

tidal deformability and supranuclear EOS was presented

in Radice et al. (2018c). Based on numerical relativity

(NR) simulations, the authors proposed that the tidal

deformability needs to be Λ̃ ≥ 400 to ensure that a sig-

nificant fraction of matter was either ejected from the

system or contained within a debris disk around the BH

remnant to explain the bright EM counterpart. Re-

cently, Radice & Dai (2018) updated this first analy-

sis and obtained constraints on the tidal deformability

of Λ̃ ∈ (323, 776) and on the corresponding radius of a

1.4M� neutron star of 12.2+1.0
−0.8 ± 0.2 km, performing a

multi-messenger parameter estimation incorporating in-

formation from the disk mass (Radice et al. 2018b). Ki-
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uchi et al. (2019) also show that the possibility of higher

mass ratio systems arguing for an even lower bound,

Λ̃ ≥ 242. We note that this bound of Λ̃ ≥ 242 will

be perfectly consistent with the 90% confidence interval

which we will find in our work considering that only 7%

of the dataset of Kiuchi et al. (2019) will not fall without

our confidence interval.

To the best of our knowledge, Coughlin et al. (2018)

presented the first analysis of the lightcurves and spec-

tra of AT2017gfo linking with a Bayesian analysis the

kilonova properties to the source properties of the bi-

nary. We used the kilonova model of Kasen et al. (2017)

combined with methods of Gaussian Process Regression

(GPR, Doctor et al. (2017); Pürrer (2014); Coughlin

et al. (2018)), and related a fraction of the ejected ma-

terial to dynamical ejecta. Based on the analysis, the

tidal deformability was limited to Λ̃ > 197.

In addition, there have been studies placing limits on

the maximum NS mass of a stable TOV star, MTOV.

Those studies are orthogonal to the works constraining

the tidal deformability since both quantities (Λ̃,MTOV)

test different parts of the NS EOS. Margalit & Metzger

(2017) places a 90% upper limit on the mass of a non-

rotating NS of 2.17M�, Rezzolla et al. (2018) report

a maximum TOV mass of 2.160.17
0.15M�, Shibata et al.

(2017) provide an estimate for the maximum mass of

2.15− 2.25M�. Recently, Shibata et al. (2019) revisited

these constraints and found that the mass might only

be constrained within . 2.3M�. All these constraints

have been derived by assuming the formation of a BH

after the merger of GW170817 and incorporating the

measured chirp mass inferred from the GW analysis.

Since our analysis was performed before the most recent

constraints became available, we employ the maximum

mass derived in Margalit & Metzger (2017), we also note

that our results are only weakly sensitive to this choice;

see the discussion below and the supplementary material

for more details.

While overall many analyses of GW170817 and its

electromagnetic signatures have been presented in

the literature, we will present here the first to com-

bine information from all three channels: GW170817,

GRB170817A, and AT2017gfo. Our work makes use of

more available knowledge than employed in any previ-

ous multi-messenger analyses. In particular, our final

posteriors describe the observed GW signature, the

lightcurve data of AT2017gfo, and explain the proper-

ties of GRB170817A. The flowchart in Fig. 1 highlights

the interplay between the different observable signa-

tures and presents the joint posteriors obtained on the

tidal deformability Λ̃, the binary mass ratio q, and the

maximum mass of a stable non-rotating neutron star

MTOV.

2. ANALYSIS

2.1. GW170817

We begin by analyzing GW170817 (blue shaded region

of Fig. 1) and use the publicly available “low spin” poste-

rior samples (https://dcc.ligo.org/LIGO-P1800370, Ab-

bott et al. (2018c)). As these sample use the sky local-

ization obtained from EM observations, they already in-

corporate EM information. Under the assumption that

the merging objects are two NSs described by the same

EOS (De et al. 2018; Abbott et al. 2018a), we can further

restrict the posterior distribution. For this purpose, we

use the posterior samples of Carson et al. (2019) where

a same spectral EOS representation for both stars is

employed. Finally, we discard those systems with view-

ing angles which are inconsistent with the ones obtained

from the GRB afterglow by van Eerten et al. (2018).

2.2. AT2017gfo

In the second phase of our work, we analyze the light

curves of AT2017gfo (red shaded region in Fig. 1). We

fit the observational data (Coughlin et al. 2018; Smartt

et al. 2017; Abbott et al. 2017c) with the 2-component

radiative transfer model of Kasen et al. (2017). The us-

age of multiple components, proposed prior to the dis-

covery of GW170817 (Metzger & Fernández 2014), is

motivated by different ejecta mechanisms contributing

to the total r-process yields of BNS mergers. The first

type of mass ejection are “dynamical ejecta” generated

during the merger process itself. Dynamical ejecta are

typically characterized by a low-electron fraction when

they are created by tidal torque, but the electron frac-

tion can extend to higher values (and thus the lan-

thanide abundance be reduced) in the case of shock-

driven ejecta. In addition to dynamical ejecta, disk

winds driven by neutrino energy, magnetic fields, vis-

cous evolution and/or nuclear recombination (e.g. Kohri

et al. (2005); Surman et al. (2006); Metzger et al. (2008);

Dessart et al. (2009); Perego et al. (2014); Siegel et al.

(2014); Just et al. (2015)) leads to a large quantity of

ejecta, which in many cases exceeds that of the dynam-

ical component. The ejecta components employed in

our kilonova light curve analysis are related to these

different physical ejecta mechanisms: the first ejecta

component is assumed to be proportional to dynami-

cal ejecta, mej,1 = α−1 mdyn, while the second ejecta

component arises from the disk wind and is assumed

to be proportional to the mass of the remnant disk,

mej,2 = ζ mdisk. By fitting the observed lightcurves with

the kilonova models (Kasen et al. 2017) within a GPR
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framework (Coughlin et al. 2018), we obtain for each

component posterior distributions for the ejecta mass

mej, the lanthanide mass fraction Xlan (related to the

initial electron fraction), and the ejecta velocity vej.

The values of mej, Xlan, and vej obtained from our

kilonova analysis are related to the properties of the bi-

nary and EOS using new phenomenological fits to nu-

merical relativity simulations, which we briefly described

below. First, we revisit the phenomenological fit pre-

sented in Radice et al. (2018b) between the disk mass

and tidal deformability Λ̃ to correlate the disk mass,

mdisk, to the properties of the merging binary. Simu-

lations following the merger aftermath suggest that the

disk mass is accumulated primarily through radial redis-

tribution of matter in the post-merger remnant. Thus,

the lifetime of the remnant prior to its collapse is related

to its stability and found to strongly correlate with the

disk mass (Radice et al. 2018a). We find that the life-

time in turn is governed to a large degree by the ratio of

M/Mthr, where M is the total binary mass and Mthr is

the threshold mass (Bauswein et al. 2013) above which

the merger results in prompt (dynamical timescale) col-

lapse to a black hole, which depends on the NS com-

pactness and thus Λ̃. Therefore, M/Mthr, rather than

Λ̃ alone, provides a better measure of the stability of

the post-merger remnant, and following the arguments

above, is expected to correlate with mdisk.
Fig. 2 shows, based on the suite of numerical relativity

simulations of Radice et al. (2018b), that there indeed
exists a relatively tight correlation between the accretion
disk mass and M/Mthr. For our analysis, we will use

log10 (mdisk [Mtot/Mthr]) =

max

(
−3, a

(
1 + b tanh

[
c−Mtot/Mthr

d

]))
, (1)

with Mthr(MTOV, R1.6M�) as discussed in Bauswein

et al. (2013) and the supplementary material, to describe

the disk mass. The fitting parameters of Eq. (D9) are

a = −31.335, b = −0.9760, c = 1.0474, d = 0.05957.

Connecting the NS radius to the chirp mass and tidal

deformability, R =M(Λ̃/a)1/6 (De et al. 2018), we con-

clude that the disk mass (and thus the disk wind ejecta)

is a function of the tidal deformability, total binary

mass, and the maximum TOV mass, MTOV. Therefore,

both information, those on the densest portion of the

EOS, which controls MTOV, and those from lower den-

sities, as encoded in Λ̃ or R1.6M�, play a role in control-

ling the disk mass and kilonova properties. The inclu-

sion of these parameters and slight changes in the func-

tional form of the phenomenological relation decrease

the average fractional errors by more than a factor of

3 relative to previous disk mass estimates based on Λ̃

alone (Radice et al. 2018a), thus reducing uncertainties
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Figure 2. Disk masses as a function of the ratio between the
total mass and the threshold mass for prompt BH formation.
The disk mass estimates are obtained from the numerical rel-
ativity simulations presented in Radice et al. (2018b). The
errorbars refer to (0.5mdisk + 5 × 10−4M�) as stated in the
original work of Radice et al. (2018b). The threshold mass
for prompt BH formation is computed following Bauswein
et al. (2013). We present our best fit, Eq. (D9), in the
top panel and show the absolute and fractional errors of the
phenomenological fit in the middle and bottom panel. We
compare our results with the original version of the fit pre-
sented in Radice et al. (2018b).

and errors on the EOS constraints obtained from kilo-

nova observations.
Another key ingredient in our analysis is the role of

the dynamical ejecta as the first kilonova ejecta com-
ponent. Based on a suite of numerical relativity sim-
ulations obtained by different groups and codes, Diet-
rich & Ujevic (2017) derived the first phenomenologi-
cal fit for the dynamical ejecta for BNS systems. This
fit (in its original or upgraded version) has been em-
ployed in a number of studies, including the analysis of
GW170817 (Abbott et al. 2017d; Coughlin et al. 2018),
and they have been updated in Coughlin et al. (2018)
and Radice et al. (2018b). Here, we present a further
upgrade which incorporates the new numerical relativ-
ity dataset of Radice et al. (2018b) and uses the fitting
function of Coughlin et al. (2018) (which fits log10mdyn

instead of mdyn). The extended dataset contains a total
of 259 numerical relativity simulations. The final fitting
function is

log10 m
fit
dyn =

[
a

(1− 2 C1)M1

C1
+ b M2

(
M1

M2

)n

+
d

2

]
+[1↔ 2],

(2)
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with a = −0.0719, b = 0.2116, d = −2.42, and

n = −2.905 and C1,2 denoting the compactnesses of the

individual stars, a more detailed discussed can be found

in the supplementary material.
A final ingredient in relating observational data to the

binary parameters are phenomenological fits for the BH
mass and spin. One finds that with an increasing total
mass M , the final black hole mass and angular momen-
tum increases almost linearly. For unequal mass merg-
ers, MBH and χBH decrease with M . Considering the
imprint of the EOS, we find that for larger values of Λ̃,
the final black hole mass decreases, which follows from
the observation that the disk mass increases with Λ̃. We
finally obtain:

MBH = a
( ν

0.25

)2
(
M + b

Λ̃

400

)
(3)

with a = 0.980 and b = −0.093 and

χBH = tanh
[
aν2(M + b Λ̃) + c

]
(4)

with a = 0.537, b = −0.185, and c = −0.514; further

details are given in the supplementary material.

In addition to using these fits, we use the results of

Margalit & Metzger (2017), who derive a 90% upper

limit on the mass of a non-rotating NS of 2.17M� based

on energetic considerations from the GRB and kilonova

which rule out a long-lived supramassive NS remnant,

to place a prior on MTOV between 2–2.17M�. Combin-

ing these phenomenological relations with the lightcurve

data, our analysis strongly favors equal or nearly equal

mass systems and Λ̃ ≥ 400 (see supplementary mate-

rial). We conclude that roughly 20% of the first ejecta

component is associated with dynamical ejecta, while

about 20% of the disk mass must be ejected in winds

to account for the second ejecta component. The latter

agrees with the results of long-term general relativistic

magnetohydrodynamical simulations of the post-merger

accretion disk (e.g. Siegel & Metzger (2017)). If we do

not enforce constraints on MTOV, we obtain similar con-

straints in the binary parameters but with allowed val-

ues MTOV = 2.28+0.34
−0.33M�. This is broadly consistent

with the results presented in Margalit & Metzger (2017);

Rezzolla et al. (2018); Ruiz et al. (2018); Shibata et al.

(2019) and provides a new and independent measure-

ment of the maximum TOV mass, which will become

more accurate with future multi-messenger events. Full

posteriors for the analysis without enforced constraints

on MTOV can be found in the supplementary material.

2.3. GRB170817A

Our third and final result uses Bayesian parameter es-

timation of GRB170817A directly (green shaded region

in Fig. 1). We assume that the GRB jet is powered by

Table 1. Final multi-messenger constraints on the EOS and
the binary properties of GW170817. The radius constraint
has to be assigned with an additional 0.2 km uncertainty due
to the employed quasi-universal relations of De et al. (2018).

Parameter 90% confidence interval

M [2.722, 2.751]M�

q [1.00, 1.27]

Λ̃ [302, 860]

R [11.1, 13.7] km

the accretion of matter from the debris disk onto the

BH (Eichler et al. 1989; Paczynski 1991; Meszaros &

Rees 1992; Narayan et al. 1992) and that the jet energy

is proportional to the disk mass. Accounting for the

loss of disk mass to winds, we connect our estimates of

the disk wind ejecta from the analysis of AT2017gfo to

the following GRB parameter estimation analysis. In

order to assess the robustness of our conclusions, and

to evaluate potential systematic uncertainties, we show

results for three different fits to the GRB afterglow:

van Eerten et al. (2018), Wu & MacFadyen (2018), and

Wang et al. (2018). While the analyses of van Eerten

et al. (2018); Wu & MacFadyen (2018) differ on the en-

ergy of the GRB, the use of either one further constrains

the value of Λ̃ and the binary mass ratio, shifting both

to slightly higher values than obtained through the anal-

ysis of AT2017gfo alone.

3. MULTI-MESSENGER CONSTRAINTS

To obtain the final constraints on the EOS and binary

properties, we combine the posteriors obtained from

GW170817 and AT2017gfo+GRB170817A. The analysis

of AT2017gfo and GRB170817A are highly correlated,

as both use the same phenomenological description for

the disk mass and the AT2017gfo posteriors are em-

ployed as priors for the GRB analysis. However, we

assume the parameter estimations results from the GW

and EM analysis for Λ̃ and q are independent from one

another. Thus, the final multi-messenger probability

density function is given by:

PMMA = PGW170817 × PAT2017gfo+GRB10817A. (5)

In principle, there are also contributions from the pri-

ors in PMMA, but because they are flat over the bounds

considered, it is valid. We summarize our constraints

on the binary parameters and EOS in Table 1. The fi-

nal constraints on the tidal deformability and the mass

ratio are shown at the bottom of Figure 1, where we

use the GRB model of van Eerten et al. (2018) (similar

constraints are obtained with the other GRB models).

According to our analysis, the 90% confidence interval
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Figure 3. EOS overview including the known constraints
on the maximum TOV mass and the NS radius. Realistic
EOSs need to fall within the green shaded regions and are
outside the 90% confidence intervals in the red areas. We
only show a sample of a larger number of existing EOSs and
only label the EOSs consistent with our constraints.

for the tidal deformability is Λ̃ ∈ (302, 860). The dis-

tribution has its 50% percentile at Λ̃ ∼ 569. Relat-

ing the measured Λ̃ confidence interval to the NS ra-

dius (De et al. 2018), we obtain a constraint on the NS

radius of R ∈ (11.3, 13.5) km (with a ±0.2 km uncer-

tainty of the quasi-universal relation (De et al. 2018;

Radice & Dai 2018) connecting Λ̃ and R). This re-

sult is in good agreement with that recently obtained

by the multi-messenger analysis presented in Radice &

Dai (2018). Considering the constraint on the mass ra-

tio, we find that q ≤ 1.27 at 90% confidence. Com-

bining this with the measured chirp mass, the total

binary mass M = M
(

(1+q)2

q

)3/5

lies in the range

M ∈ [2.722, 2.751]M�. The radius constraint, together

with the constraint on the maximum TOV-mass, can

be used to rule out or favor a number of proposed NS

EOSs, as illustrated in Fig. 3.

We note that there are a number of potential system-

atic uncertainties in the presented analysis, which we,

however, tried to incorporate and minimize. In general,

we have assumed that the kilonova and GRB models are

sufficient to generate quantitative conclusions. To be ro-

bust against uncertainties, we have employed large sys-

tematic error bars for the kilonova analysis as described

in Coughlin et al. (2018). In addition, the merger simu-

lations and thereby the determination of ejecta and disk

masses may still have large uncertainties because of lim-

ited resolution and missing physics, see e.g. Kiuchi et al.

(2019). These uncertainties and the specific simulations

used can quantitatively change the results; for example,

Kiuchi et al. (2019) showed, using a different simulation

set, that the possibility that GW170817 was a relatively

high mass ratio system argues for an even lower bound,

Λ̃ ≥ 242, than presented here. The α and ξ variables en-

code some of the uncertainty associated with this fact,

as they just assume that the simulations are broadly

correct up to a scale factor, but they will be incapable

of encoding large changes in this result in the case of

non-linear effects. In addition, while the employed GRB

models are relatively simplistic, we have included three

different GRB analyses, showing that they, in general,

produce consistent results.
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Figure 4. Probability density function for the tidal deformability (top panel) and the mass ratio (bottom panel) ob-
tained by the analysis of GW170817. The dashed line shows the original posterior [denoted as ‘original GW ’] available at
https://dcc.ligo.org/LIGO-P1800370, the solid line shows the posterior using a spectral EOS decomposition as in (Carson
et al. 2019) [denoted as ’GW+’]. The shaded region marks the posterior once we incorporate the viewing angle constraint and
assume that the merger was observed under an angle of 22± 12 degree [denoted as ’GW+ +GRB’. Notice that we use a Kernel
Density Estimator (KDE) with bandwidth of 35 for the tidal deformability and 0.035 for the mass ratio and that we normalize
all distributions to allow a direct comparison. The reduced sample number due to step II and III of our GW analysis (see main
text) leads to larger oscillatory behavior for the KDEs.

APPENDIX

A. GW170817 ANALYSIS

We build our analysis of GW170817 on the publicly available posteriors released by the LVC and the results of (Carson

et al. 2019). We proceed in three steps: (i) we review the original samples, (ii) we restrict the analysis by ensuring that

both stars are described by the same EOS, (iii) we restrict the viewing angle based on GRB and afterglow models.

I. Original LIGO posteriors: For GW170817, we use the published results of the LVC (Abbott et al. 2017a,

2018b,a,c). In particular, the publicly available posterior samples of Abbott et al. (2018c) provide the starting point

for our GW interpretation. We decide to employ the “low spin” assumption, which restricts the rotational fre-

quency of individual NSs so that the individual dimensionless spins are restricted to χ ≤ 0.05. This restriction is

motivated by the observed BNS in our galaxy where the fastest spinning NS in a BNS system (PSR J1946+2052 (Sto-

vall et al. 2018)) will have a dimensionless spin of χ ∼ 0.05 at merger. Thus, we use the samples provided in

https://dcc.ligo.org/LIGO-P1800370. The analysis of the follow up LVC results (Abbott et al. 2018b) improves

over the initial results of the initial LVC results (Abbott et al. 2017a), as a broader frequency band of 23− 2048 Hz,

further improved and recalibrated detector data, more sophisticated waveform models (Dietrich et al. 2018a), and the

known source location from EM observations have been used (Abbott et al. 2017b).

II. Quasi-universal relations: While (Abbott et al. 2018c) did not make any assumption of the nature of the two

merging compact objects, providing a general analysis, it seems natural to assume that the merging objects are two

NSs described by the same EOS, an assumption similar to (De et al. 2018; Abbott et al. 2018a; Radice & Dai 2018).

Here, we employ the posterior samples of Carson et al. (2019) in which a spectral EOS decomposition is employed. As

discussed in the literature, e.g., Chatziioannou et al. (2018); De et al. (2018); Abbott et al. (2018b), enforcing the two
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Figure 5. Observational data of AT2017gfo together with the best according to our analysis and the employed kilonova model.

objects to be NSs described by the same EOS leads to slightly tighter constrains on the tidal deformability (see the top

panel of Fig. 4). We show as a dashed line the original posterior and the solid line marks the posterior using the spectral

EOS decomposition. Based on this result, we see that the GW data do not support large tidal deformabilities. This

motivates that in the following analysis of the EM counterparts we will restrict the tidal deformabilities to Λ̃ ≤ 1100.

III. The viewing angle: As a last step to restrict the GW posterior samples, we incorporate a viewing angle

constraint based on the work of van Eerten et al. (2018) (note that also other works analyzing GRB170817A and its

afterglow can be employed and lead to similar results (Finstad et al. 2018; Mooley et al. 2018)). van Eerten et al.

(2018) finds that the viewing angle of the GRB170817A was 22 ± 6 degrees. For a conservative estimate, we assume

22± 12 degrees to allow for additional uncertainties. All posterior samples with viewing angles that do not fall inside

this interval are discarded. The final result is shown as the shaded region in Fig. 4.

B. ANALYZING AT2017GFO

Similar to the analysis of GW170817, we proceed in multiple steps to obtain a posterior distribution of the binary

properties of AT2017gfo. For this purpose, we follow and extend the discussion in Coughlin et al. (2018) to which we

refer for further details and extensive checks of the underlying algorithms.

I. Modeling AT2017gfo: The observational data (Coughlin et al. 2018; Smartt et al. 2017; Abbott et al. 2017c)

(see Fig. 5) are fit with the radiative transfer model of Kasen et al. (2017). The model employs a multi-dimensional

Monte Carlo code to solve the multi-wavelength radiation transport equation for an expanding medium. The model

allows for the usage of a two component ejecta description. Each component depends parametrically on the ejecta

mass mej, the mass fraction of lanthanides Xlan, and the ejecta velocity vej. These individual parameters will depend

on the merger process and the binary parameters. The usage of at least two components is motivated by the presence

of different ejecta types. Among the biggest drawbacks of our analysis is the assumption that both components

are treated spherically symmetric with a uniform composition. Neglecting mixing of different ejecta types (Rosswog
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Table 2. Prior choices in the analysis. Intervals indicate a uniform prior, while ± indicates a Gaussian prior. For the sGRB
analyses, we draw the parameters Λ̃, q, MTOV, and ζ consistent with distributions found from the kilonova analysis.

AT2017gfo GRB170817A- (van Eerten et al. 2018) GRB170817A- (Wu & MacFadyen 2018) GRB170817A- (Wang et al. 2018)

parameter prior parameter prior parameter prior parameter prior

Λ̃ [0,1100] Λ̃ KN analysis Λ̃ KN analysis Λ̃ KN analysis

q [1,2] q KN analysis q KN analysis q KN analysis

MTOV [2.0,2.17] MTOV KN analysis MTOV KN analysis MTOV KN analysis

log10 α [−2, 0] log10 E0 50.30 ± 0.84 log10 EGRB,50 −0.81 ± 0.39 log10 σ [−4,−1]

ζ [0, 0.5] log10 ε [−20, 0] log10 ε [−20, 0] ζ KN analysis

ζ KN analysis ζ KN analysis
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Figure 6. The posterior distribution of the ejecta properties fitting the observational data presented in Fig. 5. The shown
quantities refer to the ejecta mass, velocity, and lanthanide fraction of the first and second ejecta component.

et al. 2017), we add the two separate model components. We have tested the recoveries of the non-spherical models

presented in Kasen et al. (2017) using the spherical model. Based on these data, there will be a viewing angle bias in

the parameter recoveries here depending on the degree of asymmetry in the ejecta.

We employ a grid with ejecta masses mej[M�] = 0.001, 0.0025, 0.005, 0.0075, 0.01, 0.25, 0.05, and 0.1, ejecta

velocities vej[c] = 0.03, 0.05, 0.1, 0.2, and 0.3, and mass fraction of lanthanides Xlan = 0, 10−5, 10−4, 10−3, 10−2, and

10−1. In order to draw inferences about generic sources not corresponding to one of these gridpoints, we adapt the

approach outlined in Doctor et al. (2017); Pürrer (2014), where GPR is employed to interpolate principal components

of gravitational waveforms. The reliability of the method has been tested in Coughlin et al. (2018).

For completeness, we present the lightcurves together with the observational data in Fig. 5. The posterior for the

ejecta properties is shown in Fig. 6. The priors for the analysis are given in Table 2. We find that we are able to

fit the observational data within the assumed 1 magnitude uncertainty (Coughlin et al. 2018). We want to point out

that although we are able to fit and describe the general X-shooter spectra (Smartt et al. 2017; Pian et al. 2017), the

current model is unable to accurately represent observed wavelength specific features (see the discussion in Coughlin

et al. (2018)).

II. Relating ejecta properties to the binary parameters:

To connect the individual ejecta components to the different ejecta mechanisms, we assume that the first ejecta

component is proportional to dynamical ejecta, i.e., it gets released during the merger process and is proportional to
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Figure 7. On the left is the posterior distribution for our analysis of AT2017gfo. We present posteriors for the mass ratio
q, the tidal deformability Λ̃, the fraction of the first ejecta component related to dynamical ejecta α, the fraction of the disk
mass ejected as the second component ejecta, and the TOV mass MTOV. On the right is the same but allowing MTOV to vary
broadly.

mdyn. The second ejecta component arises from disk winds. We find that constraints on the mass ratio mostly follow

from this first assumption, and constraints on the tidal deformability arise mainly from the second ejecta component.

While the analysis has velocity and lanthanide fraction priors to make these components physically motivated, in the

case where these assumptions are incorrect, the analysis will break down.

With the uncertainty in the modeling of ejecta in numerical relativity simulations and the potential systematic

biases due to the missing input physics, we only assume that the dynamical ejecta describes a fraction of the total first

component:

mej,1 =
1

α
mdyn, vej,1 = vdyn. (B1)

To allow for a direct comparison with the GW analysis, we express mdyn in terms of Λ̃. This can be achieved by

writing the compactnesses of the individual stars as C1,2 = 0.371 − 0.0391 log(Λ1,2) + 0.001056 log(Λ1,2)2 (Maselli

et al. 2013; Yagi & Yunes 2017), employing again Λ2 = q6Λ1, and using the definition of the tidal deformability

Λ̃ =
16

13

Λ2 + Λ1q
5 + 12Λ1q

4 + 12Λ2q

(1 + q)5
. (B2)

The second ejecta component is related to ejecta arising from disk winds. Long-term simulations find that about

∼ 10 − 40% (Dessart et al. 2009; Metzger et al. 2008, 2009; Lee et al. 2009; Fernndez & Metzger 2013; Siegel et al.

2014; Just et al. 2015; Metzger & Fernández 2014; Perego et al. 2014; Martin et al. 2015; Wu et al. 2016; Siegel &

Metzger 2017; Lippuner et al. 2017; Fujibayashi et al. 2017, 2018; Siegel & Metzger 2018; Metzger et al. 2018; Radice

et al. 2018a) of the overall disk mass can be ejected. Thus, it seems plausible to assume

mej,2 = ζ mdisk, (B3)

i.e., the disk wind ejecta are overall proportional to the mass of the debris disk surrounding the remnant BH. Knowing

that a large fraction of the disk falls into the BH directly after BH formation and that not all matter gets ejected, we

restrict ζ to lie within ζ ∈ [0, 0.5].

Fig. 7 shows the findings of our AT2017gfo analysis, which we shortly summarize below: (i) our study favors equal

or nearly equal mass systems, where the constraint on the mass ratio mainly arises from the correlation between
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Figure 8. On the left are the posterior distributions for the GRB analysis based on van Eerten et al., 2018. We present
constraints on the fraction of the rest mass density of the disk converted to trigger the sGRB, the tidal deformability, the mass
ratio and the maximum TOV mass. In the middle are the posterior distributions for the GRB analysis using the GRB energy
estimated from Wu & MacFadyen, 2018. On the right are posterior distributions for the GRB analysis using the GRB energy
estimated from Wang et al., 2018.

the first component ejecta and the dynamical ejecta. (ii) Λ̃ shows a clear jump at Λ̃ ≈ 400. This constraint arises

mainly from the second component ejecta and is related to the disk mass increase for larger values of Λ̃. (iii) Only

about 20% of the first ejecta component is associated to dynamical ejecta. (iv) About 22% of the disk mass has to

be ejected to account for the second ejecta component, which agrees with the disk wind ejecta found in long term

numerical relativity simulations. (v) The analysis shows no strong constraint on the maximum allowed TOV mass.

When allowing MTOV to vary broadly (on the right of Fig. 7), we see numerical consistency among all parameters,

with a measured MTOV = 2.28+0.34
−0.33M�.

C. ANALYZING GRB170817A

In addition to including information about the viewing angle to restrict the GW posteriors (Fig. 4), we will also

present a Bayesian parameter estimation for GRB170817A directly. We note that a GRB-GW Bayesian approach was

also suggested in Fan et al. (2017).

To relate the GRB properties to the properties of the binary, we employ the typical assumption that the GRB is

driven by the accretion of matter from the debris disk onto the BH (Eichler et al. 1989; Paczynski 1991; Meszaros

& Rees 1992; Narayan et al. 1992; Meszaros 2006; Lee & Ramirez-Ruiz 2007; Giacomazzo et al. 2013; Ascenzi et al.

2018) and therefore the energy is proportional to the disk rest mass, i.e.,

Ejet ∝ mdisk. (C4)

We note that based on our previous discussion, a fraction of the disk is ejected by disk winds. This part of the original

disk cannot drive the GRB, so we set

Ejet = ε(mdisk −mej,2) = εmdisk(1− ζ). (C5)

To connect the GRB and kilonova analysis, we reuse the ζ posterior obtained in the previous subsection. Similarly,

we also employ the posterior distributions of Λ̃, q,MTOV as priors for our future GRB parameter estimation analysis.

We now briefly describe the three different GRB models/descriptions (van Eerten et al. 2018; Wu & MacFadyen

2018; Wang et al. 2018) used in this work.

I. The structured GRB-jet model of van Eerten et al (van Eerten et al. 2018):

van Eerten et al. (2018) show that the latest observations of the GRB170817A afterglow is consistent with the

emergence of a relativistic structured jet (with a jet width θc of 4 degrees) seen at an angle of θj ∼ 22± 6 degree from

the jet axis. This structured jet model fits well within the range of properties of cosmological sGRBs. Incorporating

the Gaussian structured form of the jet as proposed in van Eerten et al. (2018), the final GRB energy arising from the

measured isotropic energy is given by

Ejet = e2θc/θjEiso. (C6)
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According to the analysis of van Eerten et al. (2018), one obtains log10[Ejet/erg] = 50.30+0.84
−0.57. We use this result as

an input for Eq. (C5) and sample over the final value employing a Gaussian distribution with a width identical to the

stated uncertainty in van Eerten et al. (2018).

The left panel of Fig. 8 shows our results. We find that log10 ε ≈ −2, i.e., 1% of the disk rest-mass is converted

into GRB energy. This generally agrees with existing theoretical studies (Lee & Ramirez-Ruiz 2007; Giacomazzo et al.

2013) and increases the confidence in our GRB analysis. Furthermore, we find that the Λ̃ estimate and the constraint

on the mass ratio shifts to slightly larger values than studying purely AT2017gfo.

II. The GRB model of Wu & MacFadyen (2018): An alternative description of GRB170817A is presented

in Wu & MacFadyen (2018). They employ the analytic two-parameter “boosted fireball” model. The model consists

of a variety of outflows varying smoothly between a highly collimated ultra-relativistic jet and an isotropic fireball.

Developing a synthetic light curve generator, they fit the observational data by performing a Markov-Chain Monte

Carlo (MCMC) analysis. Similar to van Eerten et al. (2018), Wu & MacFadyen (2018) favor a relativistic structured

jet. The jet opening angle is ∼ 5 degrees seen from a viewing angle of ∼ 27 degree.

The middle panel of Fig. 8 shows our results. The estimated GRB energy is log 10Ejet,50 = −0.81+0.26
−0.39, i.e., more

than an order of magnitude below the estimated GRB energy of van Eerten et al. (2018). Consequently, the estimated

value of ε is smaller. Nevertheless, the constraints on the binary properties and the EOS constraints are in agreement

between van Eerten et al. (2018) and Wu & MacFadyen (2018), i.e., the constraints are robust to the systematic

difference in energy estimates.

III. GRB due to the Blanford-Znajek mechanism (Wang et al. 2018):

As a final way to interpret the observed GRB, we follow (Wang et al. 2018). In this model, the energy to launch the

GRB, assuming neutrino annihilation as the central engine, requires massive disks masses of the order of∼ 0.3M�. Such

massive disks are in tension with state-of-the-art numerical relativity simulations and disfavor neutrino annihilation

as the mechanism responsible for the jet-launch. On the other hand, magnetic energy extraction requires disk masses

about one order of magnitude smaller and therefore could act as the central engine for GRB170817A. Following the

discussion of Wang et al. (2018), the disk mass necessary to explain the observation of GRB170817A based on the

Blanford-Znajek (BZ) mechanism is given by

mBZ
disk = 0.0132M�

1

FGRB

EGRB

1051erg︸ ︷︷ ︸
σ

(
1 +

√
1− χ2

BH

χBH

)2

. (C7)

In contrast to Wang et al. (2018), we substitute 0.0132M�
FGRB

EGRB

1051erg by a single parameter σ for which we assume a flat

prior with log10(σ) ∈ [−4,−1]. Furthermore, we extend the analysis of Wang et al. (2018), who used a flat distribution

for the BH spin within χ ∈ [0.6, 0.8], by employing Eq. (D14) to estimate the BH spin, and we substitute the disk

mass fits of Radice et al. (2018b) by Eq. (D9). As in the previous discussions, we also incorporate the disk wind ejecta

via Eq. (C5). The right panel of Fig. 8 shows our results. The final results on the tidal deformability, mass ratio, and

MTOV are similar to the previous results.

Very recently, Wang et al. (2018) provided constraints on the EOS obtained from a new interpretation of the GRB

and its afterglow phase, quoting a constraint of 273 < Λ̃ < 602. Our tests show that this constraint is highly dependent

on the particular choice of σ made in Wang et al. (2018). Assuming flat priors on all unknown parameters in Eq. (C7)

creates a prior peaking at ∼ 10−2. This prior choice is the driving mechanism for the very tight constraint presented

in Wang et al. (2018) and seems in our opinion to be an artifact of the sampling rather than a physical observation.

D. FITS TO NUMERICAL RELATIVITY

We now present the fits to numerical relativity we performed which are required for our analyses.

I. Disk mass A crucial ingredient for the analysis in this work and also the recent works of Radice & Dai (2018);

Wang et al. (2018) is the estimate of the debris disk mass mdisk. Here, we revisit the derivation of the phenomenological

fit presented in Radice et al. (2018b) and employ their fiducial dataset to derive an updated version of the fit. Figure 15

of Radice et al. (2018b) shows a clear correlation between mdisk and the tidal deformability of the binary. We suggest

that the reason for this clear and prominent correlation is related to the limited sample of only four EOSs in comparison

to the wide range of sampled masses, and the fact that the tidal deformability depends strongly on the total mass of

the binary, Λ̃ ∼ (Mtot/R)
−6

(De et al. 2018). Already from Fig. 15 of Radice et al. (2018b), one sees that setups with

the same EOS (and hence roughly same radii) but different NS masses, lead to different disk masses.
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Figure 9. Quality assessment of the phenomenological descriptions of the BH mass (left panels) and BH spin (right panels).
The BH quantities are extracted for BNS simulations of the CoRe catalog, a detailed list is presented in Table 3.

Table 3. Overview about the employed numerical relativity dataset to derive the BH remnant fits. Further details are
available at http://www.computational-relativity.org. Note that the simulations using data of Bernuzzi et al. (2016) are
not identical to the simulations for the same physical configuration available in the CoRe database. The columns refer to: the
name of the simulation as stated in the CoRe catalog, the EOS, the total mass M , the mass ratio q, the tidal deformability Λ̃,
the references for the simulation and numerical relativity data, the measured BH mass MBH and spin χBH.

Name EOS M q Λ̃ Reference MBH χBH

BAM:0001:R01 2B 2.70 1.00 127 (Bernuzzi et al. 2015) 2.634 0.785

BAM:0004:R02 ALF2 2.70 1.00 730 (Dietrich et al. 2015) 2.459 0.633

BAM:0005:R01 ALF2 2.75 1.00 658 (Dietrich et al. 2017) 2.493 0.653

BAM:0011:R01 ALF2 3.00 1.00 383 (Dietrich et al. 2018b) 2.863 0.760

BAM:0012:R01 ALF2 2.75 1.25 671 (Dietrich et al. 2017) 2.484 0.644

BAM:0016:R01 ALF2 3.20 1.00 246 (Dietrich et al. 2018b) 3.128 0.812

BAM:0017:R01 ALF2 2.75 1.50 698 (Dietrich et al. 2017) 2.485 0.629

BAM:0021:R01 ALF2 2.75 1.75 731 (Dietrich et al. 2017) 2.479 0.612

BAM:0036:R01 H4 2.70 1.00 1106 (Dietrich et al. 2015) 2.480 0.621

BAM:0042:R01 H4 2.75 1.00 993 (Dietrich et al. 2018b) 2.448 0.592

BAM:0047:R01 H4 3.00 1.00 567 (Dietrich et al. 2018b) 2.879 0.773

BAM:0052:R01 H4 3.20 1.00 359 (Dietrich et al. 2018b) 3.124 0.828

BAM:0103:R01 SLy 2.70 1.00 388 (Dietrich et al. 2015) 2.484 0.633

BAM:0120:R01 SLy 2.75 1.00 346 (Dietrich & Hinderer 2017) 2.640 0.769

BAM:0123:R02 SLy 2.70 1.16 490 (Dietrich et al. 2015) 2.502 0.642

BAM:0126:R02 SLy 2.75 1.25 365 (Dietrich et al. 2017) 2.422 0.600

BAM:0128:R01 SLy 2.75 1.50 407 (Dietrich et al. 2017) 2.361 0.544

- LS220 2.70 1.00 684 (Bernuzzi et al. 2016) 2.40 0.544

- LS220 2.83 1.04 499 (Bernuzzi et al. 2016) 2.70 0.704

- SFHo 2.70 1.00 422 (Bernuzzi et al. 2016) 2.56 0.683

- SFHo 2.83 1.04 312 (Bernuzzi et al. 2016) 2.79 0.808

Here we propose an alternative explanation which naturally accounts for the observed phenomenology and scaling

with Mtot. Merger simulations suggest that the disk mass is accumulated primarily through redistribution of matter in

the post-merger remnant. Thus, the remnant lifetime prior to collapse is found to strongly correlate with the amount

of disk mass (Radice et al. 2018a). Here we suggest that this lifetime is governed to a large degree by Mtot/Mthr,

where Mthr is the threshold mass above which the merger undergoes a prompt-collapse (on dynamical timescales).

Thus Mtot/Mthr is a measure of the stability of the post-merger remnant, and following the arguments above, should

correlate with mdisk.
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We show in Fig. 2 in the main text the correlation between the disk mass and the threshold mass for prompt BH

formation, where we estimate the prompt collapse threshold as Bauswein et al. (2013):

Mthr =

(
2.38− 3.606

MTOV

R1.6M�

)
MTOV. (D8)

MTOV denotes the maximum mass of a non-rotating (TOV) NS for a given EOS and R1.6M� is the radius of a 1.6M�
star. With the help of Fig. 2 in the main text, it becomes clear that the reduction of the disk mass relates to the

stability of the merger remnant and consequently, the disk mass drops abruptly when M ≈ Mth and the remnant

undergoes a prompt-collapse. This naturally explains the location of the turnover in mdisk.

Based on these observations and the fact that the NS radius can be related to the tidal deformability by R =

M(Λ̃/a)1/6 (with the chirp mass M) (De et al. 2018), we conclude that the disk mass is a function of the tidal

deformability, the total mass of the system, and the maximum TOV mass MTOV. However, we emphasize that the

disk mass estimate is only based on the results published in (Radice et al. 2018b). This dataset only employs four

different EOSs with only moderate mass ratios and relatively large tidal deformabilities Λ̃ & 100. We have compared

our disk mass prediction, with some of the available simulation data of Dietrich et al. (2017). In contrast to Kiuchi

et al. (2019), we do not find a strong dependence on the mass ratio, which is the reason why we do not include mass

ratio effects in our analysis. However, a thoughtful follow-up study using (if possible) different numerical relativity

codes is required to understand the exact dependence of the ejecta and disk mass on the mass ratio of the binary.

Therefore, information about the densest part of the EOS, encoded in MTOV, and the information at smaller densities,

encoded in Λ̃ or R1.6M�, are essential for a reliable description of the disk mass.

To include the dependence of MTOV, we also find that fitting log10(mdisk) instead of mdisk leads to a significant

reduction of the fractional error (mdisk −mfit
disk)/mdisk. We choose the following functional form

log10 (mdisk [Mtot/Mthr]) =

max

(
−3, a

(
1 + b tanh

[
c−Mtot/Mthr

d

]))
, (D9)

with Mthr(MTOV, R1.6M�) given by Eq. (D8). We emphasize that the choice of the exact form of Eq. (D9) is arbitrary

and other expressions are possible. The free fitting parameters of Eq. (D9) are a = −31.335, b = −0.9760, c = 1.0474,

d = 0.05957.

The mean absolute error of mdisk with respect to the original numerical relativity data is 0.019M�, and we obtain a

fractional error of 198% in mdisk; for comparison, the original fit presented in Radice et al. (2018b) has absolute errors

of 0.022M� and average fractional errors of 749%. The large fractional error is caused by a small number of setups

with very small disk masses. Fitting the logarithm of the disk mass improves the fit in this region of the parameter

space, as already discussed in Coughlin et al. (2018) for the dynamical ejecta. We present the fit as a function of the

Mtot/Mthr in Fig. 2 in the main text and also present the absolute (middle panel) and fractional errors (bottom panel)

for Eq. (D9) in comparison with the results of Radice et al. (2018b). We point out that in a region around the turning

point into prompt collapse scenarios, the absolute and fractional errors of the new fit are noticeable smaller than in

the original version.

Finally, since we want to relate information extracted from the disk mass estimates with the GW measurement, we

propose to relate the NS radius to the tidal deformability via De et al. (2018)

R1.6M� 'M

(
Λ̃

0.0042

)1/6

. (D10)

While informing this relation adds an additional uncertainty, we find that the fitting residuals increase simply to

0.020M� and 210%.
II. Dynamical Ejecta We approximate the mass of the dynamical ejecta by

log10 m
fit
dyn =

[
a

(1− 2 C1)M1

C1
+ b M2

(
M1

M2

)n

+
d

2

]
+ [1↔ 2], (D11)

with a = −0.0719, b = 0.2116, d = −2.42, and n = −2.905 and C1,2 denoting the compactnesses of the individual

stars. The absolute uncertainty of the fit, i.e., mdyn − mfit
dyn is 7 × 10−3M�. Furthermore, we note that while the
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fractional error of log10mdyn is only 36%, the fractional error with respect to mdyn is 287% caused by datapoints with

very small ejecta masses (∼ 10−4 − 10−5M�).

The velocity of the dynamical ejecta is given by

vfit
dyn =

[
a(1 + c C1)

M1

M2
+
b

2

]
+ [1↔ 2], (D12)

where a = −0.3090, b = 0.657, and c = −1.879. The average absolute error of the fit is ∆vdyn = 0.03 and the fractional

error is 18%.

III. BH properties The large set of numerical relativity data publicly released in the CoRe catalog (Dietrich

et al. 2018b) together with results published in Bernuzzi et al. (2016) allows us to derive phenomenological fits for

the BH mass and spin. A detailed list of the employed simulations and the BH properties is presented in Tab. 3. We

restrict our consideration to non-spinning NSs, but plan to extend the presented results in the future once a larger

set of spinning BNS configurations is available. Furthermore, we consider only cases for which an almost stationary

state is reached after BH formation, so that remnant properties can be extracted reliably. Thus, we do not consider

setups for which the BH mass increases significantly due to accretion or for which the black hole mass decreases due

to insufficient resolution.

Trivially, we find that with an increasing total mass, the final black hole mass and angular momentum increases

almost linearly. For unequal mass mergers, MBH and χBH decrease. Based on this observation, we propose a functional

dependence of MBH ∝ να (where ν refers to the symmetric mass ratio). The coefficient α is chosen to be two, which is

motivated by predictions for BBH systems (Healy et al. 2017). Considering the imprint of the EOS, we find that for

larger values of Λ̃, the final black hole mass decreases, which follows from the observation that the disk mass increases

with Λ̃. As a simple ansatz, we choose:

MBH = a
( ν

0.25

)2
(
M + b

Λ̃

400

)
(D13)

with a = 0.980 and b = −0.093. The mean average absolute error of the fit is 0.065M� and the fractional error is

2.6%.

We find in our dataset that the BH mass and spin are strongly correlated. This motivates the use of a similar

functional behavior for the BH spin as for the BH mass. However, we extend Eq. (D13) by (i) adding an additional

constant, and (ii) incorporating the fact that the dimensionless spin is restricted to be χ ≤ 1. The final fitting function

is

χBH = tanh
[
aν2(M + b Λ̃) + c

]
(D14)

with a = 0.537, b = −0.185, and c = −0.514. The mean average absolute error of the fit is 0.039 and the fractional

error is 6.1%. The remnant property dataset and the corresponding fit results are presented in Fig. 9.


