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Mathematical Models of Physiological Responses to Exercise

Somayeh Sojoudi, Benjamin Recht, and John C. Doyle

Abstract—This paper develops empirical mathematical models
for physiological responses to exercise. We first find single-input
single-output models describing heart rate variability, ventilation,
oxygen consumption and carbon dioxide production in response
to workload changes and then identify a single-input multi-output
model from workload to these physiological variabilities. We also
investigate the possibility of the existence of a universal model for
physiological variability in different individuals during treadmill
running. Simulations based on real data substantiate that the
obtained models accurately capture the physiological responses to
workload variations. In particular, it is observed that (i) different
physiological responses to exercise can be captured by low-order
linear or mildly nonlinear models; and (ii) there may exist a
universal model for oxygen consumption that works for different
individuals.

I. INTRODUCTION

The area of system identification deals with building math-
ematical models for physical processes based on experimental
measurements. Several methods and algorithms have been de-
veloped in the literature for the identification of a linear time-
invariant (LTI) system in both time and frequency domains
[1]–[4]. However, nonlinear system identification is a more
difficult problem and there are many challenging issues that
are yet unsolved [5], [6]. If the structure of the nonlinear
system to be identified is known a priori, the identification
process amounts to a parameter estimation problem. The main
difficulty associated with a nonlinear parameter estimation
problem is the inability to find a globally optimal solution
in general. It is often the case that no prior information is
available about the structure of the system being identified.
To address this problem, different partially-successful methods
have been proposed in the literature, which are based on
Volterra series, Wiener series, or basis function representation
of an approximate model of the system [7]–[9].

The Hammerstein system is a cascade connection of a
static nonlinearity followed by a linear dynamic system.
Hammerstein system identification has become popular due to
its wide range of applications [9]–[11]. Several identification
approaches have been proposed for these systems, such as
least squares [9], subspace approach [12], and Kernel-based
approach [13].

It is known that every LTI discrete-time system with fading
memory can be approximated arbitrarily precisely by an LTI
model followed by a static nonlinear part. Such a nonlinear
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system is referred to as Wiener system. This implies that
although the space of nonlinear fading-memory systems is
utterly complex, the nicely characterizable set of Wiener
systems is dense in this space [14]. Although the class of
Hammerstein systems is a counterpart for the class of Weiner
systems, no result has been reported in the literature to date
about the denseness of this class in the space of nonlinear
fading-memory systems.

Several system identification methods have been extensively
used to find biological models [15]–[19]. The identification
of physiological variability during exercise is an important
problem whose goal is to obtain simple physiological models.
Such models can be used for a wide variety of biomedical
applications, such as the prediction of the most appropriate
changes in treatment, diet, or exercise program. In particular,
the model identification of heart rate variability and oxygen
consumption during exercise has been the center of attention in
several researches [20]- [21]. For instance, the paper [20] mod-
els the heart rate response during and after treadmill walking
exercise as a feedback interconnected nonlinear system. The
work [22] also studies the feasibility of automatic feedback
control of oxygen uptake during treadmill exercise, which
requires the parameter identification of both the plant and
the feedback controller. By combining system identification
with basic physiological models, paper [23] shows that robust
efficiency and actuator saturation tradeoffs can explain healthy
human heart rate variability.

The primary objective of this work is to find an appropriate
model for the physiological variability in response to exercise.
We aim to empirically show that most of the physiological
variabilities can be modeled by low-order linear or mildly
nonlinear (Hammerstein) dynamical systems. To this end, we
use the existing modeling techniques in system identification,
but develop customized local search algorithms to solve such
nonconvex estimation problems (since we have observed that
an off-the-shelf algorithm would result in a local solution
whose corresponding model does not fit our data well).
More precisely, one major challenge with the existing system
identification techniques (including those surveyed above) is
that they often require access to a global optimization solver
to find the best model. As a remedy, practitioners often use
various local search algorithms and reformulation techniques
to solve those estimation problems, but then the accompanying
theoretical guarantees on system identification are no longer
valid. The issue of dealing with nonconvexity for data-driven
problems exists in machine learning as well, and there is a
recent line of research that shows certain classes of learning
problems do not have spurious local minima and therefore
customized local search algorithms (with saddle-point escap-
ing properties) could then find a global solution [24]–[28].
Inspired by this, we develop customized numerical algorithms
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to learn the underlying physiological models, which are based
on iterative techniques and could in principle converge to a
sub-optimal solution that is a non-global local solution or a
saddle point. However, our simulations on real data confirm
that these algorithms indeed converge to satisfactory solutions.
This could, in part, be justified by the abovementioned results
in machine learning and the findings of the recent paper [29]
stating that gradient descent efficiently converges to a global
optimizer of the maximum likelihood objective of an unknown
single-input single-output system under certain conditions.

The remainder of the paper is organized as follows. Numer-
ical algorithms are presented in Section II. Empirical models
are obtained based on real data in Section III, and several
important observations are made accordingly. Concluding re-
marks are drawn in Section IV.

II. CUSTOMIZED LOCAL SEARCH ALGORITHMS

The objective of this work is to find a mathematical model
describing the physiological response to different levels of
exercise intensity. It is assumed that this model takes workload
(W ) as the input and generates four outputs, namely heart
rate (HR), ventilation (V E), oxygen (O2) and difference of
carbon dioxide and oxygen (CO2−O2). In this part, we adopt
the existing system identification techniques, but develop cus-
tomized numerical algorithms to solve nonconvex estimation
problems for finding a satisfactory model of exercise based
on the data collected from biking or running on treadmill.
One of the main challenges associated with the underlying
problem is that the structure of the underlying system from W
to HR,V E,O2, CO2−O2 is not known a priori, and indeed
this system may be highly nonlinear. To simplify the problem,
we first restrict our attention to the system identification of
linear single-input single-output (SISO) systems, which can be
used to identify the best model from W to each of the outputs
HR,V E, and O2. The method will later be generalized to
the system identification of nonlinear single-input multi-output
(SIMO) models, as the objective of the present work demands.
A secondary goal of this paper is to study the possibility of
the existence of a universal model that fits the physiological
variability of different individuals.

A. Algorithm for linear SISO systems

Given a positive discrete time instant τ and two sequences
of scalar numbers û := {û[k]}τk=0 and ŷ := {ŷ[k]}τk=0, it is
desired to obtain a discrete-time SISO system with the known
order n ∈ N such that when the input û is applied to the
system, its output on the time interval [0, τ ] becomes as closely
to ŷ as possible. The model being sought is assumed to be of
the form

x[k + 1] = Ax[k] +Bu[k]

y[k] = Cx[k] + d, k = 0, 1, 2, ...
(1)

where x[k] ∈ <n, u[k] ∈ < and y[k] ∈ < denote the state,
input and output of the system, respectively, and d ∈ < is an
offset term. The unknown parameters of this system are A,
B, C, d and x[0]. Note that the number of scalar parameters
involved in the system identification problem is equal to (n+

1)2 + n in general. However, one can realize the system in a
canonical form to reduce this number to 3n+1. More precisely,
assume with no loss of generality that

A =


a1 1 0 0 ... 0
a2 0 1 0 ... 0
...

...
...

...
...

...
an 0 0 0 ... 0

+ I (2a)

C =
[

1 0 ... 0
]

(2b)

where a1, a2, ..., an are some unknown parameters to be found.
It is important to note that a variant of the observability
canonical form is considered here for the pair (A,C), with
the difference that the matrix A has an extra term I whose
role will become clear later in this work. For the sake of the
system identification, define a cost function as follows:

g(y, ŷ, û;A,B, d, x[0]) :=

τ∑
k=0

‖y[k]− ŷ[k]‖2 (3)

where ‖ · ‖ denotes the matrix 2-norm operator and y :=
{y[k]}τk=0. Note that this cost function measures the discrep-
ancy between the experimental data ŷ and the system’s output
y when the input û is applied to the system. The goal is
to minimize the cost function g(y, ŷ, û;A,B, d, x[0]) for the
parameters A,B, d, x[0]. To this end, one can write:

y[0]
y[1]
y[2]

...
y[τ ]

 =


C
CA
CA2

...
CAτ

x[0] +


1
1
1
...
1

 d

+


0 0 · · · 0
CB 0 · · · 0
CAB CB · · · 0

...
...

. . .
...

CAτ−1B CAτ−2B · · · CB




û[0]
û[1]
û[2]

...
û[τ − 1]


(4)

It can be concluded from this equality that the minimization of
g(y, ŷ, û;A,B, d, x[0]) may not be a convex problem due to
the existence of the product term AB. In what follows, a local
search method will be proposed, which will be later shown
to work satisfactorily for the physiology application. The
key idea is that the minimization of g(y, ŷ, û;A,B, d, x[0])
amounts to a simple least-square problem provided the matrix
A is known (in light of the above relation). Hence, the
following descent algorithm can be used to find a sub-optimal
set of parameters A,B, d, x[0].

Algorithm 1:

• Step 1) Pick an initial Schur matrix A(0) ∈ <n×n in the
form of (2a), and set i = 1.

• Step 2) Solve a least-squares problem to minimize the
cost function g(y, ŷ, û;A(i−1), B, d, x[0]). Denote the
globally optimal values of B, d and x[0] with B(i), d(i)

and x[0](i), respectively.
• Step 3) Use a local search algorithm to minimize
g(y, ŷ, û;A,B(i), d(i), x[0](i)) for a Schur matrix A in
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the form of (2a). Denote a locally optimal value of A
with A(i).

• Step 4) If ‖A(i) − A(i−1)‖+ ‖B(i) −B(i−1)‖+ ‖d(i) −
d(i−1)‖ + ‖x[0](i) − x[0](i−1)‖ > ε for a given positive
tolerance ε, increase i by 1 and then jump to Step 2.

• Step 5) The system (1) with the parameters A = A(i),
B = B(i), d = d(i) and x[0] = x[0](i) is a sub-optimal
SISO model for the input-output data sets û and ŷ.

B. Algorithm for nonlinear SISO systems

Since the unknown real system associated with the input-
output data sets û and ŷ may be a nonlinear system, finding
the best linear model fitting the data can be potentially too
conservative. We consider the class of Hammerstein systems,
where each system is composed of a static nonlinear part
on the input followed by an LTI model. No result has been
reported in the literature to date about the denseness of
this class in the space of nonlinear fading-memory systems.
Hence, the best Hammerstein model for fitting the data sets
û and ŷ may not be able to approximate the real-world
system satisfactorily. In what follows, we will discuss how
to modify Algorithm 1 to find a locally optimal Hammerstein
model. It will be later verified on real experimental data that
the physiological responses to exercise can be modeled by
Hammerstein systems satisfactorily.

Assume that the unknown SISO system being found for the
input-output data sets û and ŷ is required to be of the form

x[k + 1] = Ax[k] + f(u[k])

y[k] = Cx[k] + d, k = 0, 1, 2, ...
(5)

as opposed to the affine form (1), where f(·) : < → <n is an
unknown function to be identified. The space of the unknown
parameters of this system is infinite dimensional (due to the
presence of f(u)), which is an obstacle to the underlying
system identification problem. To alleviate this issue, one can
search for the best f(u) that is representable as a linear
combination of a set of pre-specified basis functions. Given
the basis functions f1(u), f2(u), ..., fµ(u), we write f(u) as
Bf̃(u), where

f̃(u) =
[
f1(u) f2(u) · · · fµ(u)

]T
(6)

and B ∈ <n×µ is the matrix of unknown coefficients. The
data fitting problem now amounts to finding the best model in
the form of

x[k + 1] = Ax[k] +Bu

y[k] = cx[k] + d, k = 0, 1, 2, ...
(7)

for the input-output sequences {f̃(û[k])}τk=0 and {ŷ[k]}τk=0.
One can adopt Algorithm 1 to find a sub-optimal set of the
parameters A,B, d, x[0].

C. Algorithm for universal nonlinear SISO systems

Given a natural number p, consider 2p input-output se-
quences ûj := {ûj [k]}τk=0 and ŷj := {ŷj [k]}τk=0, j =
1, 2, ..., p. The objective of this part is to find a matrix
A ∈ <n×n, a function f : < → <n, scalars d1, d2, .., dp

and vectors x1[0], x2[0], ..., xp[0] ∈ <n for which the output
of the system

x[k + 1] = Ax[k] + f(u[k])

y[k] = cx[k] + dj , k = 0, 1, 2, ...
(8)

with the initial state x[0] = xj [0] in response to the input
ûj is as closely as possible to ŷj over the time period
[0, τ ] for every j ∈ {1, 2, ..., p}. We call this system a
universal system. The primary application of this problem
is in finding a universal model for different athletes doing
exercise. To address this problem, the first step is to make the
parameters space finite dimensional using the aforementioned
basis function technique. Thus, a model in the form of (7) is
sought. A variant of Algorithm 1 can now be used for this
purpose.

Algorithm 2:
• Step 1) Select an initial Schur matrix A(0) ∈ <n×n in

the form of (2a), and set i = 1.
• Step 2) Solve a least-squares problem to minimize the

cost function
p∑
j=1

g(y, ŷj , ûj ;A
(i−1), B, dj , xj [0]) (9)

Denote the globally optimal values of the relevant param-
eters with B(i), d(i)j and xj [0](i), for j = 1, 2, ..., p.

• Step 3) Use a local search algorithm (such as a gradient
method) to minimize:

p∑
j=1

g(y, ŷj , ûj ;A,B
(i), d

(i)
j , xj [0](i)) (10)

for a Schur matrix A in the form of (2a). Denote a locally
optimal value of A with A(i).

• Step 4) If ‖A(i) − A(i−1)‖ + ‖B(i) − B(i−1)‖ +∑p
j=1 ‖d

(i)
j −d

(i−1)
j ‖+

∑p
j=1 ‖xj [0](i)−xj [0](i−1)‖ > ε

for a given positive tolerance ε, increase i by 1 and then
jump to Step 2.

• Step 5) The system (8) with the parameters A = A(i),
f(u) = B(i)f̃(u), dj = d

(i)
j and x[0] = xj [0](i) is a sub-

optimal SISO model for the input-output data sets ûj and
ŷj , for every j ∈ {1, 2, ..., p}.

The analysis provided in [29] can be used to partially justify
the convergence of the above algorithm to a global solution
under technical conditions.

D. Algorithm for linear SIMO systems

Given a natural number r, consider an input sequence û :=
{û[k]}τk=0 and r output sequences ŷj := {ŷj [k]}τk=0, j =
1, 2, ..., r. Define:

ŷ[k] =
[
ŷ1[k] ŷ2[k] · · · ŷr[k]

]T
, k = 0, 1, 2, ...

(11)
and ŷ := {ŷ[k]}τk=0. The objective is to find a single-input
r-output system of the form:

x[k + 1] = Ax[k] +Bu[k]

y[k] = Cx[k] + d, k = 0, 1, 2, ...
(12)
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such that y := {y[k]}τk=0 is as closely as possible to ŷ if the
input û is applied to the system. The unknown parameters
of the system identification problem are A ∈ <n×n, B ∈
<n, C ∈ <r×n and x[0] ∈ <n. Algorithms 1 and 2 provided in
the preceding subsections were based on the fact that finding
the optimal values of the parameters is a least-squares problem
if the matrix A is known. However, this idea breaks down for
the identification of a SIMO system. More precisely, there does
not exist an observable canonical form for a SIMO system
to start with. Since the unknown system being identified
has a single input, one may realize it in the controllable
canonical form. Nonetheless, this does not help because the
corresponding optimization problem is not convex in that case
even if A is known a priori. To resolve the issue, we find r
SISO systems:

xj [k + 1] = Axj [k] +Bju[k]

yj [k] =
[

1 0 · · · 0
]
xj [k] + dj , k = 1, 2, ...

(13)

(where j = 1, 2, ..., r) with the parameters A ∈ <n×n,
B1, ..., Br ∈ <n, d1, ..., dr ∈ < and x1[0], ..., xr[0] ∈ <n
such that the following cost function is locally minimized:

r∑
j=1

g(yj , ŷj , û;A,Bj , dj , xj [0]) (14)

where yj := {yj [k]}τk=0. Algorithm 2 can be easily modified
to find a sub-optimal solution of this problem. Thus, r SISO
systems can be obtained for the r individual input-output data
sets u and ŷj, j = 1, 2, ..., r, so that they all have the same
matrix A. The next step is to combine these SISO systems
to obtain a single-input r-output system corresponding to the
input-output data sets u and ŷ. To this end, we form a parallel
connection of these r systems as follows:

x̃[k + 1] = Ãx̃[k] + B̃u[k]

y[k] = C̃x̃[k] + d
(15)

where:

• Ã ∈ <rn×rn is a block diagonal matrix with the (j, j)th

block A for every j ∈ {1, 2, ..., r}.
• B̃ ∈ <nr is a column vector obtained from B1, B2, ..., Br

by stacking them up.
• C̃ ∈ <r×rn is a block diagonal matrix with the (j, j)th

block entry
[

1 0 · · · 0
]

for every j ∈ {1, 2, ..., r}.
• d̃ ∈ <r is a column vector obtained from d1, d2, ..., dr

by stacking them up.

The obtained system (15) is a near-optimal model for the data
sets u and ŷ, but its order is nr rather than the desired value
n. Due to the particular structure of the matrix Ã, it can be
observed that the system (Ã, b̃, C̃) is uncontrollable and indeed
it has a realization (A,B,C) where A ∈ <n×n, B ∈ <n and
C ∈ <r×n.

So far, a single-input r-output system of order n is obtained
whose transfer function from its input to its jth output is
equal to the transfer function of the jth SISO system (13)
found earlier, for every j ∈ {1, 2, ..., r}. The only issue
that may cause a problem is that the r separate initial states

x1[0], x2[0], ..., xr[0] obtained by solving r SISO system iden-
tification problems cannot always be incorporated into a single
initial state for the reduced-order model.

III. MATHEMATICAL MODEL OF PHYSIOLOGICAL
RESPONSE

This section obtains empirical mathematical models for the
physiological responses to exercise. The algorithms proposed
in the previous section will be deployed to find satisfactory
models from the data gathered from four different experiments
of running on treadmill. The input watts corresponding to these
experiments are given in Figure 1. The first goal is to identify a
model of oxygen variability (V̇O2) with respect to the workload
intensity (W ). Algorithm 1 is used to study the possibility of
the existence of an accurate first-order linear model for each of
these experiments. Figure 2 shows the output of the first-order
linear model of V̇O2 for Experiment 1. It can be observed that
the model obtained by the proposed heuristic method fits the
data very well. An important implication of this result is that
the V̇O2 response to W is governed by a simple first-order
differential equation (this phenomenon was observed for other
experiments as well).

The V̇O2 signals for Experiments 1 to 4 are very similar in
nature. Hence, one may speculate that there exists a universal
model for the response of V̇O2 to W . To study this conjecture,
we first use Algorithm 1 to find three separate first-order linear
models corresponding to V̇O2 for Experiments 1 to 3 and then
deploy Algorithm 2 to obtain a single universal first-order
linear model. The corresponding plots are given in Figure
3, which clearly demonstrate that a simple system obtained
by Algorithm 2 for V̇O2 works satisfactorily for different
experiments.

In contrast to the V̇O2 signal, the experimental data sug-
gests that the ventilation variability (V̇V E) is more complex
and probably more individual. For each of the underlying
experiments, Algorithm 1 failed to find a satisfactory first-
order linear system modeling the V̇V E response to W . This
can be due to the nonexistence of such a model. Nonetheless,
an acceptable second-order linear model can always be found
for Experiments 1 to 4. For Experiment 1, the model’s output
is compared to the experimental data in Figure 4. The plots
clearly show that the response of V̇V E to W can be modeled
via a second-order linear system.

The next quantity of interest is the difference between
CO2 production and O2 consumption, i.e., the CO2 − O2
variability. Our study on a number of different data sets reveals
that V̇CO2−O2 is far more complex than V̇O2, V̇V E , V̇HR and,
therefore, its governing model is unlikely to be a low-order
linear system. The best second-order linear model fitting the
V̇CO2−O2 data is compared with the real data in Figure 5 for
Experiment 1 to demonstrate the poor performance of a linear
system. To find a nonlinear model for the same experiment,
define the following basis functions:

fi(u) = max(0, u− τi), i = 1, 2, 3 (16)

where:
τ1 = 0, τ2 = 220, τ3 = 290 (17)
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Fig. 1: (a)-(d): The input signals for Experiments 1-4.
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Fig. 2: The output of the first-order linear model corresponding
to V̇O2 for Experiment 1.

Using only three simple basis functions as given above, the
method proposed here is used to find a second-order nonlinear
system modeling the V̇CO2−O2 response to W . The corre-
sponding plots are given in Figure 6 to show how accurately
the fits describe the data. The signals g1(u) and g2(u) in the
figure are the first and second entries of the nonlinear vector
function f(u). Note that these nonlinear functions are very
simple and a low-order system with mild nonlinearities can
model the underlying response satisfactorily. We noticed that
a superior fitting can be attained by considering more basis
functions, which leads to a complicated nonlinearity on the
input.

It is desirable to find an integrated single-input four-output
system modeling all responses V̇O2, V̇CO2, V̇V E , and V̇HR to
W . By applying the method proposed in Subsection D to

Experiment 1, it can be observed that there exists a second-
order linear model capturing these four individual responses.
The corresponding plots are given in Figure 7 to illustrate
how well a low-order linear model can predict four different
quantities V̇O2, V̇CO2, V̇V E and V̇HR from W . Similarly, there
exist integrated linear single-input four-output systems of order
2 for other experiments, and Figure 8 shows the results
obtained for experiment 4.

As stated earlier, the V̇HR response to W can be modeled
by a low-order linear system, whereas the V̇CO2−O2 response
to W requires a nonlinear system. The question arises as
to whether the models for V̇HR and V̇CO2−O2 can be gov-
erned by the same dynamics (i.e., an identical A matrix).
Algorithm 2 is used for Experiment 4 to find the best third-
order nonlinear models for V̇HR and V̇CO2−O2 when their
dynamics are forced to be identical. The models’ signals
are compared with experimental signals in Figure 9. The
functions g1(u), g2(u), g3(u) and ḡ1(u), ḡ2(u), ḡ3(u) in the
figure denote the input nonlinearities of the models for V̇HR
and V̇CO2−O2, respectively.

Remark 1: It is expected that a physiological model corre-
sponding to each of the signals V̇HR, V̇O2, V̇CO2, and V̇V E
has a non-decreasing input function f(u). This implies that
the coefficient matrix B being found should be constrained to
have only nonnegative entries. This constraint can be easily
incorporated into Algorithm 1 or Algorithm 2 by imposing
to solve a nonnegative least-squares problem as opposed to a
standard least-squares problem. The corresponding simulations
given above are all obtained based on imposing a nonnegativity
constraint on B.

Remark 2: It can be observed in Figures 2, 4, 5 and 7 that
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Fig. 3: A universal first-order linear model corresponding to V̇O2 for Experiments 1, 2 and 3 is compared with three individual
first-order linear models for these experiments.
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Fig. 4: The output of the second-order linear model corre-
sponding to V̇V E for Experiment 1.
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Fig. 5: The output of the second-order linear model corre-
sponding to V̇CO2−O2 for Experiment 1.

the experimental data is simply a line over three distinct time
intervals. The reason is that the data could not be measured in
those intervals and therefore a simple line interpolation method
was used to predict the missing data. Hence, the model’s
output may not fit the experimental data very well on these
intervals as the unmeasured real data is not expected to be a
line.

Remark 3: One may use an off-the-shelf nonlinear solver
to find an empirical model based on the existing system

identification techniques. However, we have observed that the
resulting estimation problems based on our data are highly
nonlinear that a generic local search algorithm could easily
become trapped in a local solution such that its corresponding
model does not fit the data well. Although due to space
restrictions the results of those unsatisfactory models are not
presented here, the models found using our customized numer-
ical algorithms fit the data very well. The main contribution
of this work is the findings and observations made on the
obtained models.

IV. CONCLUSIONS

This work develops empirical mathematical models for the
physiological responses to exercise. In particular, the variabil-
ity of heart rate (HR), ventilation (V E), oxygen (O2) and
carbon dioxide (CO2) to workload intensity (W ) is studied.
Based on simulations performed on different experimental
data, we observe that: i) the response of each of the signals
HR,V E,O2 and CO2 to W can be modeled by either a
first- or a second-order linear system; ii) there exists a single
(universal) first-order linear model for the O2 variability of
different individuals; iii) the effect of W on all of the signals
HR,V E,O2 and CO2 can be captured by a single-input four-
output second-order linear model. Besides, this study shows
that the response from W to O2 − CO2 cannot be modeled
by a first- or second-order system unless mild nonlinearities
are incorporated in the input of the system.
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ḡ
1
(u

)

0 100 200 300 400
0

4
2

x 10−3

ḡ
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