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Abstract— Active classification, i.e., the sequential decision
making process aimed at data acquisition for classification pur-
poses, arises naturally in many applications, including medical
diagnosis, intrusion detection, and object tracking. In this work,
we study the problem of actively classifying dynamical systems
with a finite set of Markov decision process (MDP) models.
We are interested in finding strategies that actively interact
with the dynamical system, and observe its reactions so that
the true model is determined efficiently with high confidence.
To this end, we present a decision-theoretic framework based
on partially observable Markov decision processes (POMDPs).
The proposed framework relies on assigning a classification
belief (a probability distribution) to each candidate MDP model.
Given an initial belief, some misclassification probabilities, a
cost bound, and a finite time horizon, we design POMDP
strategies leading to classification decisions. We present two
different approaches to find such strategies. The first approach
computes the optimal strategy “exactly” using value iteration.
To overcome the computational complexity of finding exact
solutions, the second approach is based on adaptive sampling to
approximate the optimal probability of reaching a classification
decision. We illustrate the proposed methodology using two
examples from medical diagnosis and intruder detection.

I. INTRODUCTION

We consider the following scenario as a running example.
A doctor needs to implement certain tests and treatments
to determine which disease a patient has in order to pre-
scribe further specialized tests and/or treatments. The doctor
makes a diagnosis from a finite set of (known) candidate
diseases, which can evolve dynamically, e.g. the symptoms
can change, with time, tests, and treatment choices. Each test
or treatment, which is implemented sequentially, can incur
uncertain reactions and some costs to the patient. For each
candidate disease, it is possible to probabilistically predict
the patient’s reaction to tests or treatments based on available
historical data. At each step, the doctor is required to decide
whether to make a diagnosis or to implement further tests
to gather more information based on the history of the
patient’s test results as well as the predicted reactions from
the patients. On the other hand, the diagnosis procedure
should not last too long, since the patient’s health condition
may worsen. Additionally, the cost to reach a diagnosis
should be bounded to make it affordable to the patient. Such
a classification procedure requires sequentially planning of
the tests, while respecting a given cost.
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Fig. 1: Active classification from a family of candidate
models. The model with shaded states is the true one.

The conventional approach for classification, which we
refer to as passive classification, is an open-loop process
that determines the class of the object of interest based on
whatever data provided. While a challenging problem itself,
such an approach is not suitable for the scenario described
above. Passive classification cannot decide what, when and
how to obtain data to best assist the classification task. As
a result, excessive amount of data (for example, the tests in
diagnosis scenario) may have to be collected. Furthermore,
potentially uninformative data and ignorance of the impact
of the data collection process on the object of interest may
make the classification results less accurate.

Active classification [1], on the other hand, is a sequential
decision-making process that has control over the data ac-
quisition and interacts closely with the object of interest.
Compared to passive classification, active classification is
a more plausible approach in many practical classification
applications, such as medical diagnosis [2], [3], intrusion
detection, and target tracking [4], where the object of interest
has certain underlying dynamics belonging to a family of
models. Each model is determined from the history data.
The classification process directly interacts with the state
evolution of the object by selecting actions and obtaining
observations as a closed-loop system such that classification
decisions can be reached more efficiently and accurately (see
Figure 1).

In this paper, in order to capture the stochastic uncertain-
ties of the outcomes associated with each action (such as a
treatment) during classification, we assume the underlying
dynamic model of the object to be classified belongs to
a family of Markov decision processes (MDPs). Then, we
formalize an active classification problem that can be cast
into the framework of partially observable Markov decision
processes (POMDPs).

As a comprehensive model for planning in partially ob-
servable stochastic environments, POMDPs characterize the
uncertainties in the state evolution due to actuation imperfec-

ar
X

iv
:1

81
0.

00
09

7v
1 

 [
cs

.S
Y

] 
 2

8 
Se

p 
20

18
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/228120934?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


tions or interactions with a stochastic environment as well as
lack of environmental information or the observation noises.
POMDPs have been applied to a variety of applications in
medical diagnosis [2], [3], health care [5], robotic sensing
and perception [1], [6], [7], [8] and wireless communication
[9]. Most existing results, however, are based on minimizing
the costs incurred by actions and classification uncertainty as
measured in terms of entropy [10], where the classification
accuracy is indirectly embedded in the rewards.

Because the underlying true model is not known, it is
only possible to maintain a belief, which in the proposed
setting, is a probability distribution over the possible MDP
models and evolves based on the history of observations
and actions. The classification decision is made whenever
the probability of a certain MDP model being the true
model of the system exceeds a given threshold based on
the misclassfication probability, as shown in Figure 1. Such
a framework is particularly suitable to time- and cost-
bounded classification tasks. The classification is translated
to a sequential decision-making problem under uncertainties.
Our objective is to find a strategy to dynamically select
classification actions such that with an optimized probability,
a classification decision can be made with a bounded cost.
A similar problem was studied recently in [11], where the
belief in a POMDP must reach some goal states. However,
in [11], such requirement must be satisfied with probability
1, which could be restrictive, considering the probabilistic
uncertainties in the belief dynamics.

Given the POMDP model and the desired misclassifica-
tion probability, we propose two approaches to obtain the
classification strategy that optimizes the probability to reach
a classification decision. The exact solution is inspired by
the cost bounded reachability in MDPs [12]. It relies on
obtaining the underlying MDP whose states are beliefs from
the original POMDP. This recursive process terminates once
the cost bound, a classification decision, or the maximum
number of steps is reached. Then the optimal strategy can
be computed from the obtained belief MDP. To overcome
the computational complexity of finding exact solutions
for POMDPs, our second approach adaptively samples the
actions in the belief MDP to approximate the optimal prob-
ability to reach a classification decision.

The rest of this paper is structured as follows. Section
II provides the necessary modeling preliminaries. Section
III formulates the problem. Two algorithms are presented
in Section IV to find the optimal strategy to reach a classi-
fication decision with the bounded cost. Simulation results
are presented in Section V. Section VI concludes the paper.

II. PRELIMINARIES

In this section, we describe preliminary notions and defi-
nitions used in the sequel.

A. Markov Decision Processes [13]

Formally, a Markov decision process (MDP) is defined as
follows.

Definition An MDP is a tuple M = (S, ŝ, A, T, C) where

• S is a finite set of states;
• ŝ is the initial state;
• A is a finite set of actions;
• T : S × A × S → [0, 1] is the probabilistic transi-

tion function with T (s, a, s′) := P (st = s′|st−1 =
s, at−1 = a),∀s, s′ ∈ S, a ∈ A; and

• C : S ×A→ R≥0 is the cost function.

In an MDP, a finite state-action path is ω = s0a0s1a1...,
where si ∈ S, ai ∈ A and T (si, a, si+1) > 0.

B. Hidden-Model MDPs [14]

The classification problem assumes that the object of
interest is an unknown MDP that belongs to a known finite
set of MDPs. Formally, it can be modeled as a hidden
model MDP (HMMDP) where the underlying true MDP is
known to be one out of a finite set M = {Mi|i ∈ C},
C = {1, ..., L}, i.e., there are L candidate models in total.
We assume, without loss of generality, the MDPs share the
same state space S, initial state ŝ, the action set A and cost
function C.

Given the initial state ŝ, we denote b̂ŝ(i) as the initial
probability that Mi is the underlying true model. Then
an HMMDP is essentially a partially observable Markov
decision process (POMDP) P = (Q, π,A, T, Z,O,C) where
• Q = S × C;
• π : Q → [0, 1] is the initial state distribution with
π(s, i) = b̂ŝ(i), if s = ŝ and 0 otherwise;

• A is a finite set of actions;

• T ((s, i), a, (s′, i′)) =

{
Ti(s, a, s

′) if i = i′

0 otherwise;
• Z = S is the set of all possible observations;
• O : Q × Z → [0, 1] is the observation function with
O((s, i), z)) = 1 if z = s and 0 otherwise;

• C : S ×A→ R≥0 is the cost function.
The definition of T implies that the underlying true

model Mi will not change to any other model during the
classification process. From the definition of the observation
function O, it can be seen that the observation gives the
perfect information about the state element s in the state-
model tuple (s, i), but not the model element i. Therefore,
when s is observed, we denote b(s, i) = bs(i) ≥ 0 for
simplicity.

For classification purposes, it is essential to keep track of
a belief b where b(i) ∈ [0, 1],

∑
i∈C b(i) = 1, which is a

probability distribution over all the possible MDP models.
The belief space B ⊆ RL represents the set of all possible
beliefs. It is then possible to obtain a belief MDP B =
(B, b̂ŝ, A, T, CB) where
• b ∈ B is the belief;
• the belief state transition probability is described by

T (b′s′ , a, bs) =
∑
i

bs(i)Ti(s, a, s
′), (1)

with
b′s′(i) =

Ti(s, a, s
′)bs(i)∑

j Tj(s, a, s
′)bs(j)

; and (2)



• CB(bs, a) = C(s, a) is the cost associate to executing
action a at state s.

III. PROBLEM FORMULATION

To make a classification decision within a finite time
bound H , we keep track of the belief bs and claim the
underlying model belongs to Mi, whenever

bs(i) ≥ λi, (3)

where λi ∈ (0.5, 1] denotes the minimum confidence to
claim that the system belongs to Mi. Equivalently, 1 − λi
represents the maximal acceptable error rate for Mi. Such
a belief state is a terminal state in the belief MDP. Once
the terminal state is reached, the classification task is ac-
complished. To make the classification decision unique, i.e.,
there will be only one model to be declared true according to
(3), we require that λi > 0.5, i ∈ C. We denote G = ∪i∈CGi
where Gi = {b|bs(i) ≥ λi} as the set of beliefs that should
be reached to make a classification decision.

In addition to the reachability requirement, it is also
essential to accomplish the classification task with a fixed
amount of cost. That is, for state-action path ω in the belief
MDP B where ω = b0a0b1a1...bN such that bi /∈ G, i < H
and bN ∈ G,N ≤ H , it is required that

C(ω) ≤ D, where C(ω) =

N−1∑
i=0

C(ai). (4)

Here ω denotes a path that a classification decision is met for
the first time, where C(ω) represents its accumulated cost.
We denote ΩG as the set of such paths that reach G within
time bounds H and cost bound D.

For the classification task, the objective is to compute a
policy µ to dynamically select classification actions. Since
the classification should have bounded horizon and costs, the
policy µ is µ = {µi|µi : B × E → A, 0 ≤ i ≤ H}, which
maps the current time step i ∈ [0, H], the belief state b ∈ B
and accumulated cost e ∈ E = N, to an action a ∈ A.

Given a strategy µ to resolve the nondeterminism in the
action selection in the HMMDP model and a path ω =
b0a0b1a1...bN , it is possible to calculate its probability

P (ω) =
∏
i

T (bi, ai, bi+1),

where µi(bi, ci) = ai, ci =
∑i
j=0 C(aj). Thus, with a strat-

egy µ, it is possible to compute the probability P≤Dµ (♦≤HG)
to reach a classification decision within time bound H and
cost bound D, where

P≤Dµ (♦≤HG) =
∑
ω∈ΩG

P (ω).

All in all, our objective is to compute a strategy µ∗ such that

µ∗ = argmax
µ

P≤Dµ (♦≤HG), (5)

i.e., µ∗ achieves the maximum probability to reach the
decision region G in H steps with the accumulated cost no
larger than D.

In many cases, reaching a classification decision may not
be the only objective. For example, it is more desired to
reach a diagnosis decision at the early or intermediate stages
of a disease. For robotics applications, it is more desirable
to classify the object of interest without colliding with it.
Therefore, the belief may have to be constrained within a set
of safe belief Bsafe ⊆ B before the classification decision
is reached. In such cases, the set of goal states G is defined
to be G = ∪i∈CGi where Gi = {b|b ∈ Bsafe, bs(i) ≥ λi}
and the objective is to find a policy µ∗ such that

µ∗ = argmax
µ

P≤Dµ (BsafeU
≤HG), (6)

which denotes that maximized probability for the belief state
to reach a classification decision G while remaining in Bsafe,
considering the bounds on the horizon H and cost D. It can
be seen that (5) is a special case of (6) where Bsafe = B.

IV. COST-BOUNDED ACTIVE CLASSIFICATION

Given an HMMDP model with the corresponding MDPs
Mi, i ∈ C, the time bound H and cost bound D, in this
section we introduce two approaches to solve the active
classification problem as defined by (5). Then we discuss
how the solutions generalize to (6).

A. Exact Solution

Since the classification decision is defined on belief states
as shown in (3), the first step is to obtain a finite belief-
state MDP B from the HMMDP model considering the
accumulated cost. Such a procedure is called unfolding and
inspired by the similar treatment in MDPs [12] for cost-
bounded properties. In this paper, we extend this procedure
to POMDPs. Without considering the reachability and cost
constraints as defined in (3) and (4), the approach to obtain
B is in Section II-B. However, with cost constraints, the state
space Q of the belief MDP B is the product of the belief B
and the accumulated cost E.

The algorithm for obtaining B is shown in Algorithm 1.
It is essentially a recursive breadth-first traversal starting
from the initial state q̂ = (b̂ŝ, 0) with initial belief b̂ŝ
and accumulated cost of 0. The algorithm goes on for H
iterations or until there is no more state to be expanded, as
can be seen in Line (2). At each iteration i, we iterate through
every state q = (b, e) to be expanded (Line 4), where b is the
belief state, e is the cost accumulated so far. For each action
a ∈ A (Line 5 ), we calculate its next accumulated reward
e′ d (Line 6). We terminate the expanding if e′ > D (Line
7), i.e., when the cost bound is exceeded. Otherwise, the
successor belief state b′ is computed (Line 9) as well as the
transition probability (Line 10). If b′ ∈ G, a classification
decision is reached, otherwise q′ = (b′, e′) is added to a
set Next and will be expanded in the next iteration (Line
14). By construction, it is not hard to see that no state in
B will violate the cost bound and every state whose belief
component belongs to G is a terminal state.

From the output of Algorithm 1, it can be observed that
the accumulated cost is already encoded in the state space
of B, therefore the cost function component in B is omitted.



Algorithm 1: Cost-Bounded Unfolding
input : An HMMDP model with MDPs Mi, i ∈ C,

C = {1, ..., L}, time bound H , cost found D,
initial belief b̂ŝ and reachability constraint as
defined in (3).

output: Finite state MDP B = (Q = B × E, b̂, A, T ).

1 Q = {(b̂ŝ, 0)}, Cur = {(b̂ŝ, 0)}, i = 0;
2 while i < H and Cur 6= ∅ do
3 Next = {};
4 for q = (bs, e) ∈ Cur do
5 for a ∈ A do
6 e′ = e+ C(s, a) ;
7 if e′ ≤ D then
8 for s′ ∈ S do
9 Compute b′ according to (2) ;

10 Let q′ = (b′, e′), T (q, a, q′) is
computed according to (1);

11 if q′ /∈ Q then
12 Q = Q ∪ q′, ;
13 if b′ /∈ G then
14 Next = Next ∪ q′;

end
end

end
end

end
end

15 Cur = Next;
end

16 return B;

Once B is obtained, it is then possible to calculate the optimal
strategy µ∗ on B to achieve the following probability

Pmax(♦≤HG) = Pµ∗(♦≤HG), (7)

i.e., the maximized probability to reach a classification
decision within H steps but without considering the cost
bound.

To get µ∗, it is needed to compute the maximal probability,
denoted as P qmax(♦≤kG) to reach G with in k ∈ {0, ...,H}
steps from any q ∈ Q:

P q̂max(♦≤HG) = Pmax(♦≤HG).

We first divide the state set Q into two disjoint subsets
Qyes = {q = (b, e)|b ∈ G} and Q? = Q\Qyes. The compu-
tation of P qmax(♦≤kG) is essentially a dynamic program as
shown below.

P qmax(♦≤iG) = 1, ∀q ∈ Qyes, i ∈ {0, ...,H}, (8)

P qmax(♦≤0G) = 0, ∀q ∈ Q?, and (9)

P qmax(♦≤iG) = max
a∈A

∑
q′∈Q

T (q, a, q′)P q
′

max(♦≤i−1G),

(10)

∀q ∈ Q?, i ∈ {1, ...,H}.

Algorithm 2: Cost-bounded adaptive multi-stage sam-
pling (CB-AMS)

input : A state q = (bs, e) in B, the number of
samples Ni, time horizon i.

output: The estimated maximal probability P̃Ni
i (q).

1 if e > D or i > H then
return 0;

end
2 if bs ∈ G then

return 1;
end

3 for a ∈ A do
4 Sample a next state q′ = (b′, e′) by taking action a,

where e′ = e+ C(s, a);
5 Nq

a,i = 1;
6 Q̃(q, a) = CB-AMS(q′, Ni+1, i+ 1) ;

end
7 n = |A|;
8 while n < Ni do
9 a∗ = argmaxa( Q̃(q,a)

Nq
a,i

+
√

2 lnn
Nq

a,i
);

10 Sample a next state q′ = (b′, e′) by taking action
a∗, where e′ = e+ C(s, a∗);

11 Q̃(q, a∗) = Q̃(q, a∗)+ CB-AMS(q′, Ni+1, i+ 1) ;
12 Nq

a∗,i = Nq
a∗,i + 1, n = n+ 1;

end
13 P̃Ni

i (q) = 1
Ni

∑
a Q̃(q, a);

14 return P̃Ni
i (q);

Then it can be seen that for i ∈ {1, ...,H},

µ∗i (q) = argmax
a∈A

∑
q′∈Q

T (q, a, q′)P q
′

max(♦≤i−1G).

B. Approximate Solution via Adaptive Sampling in Belief
Space

As can be seen in Algorithm 1, the exact solution in-
volves constructing the belief MDP B, whose state space
grows exponentially with the time bound H . It leads to
the well-known curse of dimensionality in the computation
of Pmax(♦≤HG) and hinders the application of Algorithm
1 to problems with large state spaces and a large time
horizon H . Furthermore, the memory needed to store B
grows exponentially as well.

To address both the complex belief MDP B and intractable
computation of Pmax(♦≤HG), we now propose to use sam-
pling algorithms [15] to estimate the optimal classification
probabilities. In particular, we leverage the adaptive multi-
stage sampling algorithm (AMS) proposed in [16]. The key
observations for the active classification problem in (5) that
make the AMS a reasonable choice are as follows. First,
since the MDP models in M are typically smaller than
the belief MDP B, it is easier to simulate sample paths in
B than explicitly specifying B itself. Furthermore, AMS is
particularly suitable for models with a large state space but
small action space [16], where it is unlikely to revisit the



same belief state multiple times in a sampled run, which is
exactly the case the belief MDP B obtained with Algorithm
1. It can be observed that in B, the action space remains the
same as the original MDPs. Furthermore, the belief states
in B takes values in a continuous space where generally it
is very rare to revisit the same belief state with the same
accumulated cost in a simulated run. Algorithm 2 shows the
belief state sampling procedure, termed as CB-AMS short
for cost-bounded adaptive multi-stage sampling.

The input to Algorithm 2 is a state q = (b, e) in B, the
number of Ni samples to be collected and the current time
step i. The output is P̃Ni

i (q) which is the estimated maximal
probability to reach a classification decision from state q with
horizon H − i. The initial call is CB-AMS((b0, 0), N0, 0)
is for the initial belief b0 and time horizon 0. At Line 1,
if the accumulated cost or the time horizon exceeds the
bound, it will return 0, since the probability to reach a
classification decision is 0, and there is no need to go
further. At Line 2, if the belief b reaches its goal G, the
algorithm will return 1. Then from Line 3 to Line 6, an
initialization is performed to first try each action a and
sample a subsequent state q′ = (b′, e′), where b′ is sampled
based on the transition probability as defined in (1). At Line
6, CB-AMS is called recursively where Q̃(q, a) denotes the
sum of returned rewards (essentially the probabilities) by
executing action a from state q. In Line 7, n denotes the
number of samples collected and is initialized to be |A|.
We will then enter the sampling loop that terminates when
the number of samples n reaches Ni. In each sampling
iteration, we first select the action by the equation defined
in Line 9. The selection criterion balances between sampling
actions with a high average return value Q̃(q,a)

Nq
a,i

and trying

actions that are less sampled as denoted by
√

2 lnn
Nq

a,i
, where

Nq
a,i denotes the number of times that the action a has

been sampled from the state q at time horizon i. Obviously∑
aN

q
a,i = n. It can be observed that the actions that lead

to a higher probability to reach a classification decision
are sampled more often and thus avoid exploring the belief
states and actions that are unlikely to lead to a classification
decision.

The following theorem shows that the output of Algorithm
2 converges to Pmax(♦≤HG) as the number of samples
Ni, 0 ≤ i ≤ H goes to infinity.

Theorem 1. If CB-AMS gets run with input Ni for i =
0, ...,H with arbitrary initial condition q ∈ Q, then

lim
N0→∞

lim
N1→∞

. . . lim
NH→∞

E[P̃N0
0 (q)] = P qmax(♦≤HG),

where P qmax(♦≤HG) represents the maximum probability to
reach the decision region G in H steps with costs no larger
than D from state q.

Proof. In Algorithm 2, we are effectively sampling from
the MDP B with the state q = (bs, c) at time horizon i.
From Line 1 and 2, once c exceeds the cost bound D or i
exceeds the horizon bound H , no reward will be returned.

Otherwise, once bs reaches the goal G within the cost and
horizon bound, a reward of 1 will be returned. We denote
R(q, a) as the reward by executing action a at state q. Note
that this reward is not to be confused with the cost function
C that represents the classification cost, for example, the test
and treatment costs for medical diagnosis. Equivalently, we
assign R(q, a) = 1 for all a ∈ A, q = (bs, c), c ≤ D, bs ∈ G
and R(q, a) = 0 for q’s otherwise. Given a strategy µ =
{µt|µt : Q → A, 0 ≤ t ≤ H}, the value function Vi(q) for
state q and time step i is

V µi (q) = E[

H∑
t=i

R(q, µt(qt))|qi = q]

with q ∈ Q, i = 0..., H . Given a state q = (bs, c), V µi (q) = 0
if c > D and V µi (q) = 1, if c ≤ D and bs ∈ G. V µH+1(q) =
0. Furthermore, once reaching a state q = (bs, c) with c > D
or bs ∈ G, the algorithm will return the corresponding reward
and such q will not have successive states.
V µi (q) can be equivalently written as

V µi (q) =
∑
q′∈Q

P (q, µi(q), q)V
µ
i+1(q′).

Therefore, it is not hard to see that V µi (q) = Pµq (♦≤H−iG).
Algorithm 2 serves to approximate the optimal value function
V ∗i = maxµ V

µ
i (equivalently the optimal probability).

Once we get the MDP with the reward structure R, where
the value function Vi(q) essentially denotes the probability
to reach G from q within H − i steps and the bounded cost,
the rest of proof follows Theorem 3.1 in [16].

Once the optimal value function (probability) has been
estimated by Algorithm 2, it is then possible to extract the
policy at each state q and horizon i by

µi(q)
∗ = argmax

a

∑
q′∈Q

P (q, a, q)Ṽ ∗i (q′),

where Ṽ ∗i (q) = P̃Ni
i (q).

Note that this sampling approach is based on the given
POMDP model, which has been obtained from history data,
for example, the database of medical diagnosis. Therefore,
at Line (4) and Line (10) of Algorithm 2, we sample from
known distributions as defined by the POMDP model P ,
instead of trying medication actions to patients and observe
their reactions.

C. Reach-Avoid in Belief Space

Algorithm 1 and Algorithm 2 can be generalized naturally
for (6) as the optimization objective, where the belief b
should remain in Bsafe ⊆ B. The unfolding procedure is
almost identical with Algorithm 1 except in Line 14. There
will be an additional constraint, where b′ ∈ Bsafe, i.e., if b′ is
not in Bsafe, it will not be expanded in the next iteration. For
Algorithm 2, the difference is in Line 1, where if b /∈ Bsafe,
it will return 0.



s1start s2 s3

stage 1 stage 2 stage 3

Fig. 2: Feasible state transitions in HMMDP.

V. SIMULATION

A. Medical Diagnosis and Treatment

In this section, we introduce a particular example in
medical diagnosis, where HMMDP model is used to capture
how stages for a family of diseases evolve based on tests and
treatment as shown in Figure 2. In particular, the states in
the MDP represents the early stage, medium stage and late
stage of the disease, with an increasing order of the severity.
There are two possible diseases modeled by two MDPs M1

and M2 that need to be diagnosed and treated. The action
space includes three actions, namely

1) a1 for treatment 1,
2) a2 for treatment 2,
3) a3 for doing nothing but observe,

where treatment i as denoted by ai, is more effective on the
disease i with costs C(ai). For a3, it does not incur any cost
but the disease may have a higher probability to evolve to a
later stage. The transition probabilities are as shown in the
following matrices (11), where Ti(a)(j, k) = Ti(sj , a, sk).
The costs are as defined in (12) where C(i, j) = C(si, aj) .

T1(a1) =

0.8 0.2 0
0.7 0.2 0.1
0 0 1

 , T1(a2) =

0.6 0.4 0
0.2 0.4 0.4
0 0 1

 ,
T1(a3) =

0.5 0.5 0
0.1 0.6 0.3
0 0 1

 .T2(a1) =

0.6 0.4 0
0.1 0.5 0.4
0 0 1

 ,
T2(a2) =

0.9 0.1 0
0.8 0.1 0.1
0 0 1

 , T2(a3) =

0.3 0.7 0
0.1 0.3 0.6
0 0 1

 ,
(11)

C =

2 5 0
6 4 0
7 7 0

 (12)

The diagnosis decision is made for disease 1 or 2 if one
of following is satisfied.

bs(1) ≥ λ1 or bs(2) ≥ λ2, (13)

with the initial belief b̂s1 = (0.5, 0.5), cost constraint D =
10. One step unfolding according to the Algorithm 1 is
shown in Figure 3. If λ1 = 0.8, λ2 = 0.7, it can be seen that
if a2 is executed, there is 0.25 probability that the disease
is diagnosed to be type 1 (since bs2(1) = 0.8) at the shaded
state q4, with a cost of 5. Therefore, q4 will not be included
in the states to be expanded in the next iteration.

q0q1

q2 q3

q4

q5 q6

bs1 = ( 4
7 ,

3
7 ), c = 2

bs2 = ( 1
3 ,

2
3 ), c = 2 bs1 = (0.4, 0.6), c = 5

bs2 = (0.8, 0.2), c = 5

bs1 = (0.625, 0.375), c = 0 bs2 = ( 5
12 ,

7
12 ), c = 0

a1, 0.7

a1, 0.3

a2, 0.75

a2, 0.25

a3, 0.4

a3, 0.6

Fig. 3: One step unfolding
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Fig. 4: Maximum probability for (7). λa : {λ1 = 0.8, λ2 =
0.7}, λb : {λ1 = 0.9, λ2 = 0.8}, λc : {λ1 = 0.95, λ2 =
0.9}.

We implement both Algorithm 1 and Algorithm 2 in C++.
For Algorithm 1, the resulting MDP model is input into
the PRISM model checker [17] to compute the maximum
probability (7). For Algorithm 2, we set Ni = 2000, 0 ≤
i ≤ H . We also store the calculated values of P̃Ni

i (q) to
avoid recomputing them. The results are as shown in Figure
4 to illustrate how the maximum probability to diagnose the
disease increases with the horizon H . Typically, the higher
the classification threshold, the less likely that belief states to
make a classification decision can be encountered and thus
there is less probability of successful diagnosis. Furthermore,
the CB-AMS algorithm is able to closely estimate the optimal
probability.

Now let’s look at (6) where we try to reach a classifi-
cation decision without visiting undesired belief states. For
the medical diagnosis example, the desired property is to
diagnose the disease without reaching the late stage of the
disease, where the corresponding Bsafe can be defined as

Bsafe = {bs|s 6= s3}. (14)

For the medical diagnosis example, the results are as shown
in Figure 5. The same trend as in Figure 4 can be observed
where the maximum probability to safely reach G without
going out of Bsafe increases with a longer time horizon.
However, due to the extra safety constraint, the maximum
probabilities also decreases, compared to the results without
safety constraint. Again, the CB-AMS algorithm performs
well to estimate the optimal probability.
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Fig. 5: Maximum probability for (6) with Bsafe defined in
(14). λa : {λ1 = 0.8, λ2 = 0.7}, λb : {λ1 = 0.9, λ2 = 0.8},
λc : {λ1 = 0.95, λ2 = 0.9}.

TABLE I: Run times for (7) in seconds

Horizon H 1 2 3 4 5 6

λa
Unfold 0.31 0.93 3.13 9.88 24.24 224.12
CB-AMS 0.38 1.54 4.84 17.01 50.74 133.90

λb
Unfold 0.01 1.00 4.74 21.14 131.06 930.42
CB-AMS 0.49 3.83 5.62 25.52 78.25 196.18

λc
Unfold 0.01 0.06 4.48 20.24 189.67 1418.75
CB-AMS 0.40 1.71 5.54 26.40 103.84 272.88

The run times for both algorithms with regards to specifi-
cation (7) and (6) are as shown in Table I and Table II. For
Algorithm 1, the run time consists of the time to get the belief
MDP model B and compute the optimal probability. All the
experiments were run on a laptop with 2.6GHz i7 Intel R©

processor with 16GB memory. It can be seen that for a small
time horizon H , exact solution outperforms sampling in time
consumption, as the number of the states in B is small. But
as the horizon H grows, the run time from sampling grows
slower than the exact horizon and thus is more favorable.

TABLE II: Run times for (6) in seconds

Horizon H 1 2 3 4 5 6

λa
Unfold 0.40 0.71 2.39 7.62 30.34 229.89
CB-AMS 0.37 1.38 4.26 14.39 39.48 98.97

λb
Unfold 0.01 0.92 3.04 12.31 94.13 1054.71
CB-AMS 0.37 1.40 6.11 21.67 73.12 235.12

λc
Unfold 0.01 0.12 4.35 17.76 180.36 2211.70
CB-AMS 0.39 1.72 6.20 28.87 91.46 330.35

B. Intruder Classification

In automated surveillance applications [18], it is often
necessary to determine whether a detected target is a po-
tential threat before deploying security resources for further
intervention.

We present an example of a 8 × 8 gridworld shown in
Figure 6. The target is not allowed to reach the green zone.
The target is assumed to be either a hostile human intruder
(Class 1) or an animal (Class 2) which has no real threat. The
behaviors of the hostile and safe intruders are characterized
by two MDPs M1 and M2, respectively. The state in the
MDPs refers to target’s location in the gridworld, which is
observable through radar or some other static sensors in the
environment. At each time step the target moves to one of

Fig. 6: Gridworld with two potential classes of targets -
hostile (left) and safe (right). Green cells are sensitive areas.
Red cells are obstacles such as buildings. The yellow cell is
a hiding place for the hostile intruder.

its neighbouring cells randomly. The actions available to the
automated surveillance are

1) a1 for passive observation,
2) a2 for alarm through loudspeakers.

If a1 is chosen, a human intruder will attempt to move to the
sensitive area (the green region) as denoted by Sgreen. When
a2 is executed, the animal will be startled and move in all
directions with equal probability, while the human intruder
will tend to move towards the yellow region in Figure 6
ostensibly to hide. The human moves randomly but generally
heads to Sgreen or yellow region for action a1 or a2. The
randomness is to capture different human preferences and
human’s inherent decision uncertainty. The costs for a1 and
a2 at each state are 1 and 3, respectively.

The corresponding Bsafe can be defined as

Bsafe = {bs|s /∈ Sgreen}.

The classification decision is made if one of following is
satisfied.

bs(1) ≥ 0.7 or bs(2) ≥ 0.7,

with the initial belief b̂ŝ = (0.5, 0.5), step bound H = 6 and
cost bound D = 8, where ŝ is the initial state that intruders
at as seen in Figure 6.

The results of the experiment can be seen in Figure 7,
where exact solution is used to compute the optimal clas-
sification strategy. Suppose the target is a hostile intruder,
Figures 7a- 7d illustrate a run of the human movement, where
action a1 is executed at t = 0, 3, 6 and action a2 is executed
at t = 5. Figure 7i-7l depicts to the corresponding beliefs.

In the scenario shown in Figure 7c, the target is near Ssafe
and the corresponding belief is as seen in Figure 7k which
favors class 1. The optimal action at the time instance t = 5
is to sound the alarm. Then at t = 6, it is observed that
the target moves towards the yellow cell and the belief of
class 1 exceeds the threshold. This is where the classification
terminates and a human operator will be alerted. Figures 7e-
7h and 7m-7p shows the classification with a safe target (an
animal) where similar behavior can be observed. After the
alarm is used in t = 5 in Figure 7o, the rabbit runs to the top
right corner as seen in Figure 7p, a very unlikely move for a
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Fig. 7: Simulation of the classification problem in a gridworld environment with both target classes. Figures 7a- 7d and 7i-7l
correspond to a simulation with a hostile target. Figures 7e- 7h and 7m-7p correspond to a simulation with a safe target.

hostile intruder. As a result, the belief for class 2 exceeds the
threshold and the classification process terminates. In both
simulations, the final costs are 7.

VI. CONCLUSION

In this paper, we studied a cost-bounded active classi-
fication of dynamical systems belonging to a finite set of
MDPs. We utilized the POMDP modeling framework and
the objective was to actively select actions based on the
current belief, accumulated cost, and time step, such that
the probability to reach a classification decision within a cost
bound can be maximized. To solve the problem, we proposed
two approaches. The first one was an exact solver to obtain
the unfolded belief MDP model considering the cost-bound,
and then compute the optimal strategy. To mitigate the com-
putation burden, the second approach adaptively samples the
actions to estimate the maximum probability. One bottleneck
of the propose approaches is the computational complexity.
In the future, we will explore point-based methods [19] that
are popular in POMDP literature to surmount this difficulty.
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