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Abstract

We present a novel approach for the numerical solution of problems of elastic scattering by open
arcs in two dimensions. Our methodology relies on the composition of weighted versions of the clas-
sical operators associated with Dirichlet and Neumann boundary conditions in conjunction with a
certain "open-arc elastic Calderón relation" whose validity is demonstrated in this paper on the basis
of numerical experiments, but whose rigorous mathematical proof is left for future work. Using this
Calderón relation in conjunction with spectrally accurate quadrature rules and the Krylov-subspace
linear algebra solver GMRES, the proposed overall open-arc elastic solver produces results of high
accuracy in small number of iterations—for low and high frequencies alike. A variety of numeri-
cal examples in this paper demonstrate the accuracy and efficiency of the proposed methodology.
Keywords: Elasticity, open arc, Calderón relation, second-kind integral solver.

1 Introduction
We consider the problem of numerical evaluation of elastic waves diffracted by infinitely thin open

surfaces [24, 27–29, 31]. This problem plays fundamental roles in a number of important applications
in science and engineering, including non-destructive testing of materials, characterization of fractures,
energy production from natural gas and geothermal resources, mining, etc. These problems present con-
siderable mathematical and computational challenges in view of the highly oscillatory character of the
associated time-harmonic elastic fields and, for solvers based on use of volumetric discretizations, the un-
bounded character of the physical domains that must be considered in connection with the aforementioned
applications.

As is the case for wave scattering problems in acoustics and electromagnetics [15, 25], the boundary
integral equation methods in elasticity require discretization of domains of lower dimensionality than those
required by volumetric discretization methods (such as finite difference or finite element methods [7,29]).
These equations can generally be treated effectively even for high frequencies [8, 9, 12, 13]. As is well
known, however, the classical boundary integral equations for open surfaces (or, in two dimensions, open
arcs) are not second-kind Fredholm integral equations. This setting presents some difficulties. On one
hand, as the eigenvalues of the left-hand side operators accumulate around zero and/or infinity, solution of
these problems by means of Krylov-subspace iterative solvers such as GMRES (which are commonly-used
in conjucntion with accelerated integral-equation solvers) often requires large numbers of iterations for
convergence, and thus, large computing costs. Additionally, the evaluation of the Hadamard finite part
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of the hypersingular integral operator associated to the elastic Neumann problem [2] has also remained
a significant challenges in this context [13].

These difficulties were recently addressed, for the 2D and 3D acoustic and 2D electromagnetic contexts,
in the contributions [9,10,22]—which, in particular, introduced Fredholm integral equations of the second-
kind, and associated numerical algorithms, for problems of acoustic scattering by open arcs and surfaces.
The second-kind equations were obtained in these articles by utilizing compositions of appropriately
modified versions Swa and Nw

a (which incorporate explicitly the singular character of the integral equation
densities) of the acoustic single-layer and hypersingular integral operators Sa and Na. As shown in [9,22],
a generalization of the classical closed-surface Calderón formulas holds for the Swa and Nw

a operators in
the open arc case, which, in particular, gives rise to the aforementioned second-kind integral formulations
for the acoustic open-arc problems. It was verified numerically in these contributions that, as predicted
by theory, the eigenvalues of the proposed second-kind operators remain bounded away from zero and
infinity, even for problems of high frequency.

Multiple challenges arise as extensions of these methods to elastic open-arc problems are attempted.
At a basic level, elastic Calderón formulas have not been studied even in the closed-surface case—likely,
on account of the fact that, unlike the acoustic wave case, the classical Neumann-Poincaré double-layer
operator K and its adjoint K∗, which play important roles in the Calderón relations, are not compact
in the elastic case [4,21]. (Reference [17] mentions all the elastic operators relevant to the closed-surface
Calderón calculus but it does not utilize the Calderón projectors as regularization tools). But recent
results [4] have established that the closed surface elastostatic (ω = 0) double-layer integral operator
is polynomially compact, which suggests that the composition NS of closed-surface single-layer and
hypersingular integral operators may be a Fredholm operator of second-kind even in the case ω 6= 0.
This in fact established in Section 3.2 below, where it is additionally shown that the eigenvalues of the
operator NS accumulate at a certain point which depends on the elastic Lamé parameters. Moreover, for
the Dirichlet problem particulary, an artificial traction operator T̃ can be introduced (see (2.3) for which
the resulting double-layer operator K̃ is compact [18, 21]—which results in an alternative second-kind
Calderón-like formula for the composition ÑS. But this formula is only applicable for Dirichlet problem
since this artificial traction operator does not correspond to an actual physical traction.

Relying on the newly studied property of the closed-surface Calderón formula for elastic wave, it is
naturally to consider the extension of the existing second-kind Fredholm integral equations for acoustic
open-arcs [9, 22] to the elastic case. In view of these contributions, and unlike the approaches [3, 14, 19,
23,26,32], we consider the composition of weighted versions of the classical single-layer and hypersingular
integral operators [2]. We find that the benefits of this approach are two-fold. On one hand, the new
method enjoys high-order accuracy: the weighted versions Sw, Nw of the single-layer and hypersingular
operators extract the solutions’ edge singularity [16] explicitly and the applied quadrature rules provide
spectral convergence. On the other hand, the method gives rise to well-behaved linear algebra: as
numerically demonstrated in Section 3.3, the eigenvalues of NwSw and ÑwSw are bounded away from
zero and infinity. (A theoretical proof of this fact is left for future work.). And, as desired, the composite
operator NwSw or ÑwSw requires small number of iterations when used in conjunction with the linear
iterative solver GMRES. The new formulation for the Neumann problem is especially beneficial, as it
give rise to order-of-magnitude improvements in computing times over the corresponding hypersingular
formulation. Such gains do not occur for the Dirichlet problem, although the new formulation ÑwSw

requires fewer iterations than Sw, since the application of the operator Sw is significantly less expensive
than the application of the operator Ñw.

A number of additional techniques are proposed to accurately evaluate the elastic hypersingular
integral operators Nw and Ñw. For closed surface scattering problems in elasticity, the novel and exact
regularized formulation presented in [6, 33] show that the hypersingular operator in two dimensions can
be transformed into a composition of weakly-singular integrals and tangential-derivative operators that
involve the Günter derivative and integration-by-parts. For the weighted hypersingular operators Nw and
Ñw in the open-arc case, thanks to the edge-vanishing weight function w, the results in the closed-surface
case can be extended to the open arc case since all singular terms arising from the integration-by-parts
calculation can be eliminated. Additionally, the tangential derivative evaluations, which are approximated
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in our method by means of FFTs, has proven more efficient than the alternative treatment [20].
The remainder of this paper is organized as follows. Section 2 describes the Dirichlet and Neumann

problems of elastic scattering by open surfaces, along with the associated classical boundary integral
formulations and including a brief discussion of certain associated challenges. Section 3.1 introduces new
weighted operators that explicitly account for the known singular character of the solutions, and Section
3.2 presents our novel investigation of the closed-surface Calderón formula, including numerical verifica-
tions of a polynomial-compactness theoretical result. Section 3.3 then presents a numerical examination
of the Calderón relation for open arcs in light of the eigenvalue distributions obtained for non-trivial open
arc problems. An exact regularized formulation for the hyper-singular operator is presented in Section
3.4. The high order quadrature rules we use for evaluation of the new integral operators are described
in Section 4.1. Numerical demonstrations presented in Section 4.2, for both low and high frequencies
and for various geometries, demonstrate the high-accuracy and high-order of convergence enjoyed by the
proposed approach, as well as the reduced numbers of GMRES linear-algebra iterations required by the
algorithm for convergence.

2 Preliminaries

2.1 The elastic scattering problem
Let Γ denote a smooth open arc in the plane R2. The complement of Γ in R2 is occupied by a linear

isotropic and homogeneous elastic medium characterized by the Lamé constants λ, µ satisfying µ > 0,
λ + µ > 0, and by the mass density ρ > 0. Suppressing the time-harmonic dependence e−iωt in which
ω > 0 is the frequency, the displacement field is the solution of the time-harmonic Navier equation

∆∗u+ ρω2u = 0 in R2\Γ, (2.1)

together the appropriate Kupradze radiation condition [21] at infinity. On Γ the solution is assumed to
satisfy either the Dirichlet boundary condition

u = F on Γ

or the Neumann boundary condition

T (∂, ν)u = G on Γ.

Here ∆∗ is the Lamé operator defined by

∆∗ = µdiv grad + (λ+ µ) grad div ,

and T = T (∂, ν) is the traction (or stress) operator on the boundary defined as

Tu := 2µ∂νu+ λ ν div u+ µν × curlu, ν = (ν1, ν2)>, (2.2)

in which ν is the unit normal to the boundary Γ and ∂ν := ν · ∇ is the normal derivative.
Along with (2.2), we define the modified (unphysical) traction operator

T̃ u := (µ+ µ̃) ∂νu+ λ̃ ν div u+ µ̃ν × curlu, (2.3)

where λ̃+ µ̃ = λ+ µ. It easily follows that T̃ = T when λ̃ = λ, µ̃ = µ. The selection

µ̃ =
µ(λ+ µ)

λ+ 3µ
, λ̃ = λ+ µ− µ̃, (2.4)

which is made throughout this article, is justified in 3.2 and subsequent sections.
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2.2 Boundary integral equations
It follows from potential theory that the solution of (2.1) under Dirichlet and Neumann boundary

conditions can be expressed in terms of single- and double-layer potentials,

u(x) = (SΨ)(x) :=

∫
Γ

E(x, y))φ(y) dsy, ∀x ∈ R2\Γ, (2.5)

and

u(x) = (DΨ)(x) :=

∫
Γ

(T (∂y, νy)E(x, y))>ψ(y) dsy, ∀x ∈ R2\Γ, (2.6)

respectively. Here, calling γkt(x, y) the fundamental solution of the Helmholtz equation in R2 with wave
number kt,

γkt(x, y) =
i

4
H

(1)
0 (kt|x− y|), x 6= y, (2.7)

and letting

ks := ω/cp, kp = ω/cs

denote the wave number of the compressional and shear waves for isotropic dymanic elasticity, respectively,
where

cp =
√
µ/ρ and cs =

√
(λ+ 2µ)/ρ,

E(x, y) denotes the fundamental displacement tensor for the Navier equation in R2:

E(x, y) =
1

µ
γks(x, y)I +

1

ρω2
∇x∇>x

[
γks(x, y)− γkp(x, y)

]
.

As is known, using the single-layer and hypersingular operators

S[φ](x) =

∫
Γ

E(x, y)φ(y)dsy, x ∈ Γ (2.8)

and

N [ψ](x) = T (∂x, νx)

∫
Γ

(T (∂y, νy)E(x, y))>ϕ(y)dsy, x ∈ Γ, (2.9)

the Dirichlet and Neumann problems reduce to the boundary integral equations

S[φ] = F, N [ψ] = G on Γ. (2.10)

It is well known that, as demonstrated in Fig.1, the eigenvalues of the single-layer and hypersingular
integral operators in equations (2.10) accumulate at zero and infinity, respectively. As a result (and as
illustrated in numerical tests in section 4.2), the solution of these equations by means of Krylov-subspace
iterative solvers such as GMRES generally requires large numbers of iterations. In addition, as discussed
in section 3.1, the solutions φ and ψ of equations (2.10) are not smooth at the end-points of Γ, and,
thus, they give rise to low order convergence (and require high discretization of the densities for a given
accuracy) unless such singularities are appropriately treated.
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(a) Sw (b) Nw

Figure 1: Eigenvalue distribution of Sw and Nw for the spiral-shaped arc. Red cross: (0, 0).

3 Weighted operators and new integral solvers

3.1 Regularity and singular behavior at the edge
The singular character of the solutions of scattering by open arcs is well documented [16]. In particular,

it is known that φ, ϕ can be expressed in the forms

φ ∼ ξ1√
d

+ η1, ϕ ∼ ξ2
√
d+ η2, (3.1)

where d denotes the distance to the edge, ξ1 and ξ2 are smooth cut-off functions, and where the functions
η1 and η2 are somewhat smoother than φ and ϕ. If the curve itself and the boundary functions F and G
are infinitely differentiable, it follows that

φ =
α√
d
, ϕ = β

√
d, (3.2)

where α and β are infinitely differentiable functions throughout Γ, up to and including the endpoints.
Thus, the singular character of these solutions is fully characterized by the factors d1/2 and d−1/2 in
equation (3.2).

In view of the regularity results (3.2), we introduce a positive integral weight w(x) > 0 with asymptotic
behavior w ∼

√
d at the edge (by which it is implied that the quotient w/

√
d is infinitely differentiable

up to the edge), and we define the weighted operators

Sw[α] = S
[α
w

]
, Nw[β] = N [βw],

so that equations (2.10) for the Dirichlet and Neumann problems may be expressed in the forms

Sw[α] = F, Nw[β] = G on Γ, (3.3)

respectively. In what follows a smooth parameterizations x(t) = (x1(t), x2(t)) defined in the interval
[−1, 1] is used for the curve Γ, and a canonical choice is made for the weight w: w(x(t)) =

√
1− t2.

3.2 Calderón relation for closed surfaces
It is well known that for acoustic scattering by closed smooth surfaces there holds the Calderón

formula

Na,cSa,c = −I
4

+ (K∗a,c)
2,
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where Sa,c,K∗a,c and Na,c are the corresponding single-layer, adjoint of double-layer and hyper-singular
boundary integral operators of acoustic scattering by closed surfaces, respectively, and K∗a,c is compact.
For elastic scattering by closed surfaces, we can obtain a similar Calderón formula for the single-layer
and hyper-singular boundary integral operators S,N . However, as discussed below, the adjoint K∗ of the
double-layer operator is non-compact—a fact that makes the elastic scattering problem more challenging
than its acoustic counterpart. But as indicated in what follows, NS can still be viewed as a compact
perturbation of a multiple of the identity operator.

The operator K∗ is given by

K∗[ψ](x) =

∫
Γ

T (∂x, νx)E(x, y)ϕ(y)dsy, x ∈ Γ. (3.4)

Utilizing the artificial traction operator (2.3), we additionally define the operators

K̃∗[ψ](x) =

∫
Γ

T̃ (∂x, νx)E(x, y)ϕ(y)dsy, x ∈ Γ,

Ñ [ψ](x) = T̃ (∂x, νx)

∫
Γ

(T̃ (∂y, νy)E(x, y))>ϕ(y)dsy, x ∈ Γ.

For the special choice (2.4) of the constants λ̃ and µ̃, it is known [18,21] that the kernel of K̃∗ is weakly-
singular, which implies that that K̃∗ is a compact operator. However, the kernel of K∗ is strongly
singular and, consequently, the operator K∗ itself is not compact. As indicated above, this presents a
singificant difficulty in our context which can, however, be resolved by appealing to a recent result [4]in
the elasto-static context—as indicated in what follows.

Let K∗0 denote the adjoint of the elastic double-layer operator in the zero-frequency case ω = 0. The
spectral properties of this kind of operator are best known in the electrostatic case (which involves the
Laplace equation), where they relate to plasmonics and cloaking by anomalous localized resonances, which
occur at eigenvalues and at the accumulation point of eigenvalues, respectively. The recent contribution [4]
shows that cloaking by anomalous localized resonance also occurs in the elastic case. A fundamental result
in that paper states that (K∗0 )2−C2

λ,µI is a compact operator (and, in particular, that K∗0 is polynomially
compact), where Cλ,µ is a constant that depends on the Lamé parameters:

Cλ,µ =
µ

2(λ+ 2µ)
.

This result is useful in our context. Indeed, noting that K∗ − K∗0 has a weakly-singular kernel it
follows that K∗ −K∗0 is a compact operator, and we obtain

(K∗)2 − C2
λ,µI = (K∗ −K∗0 )(K∗ +K∗0 ) + (K∗0 )2 − C2

λ,µI

is compact. We thus obtain the elastic Calderón formulae for closed smooth surfaces

NS = −
(

1

4
− C2

λ,µ

)
I +K(1), ÑS = −1

4
I +K(2), (3.5)

where K(1),K(2) are compact operators.
To verify the above results numerically, we consider the problem of elastic scattering by a circular

scatterer of radius one, and we choose ρ = 1, µ = 1, ω = 50. Fig. 2 displays the eigenvalue distribution
of NS and ÑS for various values of λ. (The eigenvalue computation was based on the exact regularized
formulations for the hypersingular integral operator given in section 3.4, implemented by means of the
high-order Nyström methodology [15] together with FFT for evaluation of tangential derivatives.) Choos-
ing a large enough number of descritization points the eigenvalues of NS and ÑS are seen to accumulate
at (−1/4 + C2

λ,µ, 0) and (−1/4, 0), respectively, as predicted by the result embodied in Equation (3.5).
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(a) NS, λ = 2 (b) ÑS, λ = 2

(c) NS, λ = 100 (d) ÑS, λ = 100

(e) NS, λ = −0.99 (f) ÑS, λ = −0.99

Figure 2: Eigenvalue distribution of NS and ÑS for a circular scatterer. Red points (+): (−1/4+C2
λ,µ, 0);

Black points (◦): (−1/4, 0); Green points (×): (0, 0). As predicted by theory, the eigenvalues of NS and
ÑS accumulate at the red and black points, respectively, and they are bounded away from zero and
infinity.
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(a) NwSw, λ = 2 (b) ÑwSw, λ = 2

(c) NwSw, λ = 100 (d) ÑwSw, λ = 100

(e) NwSw, λ = −0.99 (f) ÑwSw, λ = −0.99

Figure 3: Eigenvalue distribution of NwSw and ÑwSw for the spiral-shaped arc. Red points (+): (−1/4+

C2
λ,µ, 0); Black points (◦): (−1/4, 0); Green points (×): (0, 0). The eigenvalues of NwSw and ÑwSw are

bounded away from zero and infinity.
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3.3 Numerical study of the Calderón relation for open arcs
Given the smoothness of the solutions of the equations arising from the weighted operators Sw, Nw

and Ñw, and in light of equation (3.5), it is reasonable to consider the composite operator NwSw as a
possible basis for solution of open-arc problems. The operator ÑwSw could also employed in the Dirichlet
case. Figure (3) presents the eigenvalue distribution for discrete versions of the operators NwSw and
ÑwSw—which were obtained numerically for a spiral-shaped open arc using the spectrally accurate
quadrature rules described in section 4.1. It can be see from Fig. 3 that the eigenvalues of NwSw and
ÑwSw are bounded away from zero and infinity. A theoretical analysis of the Calderón relation for
acoustic diffraction by open arcs is presented in [9, 22]. The corresponding analysis for elastic problems
is left for future work.

In view of this numerical evidence and theoretical background on related problems we suggest that
the open arc problems can be solved effectively by means of the integral equations

NwSw[α] = Nw[F ], ÑwSw[α] = Ñw[F ], NwSw[β] = G on Γ. (3.6)

The smooth solutions α and β of these equations are related to the singular solutions of (2.10) via the
relations φ = α/w and ψ = β · w.

3.4 Regularized formulation for hyper-singular operator
In this section, we derive an accurate regularized formulation for the hyper-singular boundary integral

operator Ñw in light of the techniques presented in [6, 33] for the closed-surface case. The regularized
formulation for the hyper-singular boundary integral operator Nw can be obtained directly by letting
µ̃ = µ.

3.4.1 Closed-surface case

The artificial traction operator (2.3) can be expressed in the form

T̃ (∂, ν)u(x) = (λ+ µ)ν(∇ · u) + µ∂νu+ µ̃M(∂, ν)u (3.7)

where the operator M(∂, ν), whose elements are also called the Günter derivatives, is defined as

M(∂, ν)u(x) = ∂νu− ν(∇ · u) + ν × curl u.

In fact, the operator M in 2D is the multiplication of the tangential derivative and a constant matrix,
i.e.,

M(∂, ν)u(x) = A
du(x)

dsx
, A =

(
0 −1
1 0

)
.

Then following the technique in [33] which is part of the conversion of traction and normal derivatives
into tangential derivatives, it can be established that

Ñ [u](x) = −
∫

Γ

[
ρω2(νxν

>
y − ν>x νyI)− µ̃k2

sγks(x, y)Jνx,νy − ρω2γkp(x, y)νxν
>
y

]
u(y)dsy

+ (µ+ µ̃)2 d

dsx

∫
Γ

AE(x, y)A
du(y)

dsy
dsy + 2(µ+ µ̃)

d

dsx

∫
Γ

γks(x, y)
du(y)

dsy
dsy

− (µ+ µ̃)

∫
Γ

νx∇>x [γks(x, y)− γkp(x, y)]A
du(y)

dsy
dsy

− (µ+ µ̃)
d

dsx

∫
Γ

A∇y[γks(x, y)− γkp(x, y)]ν>y u(y)dsy, (3.8)

where

Jνx,νy = νyν
>
x − νxν>y .

We omit the proof here.
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3.4.2 Open-arc case

For the open-arc case, due to the smooth boundary-vanishing weight w in Ñw, the integration-by-parts
formula ∫

Γ

dF (y)

dsy
w(y)u(y)dsy = −

∫
Γ

F (y)
d(w(y)u(y))

dsy
dsy

holds. We thus, can obtain from the steps in [33] the regularized formulation for the hyper-singular
boundary integral operator Ñw as follows

Ñw[u](x) = −
∫

Γ

[
ρω2(νxν

>
y − ν>x νyI)− µ̃k2

sγks(x, y)Jνx,νy − ρω2γkp(x, y)νxν
>
y

]
w(y)u(y)dsy

+ (µ+ µ̃)2 d

dsx

∫
Γ

AE(x, y)A
d(w(y)u(y))

dsy
dsy + 2(µ+ µ̃)

d

dsx

∫
Γ

γks(x, y)
d(w(y)u(y))

dsy
dsy

− (µ+ µ̃)

∫
Γ

νx∇>x [γks(x, y)− γkp(x, y)]A
d(w(y)u(y))

dsy
dsy

− (µ+ µ̃)
d

dsx

∫
Γ

A∇y[γks(x, y)− γkp(x, y)]ν>y w(y)u(y)dsy. (3.9)

4 Numerical experiments

4.1 Numerical implementations

In this section, we present spectral quadrature rules for the operators Sw, Nw and Ñw which give rise
to an efficient and accurate solver for the general elastic and thermoelastic open arc diffraction problems.

As indicated in Section 3.1, without loss of generality we may use a smooth parameterization x(t) =
(x1(t), x2(t)), t ∈ [−1, 1] of Γ satisfying |x′(t)| = |dx(t)/dt| > 0, we choose the weight w as w(x(t)) =√

1− t2. Hence, the operator Sw give rise to

Sw[φ](t) =

∫ 1

−1

E(x(t), x(τ))
φ(x(τ))√

1− t2
|x′(τ)|dτ

Introducing the change of variables t = cos θ and τ = cos θ′ and defining νθ = νx(cos θ), we obtain the
periodic weighted single-layer operator (using the same notation)

Sw[φ](θ) =

∫ π

0

E(x(cos θ), x(cos θ′))φ̃(θ′)|x′(cos θ′)|dθ′, φ̃(θ′) = φ(x(cos θ′)).

It follows from the definition of the fundamental solution and the series expansions of Bessel functions [1,
15], we can obtain the decomposition

E(x(t), x(τ)) = E1(t, τ) log |t− τ |+ E2(t, τ).

where

E1(t, τ) = − 1

2πµ
J0(ksr(t, τ))I +

1

2πρω2

ksJ1(ksr(t, τ))− kpJ1(kpr(t, τ))

r(t, τ)
I

− 1

2πρω2

(x(t)− x(τ))>(x(t)− x(τ))

r(t, τ)2
[k2
sJ2(ksr(t, τ))− k2

pJ2(kpr(t, τ))]

with r(t, τ) = |x(t)− x(τ)| and

E2(t, τ) = E(x(t), x(τ))− E1(t, τ) log |t− τ |.
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When t = τ , we have

E1(t, t) = − 1

2πµ
I +

k2
s − k2

p

4πρω2
I,

and

E2(t, t) =
i

4µ

[
1 +

2i

π

(
log

ks|x′(t)|
2

+ Ce

)]
+
k2
s − k2

p

4πρω2

x′(t)>x′(t)

|x′(t)|2

− i

4ρω2

{
k2
s − k2

p

2

[
1 +

2i

π
(log |x′(t)|+ Ce)−

i

π

]
+
i

π

(
k2
s log

ks
2
− k2

p log
kp
2

)}
.

Use of the Chebyshev points
{
θn = π(2n+1)

2N

}
, n = 0, 1, · · · , N − 1 gives rise to a spectrally convergent

cosine representation for smooth, π-periodic and even function φ̃ as

φ̃(θ) =

N−1∑
n=0

an cos(nθ), an =
2− δ0n
N

N−1∑
j=0

φ̃(θj) cos(nθj). (4.1)

It is known from the diagonal property of Symm’s operator in the cosine basis en(θ) = cos(nθ) [11, 32]
that

− 1

2π

∫ π

0

log | cos θ − cos θ′|en(θ′)dθ′ = λnen(θ), λn =

{
log 2

2 , n = 0,
1

2n , n ≥ 1.
(4.2)

Applying equation 4.2 to each term of expansion (4.1) we can obtain the well-known spectral quadrature
rule for the logarithmic kernel∫ π

0

log | cos θ − cos θ′|φ̃(θ′)dθ′ ∼ π

N

N−1∑
j=0

φ̃(θj)R
(N)
j (θ), (4.3)

where

R
(N)
j (θ) = −2

N−1∑
m=0

(2− δ0m)λm cos(mθj) cos(mθ). (4.4)

Together with the trapezoidal integration for smooth function we therefore obtain the spectrally quadra-
ture approximation of the operator So that

Sw[φ](θ) ∼ π

N

N−1∑
j=0

φ̃(θj)|x′(cos θj)|
[
E1(cos θ, cos θj)R

(N)
j (θ) + E2(cos θ, cos θj)

]
. (4.5)

Then we can evaluate Sw[φ] in the sets of quadrature points {θn, n = 0, · · · , N − 1} by means of a
matrix-vector multiplication involving the matrix Sw whose elements are defined by

[Sw]ij =
π

N
|x′(cos θj)|

[
E1(cos θi, cos θj)R

(N)
j (θi) + E2(cos θi, cos θj)

]
,

in which the quantities R(N)
j (θi) can be evaluated through

R
(N)
j (θi) = R(N)(|i− j|) +R(N)(i+ j + 1),
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where

R(N)(l) = −
N−1∑
m=0

(2− δ0m)λm cos

(
lmπ

N

)
, l = 0, · · · , 2N − 1,

while this expression can significantly reduce the computational cost of Swo .
In order to evaluate Nw and Ñw, we use the regularized formulations given in section 3.4. In (3.8),

the first term on the right hand side can be evaluated by means of a rule analogous to the single-layer
operator of acoustic [9]). The other terms take one of the following forms

D0S1T0, S2T0, D0S3, (4.6)

where Sj , j = 1, 2, 3, whose kernels are of logarithmic type, can be evaluated analogous to Sw, and

D0[φ̃](θ) =
1

sin θ

dφ̃(θ)

dθ
=
dφ(t)

dt
, T0[φ̃](θ) =

d

dθ
(φ̃(θ) sin θ). (4.7)

Then we approximate the quantity T0[φ̃] by means of term per term differentiation of the sine expansion
of the function φ̃(θ) sin θ (which can itself be produced efficiently by means of an FFT). The quantity
D0[φ̃] can be evaluated by invoking classical FFT-based Chebyshev differentiation rules [30]).

4.2 Numerical examples
The numerical examples presented in what follows were obtained by means of a Matlab implementation

of the quadrature rules introduced in section 4.1 for numerical evaluation of the operators Sw, Nw and
Ñw in conjunction with the iterative linear algebra solver GMRES. In all cases the (maximum) errors
reported were evalueated by comparisons with exact or highly-resolved numerical solutions. Select the
elastic parameters as ρ = 1, µ = 1 and λ = 2. We call the equations in (3.3) and (3.6) as Dir(Sw),
Neu(Nw) and Dir(NwSw), Dir(ÑwSw), Neu(NwSw), respectively.

Table 1: Near-field errors for elastic scattering by a unit circle. GMRES tol: 10−12.
ω N Dir(S) Dir(NS) Dir(ÑS) Neu(N) Neu(NS)

30 6.59× 10−4 6.59× 10−4 6.59× 10−4 9.53× 10−3 9.53× 10−3

10 40 1.55× 10−6 1.55× 10−6 1.55× 10−6 6.02× 10−5 6.02× 10−5

60 2.54× 10−12 2.50× 10−12 2.68× 10−12 2.13× 10−11 2.16× 10−11

150 1.33× 10−7 1.33× 10−7 1.33× 10−7 1.58× 10−7 1.58× 10−7

50 160 2.51× 10−10 2.51× 10−10 2.54× 10−10 1.27× 10−9 1.27× 10−9

200 7.12× 10−13 1.58× 10−12 9.53× 10−12 2.22× 10−12 1.65× 10−12

We first demonstrate the accuracy of the regularized formulation given in section 3.4. To see this,
let Γ be a unit circle and the exact solutions for elastic and thermoelastic problems are given by u =

∇xH(1)
0 (kp|x − z0|) and u = E12(x, z0), p = E22(x, z0), respectively where z0 = (0, 0.5). We apply the

Nyström method [15] for the discretization of the operators S, N and Ñ . Table 1 shows the spectral
(exponentially-fast) convergence which further demonstrate the accuracy of our regularized formulations.

Now we consider the elastic scattering by open arcs. Let uinc be a plane incident pressure wave
uinc = dinc exp(ikpx · dinc) where dinc = (cos θinc, sin θinc) and θinc is the incident direction. This means
that the boundary data is given by

F = −uinc, G = −T (∂, ν)uinc.

To demonstrated the high-order character of the algorithm we consider the elastic scattering by the
’Spiral-Shaped Arc’ characterized by the parameterization

x(t) = exp(t)(cos 5t, sin 5t), t ∈ [−1, 1].
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Table 2: Near-field errors for elastic scattering by a Spiral-Shaped Arc. GMRES tol: 10−8.
ω N Dir(Sw) Dir(NwSw) Dir(ÑwSw) Neu(Nw) Neu(NwSw)

100 2.97× 10−2 2.97× 10−2 2.97× 10−2 2.22× 10−1 2.22× 10−1

10 150 7.41× 10−5 7.41× 10−5 7.41× 10−5 4.33× 10−3 4.33× 10−3

200 2.06× 10−11 2.39× 10−11 2.10× 10−11 7.42× 10−10 7.43× 10−10

600 6.11× 10−3 1.95× 10−4 6.11× 10−3 1.49× 10−1 4.22× 10−2

50 800 4.76× 10−10 8.51× 10−8 1.19× 10−7 1.46× 10−6 1.86× 10−6

1000 2.01× 10−14 1.33× 10−7 1.97× 10−12 1.57× 10−8 9.36× 10−9

Choose θinc = π/4. We present the numerical errors of the solution produced by means of the oper-
ators Sw, Nw, ÑwSw and NwSw for the elastic scattering problems which demonstrate the spectral
(exponentially-fast) convergence.

Table 3: Iterations for elastic scattering by a Flat Strip. GMRES tol: 10−5.
ω N Dir(Sw) Dir(NwSw) Dir(ÑwSw) Neu(Nw) Neu(NwSw)
10 160 21 12 12 31 13
30 480 33 23 16 88 24
50 800 41 30 19 137 34
80 1280 48 43 21 204 47
100 1600 51 50 23 246 58

Table 4: Computing time (seconds) required for elastic scattering by a Flat Strip. GMRES tol: 10−5.
ω N Dir(Sw) Dir(NwSw) Dir(ÑwSw) Neu(Nw) Neu(NwSw)
10 160 0.01 0.06 0.06 0.17 0.06
30 480 0.07 0.41 0.29 2.9 0.53
50 800 0.22 1.3 0.73 11.2 1.9
80 1280 0.60 4.4 2.1 40.4 8.9
100 1600 0.97 7.7 3.3 76.3 15.5

In Table 3 and 4, we present the iteration numbers required to achieve the GMRES tolerance 10−5

for the scattering by a flat strip [−1, 1] and the exponential spiral mentioned above. It can be seen that
for Neumann problems, Neu(Nw) requires very large number of iterations as the frequency grows and,
thus, the computing times required by the low-iteration equation Neu(NwSw) are significantly lower
than those required by Neu(Nw). But for the Dirichlet problem, Dir(NwSw) requires almost the same
number of iterations as Neu(NwSw) which is significantly larger that Dir(Sw) for the spiral-shaped arc.
But the corresponding equation Dir(ÑwSw) requires fewer iterations than Dir(Sw) for both flat strip and
spiral-shaped arc. We present the corresponding total time required by the solver to find the solution
once the needed matrixes for iteration, Sw, S1, S2 and S3 mentioned in section ?, are stored. It should
be pointed out that the total computing cost of the equations Dir(ÑwSw) and Dir(NwSw) is generally
higher than Dir(Sw) since the application of the operator in Dir(Sw) is significantly less expensive than
the application of operator in Dir(ÑwSw) and Dir(NwSw). In addition, from the regularized formulation,
the cost for the generation of the matrixes Ñw and Nw (except the computing of tangential derivatives)
is about 5 times of that for Sw.

In order to obtain an indication of the manner in which an open arc problem can be viewed as a
limit of closed-curve problems and provide an independent verification of the validity of our solvers, we
consider a test case in which the flat strip [−1, 1] is viewed as the limit as a→ 0 of the family of closed
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(a) |u1|, θinc = π/4 (b) |u2|, θinc = π/4

(c) |u1|, θinc = 3π/4 (d) |u2|, θinc = 3π/4

Figure 4: Elastic scattering by a Spiral-Shaped Arc with Dirichlet boundary condition. GMRES tol:
10−5.
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(a) |u1|, θinc = 0 (b) |u2|, θinc = 0

(c) |u1|, θinc = π/2 (d) |u2|, θinc = π/2

Figure 5: Elastic diffraction patterns with Dirichlet condition (a,b) and Neumann condition (c,d). GM-
RES tol: 10−5.
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Table 5: Iterations for elastic scattering by a Spiral-Shaped Arc. GMRES tol: 10−5.
ω N Dir(Sw) Dir(NwSw) Dir(ÑwSw) Neu(Nw) Neu(NwSw)
10 160 73 75 61 198 76
30 480 109 139 94 444 145
50 800 126 196 113 651 204
80 1280 147 274 139 985 291
100 1600 160 330 157 1222 348

Table 6: Computing time (seconds) for elastic scattering by a Spiral-Shaped Arc. GMRES tol: 10−5.
ω N Dir(Sw) Dir(NwSw) Dir(ÑwSw) Neu(Nw) Neu(NwSw)
10 160 0.08 0.25 0.18 0.8 0.23
30 480 0.36 2.7 1.6 10.7 3.7
50 800 0.93 15.9 4.6 41.9 15.7
80 1280 2.5 47.6 13.7 183.2 51.2
100 1600 3.7 53.9 23.7 347.8 93.8

curves x(t) = (cos t, a sin t). It is known that the scattered field u admits the asymptotic behavior

u(x) =
eikpx+iπ/4√

8πkp|x|
u∞p (x̂)x̂+

eiksx+iπ/4√
8πks|x|

u∞s (x̂)x̂⊥ +O(|x|−3/2), |x| → ∞.

Then for the Dirichlet problem, the P-part u∞p and S-part u∞p of the far-field pattern of u are given by

u∞p =

∫
Γ

e−ikpx̂·y[x̂ · φ(y)]/w(y)dsy,

u∞s =

∫
Γ

e−iksx̂·y[x̂⊥ · φ(y)]/w(y)dsy

Using the closed-curve Nyström method we evaluate the scattered field of Dirichlet problems for values of
a approaching 0 and present the P-part and S-part of the far-field pattern side-by-side the corresponding
far-field pattern for the limiting open arc as produced by the Sw-based open-arc solver. Clearly, the
closed-curve and open-arc solutions are quite close to each other.

5 Conclusion
We have introduced new integral solvers and associated numerical algorithms for the elastic scattering

by open arcs with Dirichlet or Neumann boundary condition in two dimensions. The new methods enjoy
spectral convergence and reduce the number of GMRES iterations consistently across various geometries
and frequency regimes. In particular, the new formulation is highly beneficial for the Neumann problem,
giving rise to order-of-magnitude improvements in computing time over the original hypersingular formu-
lation. Theoretical investigation of the Calderón formula in open-arc case and the generalization of the
method enabling efficient solution of problems of elastic and thermoelastic scattering by open-surfaces in
three dimensions are left for future work.
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(a) (b)

(c) (d)

(e) (f)

Figure 6: Far-field patterns u∞p (a,c,e) and u∞s (b,d,f) for the scattering by a sequence of increasingly
thin closed ellipse converging to the flat strip.
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