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Abstract

In preference-based reinforcement learning (RL), an agent interacts with the envi-
ronment while receiving preferences instead of absolute feedback. While there is
increasing research activity in preference-based RL, the design of formal frame-
works that admit tractable theoretical analysis remains an open challenge. Building
upon ideas from preference-based bandit learning and posterior sampling in RL,
we present DUELING POSTERIOR SAMPLING (DPS), which employs preference-
based posterior sampling to learn both the system dynamics and the underlying
utility function that governs the user’s preferences. Because preference feedback
is provided on trajectories rather than individual state/action pairs, we develop
a Bayesian approach to solving the credit assignment problem, translating user
preferences to a posterior distribution over state/action reward models. We prove
an asymptotic no-regret rate for DPS with a Bayesian logistic regression credit
assignment model; to our knowledge, this is the first regret guarantee for preference-
based RL. We also discuss possible avenues for extending this proof methodology
to analyze other credit assignment models. Finally, we evaluate the approach
empirically, showing competitive performance against existing baselines.

1 Introduction

In many domains, ranging from clinical trials [40] to autonomous driving [36] and human-robot
interaction [26], it can be unclear how to define a reward signal for reinforcement learning (RL). In
such situations, the RL agent seeks to interact optimally with a human user; thus, rewards should
reflect the extent to which the algorithm achieves the user’s goals. Yet, for many systems, for instance
in autonomous driving [8] and robotics [7, 3], users have difficulty with both specifying numerical
reward functions and providing demonstrations of desired behavior. Furthermore, a misspecified
reward function can result in “reward hacking” [6], which occurs when the agent learns an undesirable
behavior that through some loophole, achieves a high reward. In such cases, the user’s preferences
form a more reliable measure of desired system behavior, and the preference data may be leveraged
in place of a standard numerical reward signal.

We thus study the problem of preference-based reinforcement learning (PBRL), where the RL agent
executes a pair of trajectories, and the user provides (noisy) preference feedback regarding which
trajectory has higher utility. While the study of PBRL has seen increased interest in recent years
[18, 13, 48], it remains an open challenge to design formal frameworks that admit tractable theoretical
analysis. Compared to the preference-based bandit setting, which has seen significant theoretical
progress (e.g., [53, 56, 2, 44, 15, 55, 32, 52, 41, 42]), one major challenge is how to address credit
assignment when only receiving feedback at the trajectory level compared to the state/action level.

In this paper, we present DUELING POSTERIOR SAMPLING (DPS), which uses preference-based
posterior sampling to tackle the PBRL problem in the Bayesian regime. Posterior sampling (also
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known as Thompson sampling) [45, 29, 20, 1, 30] is a Bayesian model-based approach to balancing
exploration and exploitation, thereby enabling the algorithm to efficiently learn models of both the
environment’s state transition dynamics and the reward function. Previous work on posterior sampling
in RL [29, 20, 1, 30] all focused on learning from absolute rewards, while we show how to extend
posterior sampling to both elicit and learn from trajectory-level preference feedback.

To elicit preference feedback, at every episode of learning, DPS draws two independent samples from
the posterior to generate two trajectories. This approach is inspired by the Self-Sparring algorithm
proposed for the bandit setting [41]. Our theoretical analysis is quite different from that in [41], due
to the need to incorporate trajectory-level preference learning and state transition dynamics.

To learn from preference feedback, DPS internally maintains a Bayesian state/action reward model
that explains the preferences. In other words, this reward model is a solution to the temporal credit
assignment problem [3, 56, 44, 13, 51, 48] and determines which of the encountered states and
actions are responsible for the trajectory-level preference feedback. Learning from trajectory-level
preferences is in general a very challenging problem, as information about the rewards is sparse
(often just one bit), is only relative to the pair of trajectories being compared, and does not explicitly
include information about actions within trajectories. We thus develop our approach while restricting
to standard Bayesian realizability assumptions inherent to most posterior sampling approaches.

We developed DPS concurrently with an analysis framework for characterizing regret convergence
in the episodic learning setting. To justify our overall approach, we show how to mathematically
integrate Bayesian credit assignment and draw dueling samples within the conventional posterior
sampling framework. We evaluate several possible Bayesian credit assignment models, and prove an
asymptotic no-regret rate for DPS using Bayesian logistic regression [5, 28] as the credit assignment
model. To our knowledge, this is the first PBRL approach with theoretical guarantees. In addition,
we also demonstrate that DPS delivers competitive performance in simulation.

2 Related work

Posterior sampling. Balancing exploration and exploitation is a key problem in reinforcement
learning (RL) and bandits. In the episodic learning setting, the agent typically aims to balance
exploration and exploitation to minimize its regret, i.e., the gap between the expected total rewards of
the agent and the optimal policy. Posterior sampling, first proposed in [45], is a Bayesian approach
toward achieving this goal, and iterates between (1) updating the posterior of a Bayesian environment
model and (2) sampling from this posterior to inform the subsequent policy. In both the bandit and
RL settings, posterior sampling has been demonstrated to perform competitively in experiments and
enjoy favorable theoretical properties in terms of its regret [30, 29, 1, 12].

Our approach builds upon two prior posterior sampling algorithms: Self-Sparring [41] for preference-
based bandit learning (also known as dueling bandits [53]) and posterior sampling RL [29]. Self-
Sparring [41] is a posterior sampling approach, and draws multiple samples to “duel” or “spar”
via preference elicitation. The algorithm iteratively: a) draws multiple samples from the posterior
model of each action’s reward; b) for each sampled model, executes the action with the highest
sampled reward; c) queries for preference feedback between the executed actions; and d) updates the
posterior according to the acquired preference data. In [41], the authors prove an asymptotic no-regret
guarantee for Self-Sparring with independent Beta-Bernoulli reward models for each action.

Within RL, posterior sampling has been applied to the finite-horizon setting with absolute rewards
[29]. Posterior sampling RL iterates over four steps: a) draw a sample from the Bayesian posterior
of the dynamics and rewards; b) compute the optimal policy for the sampled system; c) execute
the policy to get a roll-out trajectory; and d) update the posteriors with the new observations from
the roll-out. In [29], the authors show the expected regret is O(hS

√
AT log(SAT )), for number of

time-steps T , finite time horizon h, and discrete state and action spaces of sizes S and A, respectively.

A third line of relevant work is posterior sampling for Bayesian logistic regression [12, 16, 37], which
is used as our Bayesian credit assignment model. One difficulty with Bayesian logistic regression [5]
is the lack of a closed-form posterior. To handle this, we adopt the approach of [12] and use a Laplace
approximation. Other approaches include using Gibbs sampling algorithm [16]. One relevant related
application is [35], who apply Bayesian logistic regression to the multi-objective multi-armed bandit
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problem; to determine the utilities that a human assigns to different objectives, the algorithm queries
for pairwise preferences between expected reward vectors corresponding to different actions.

Preference-based learning. Previous work on preference-based RL (PBRL) has shown successful
performance in a number of applications, such as playing games [13], learning human preferences for
autonomous driving [36], and selecting a robot’s controller parameters [26, 4]. Yet, to our knowledge,
the PBRL literature still lacks theoretical guarantees.

Existing approaches for trajectory-level preference-based RL may be broadly divided into three
categories [47]: a) directly optimizing policy parameters [46, 11, 26]; b) learning a preference model
to predict action preferences in each state [18]; and c) learning a utility function to characterize the
rewards, returns, or values of state/action pairs [49, 50, 3, 51, 13]. In c), the utility is often modeled
as linear in the trajectory features. If those features are defined as visitations to each state/action pair,
then maximizing utility directly corresponds to maximizing the total (undiscounted) reward.

One popular paradigm, which we also adopt, is PBRL with underlying utility functions. By inferring
state/action rewards from preference feedback, one can derive relatively-interpretable reward models
and also use such methods as value iteration. In addition, utility-based approaches may be more
sample efficient compared to policy search and preference relation methods [47], as they extract more
information from each observation. Notably, [46] learn a Bayesian model over policy parameters,
and draw samples from its posterior to inform actions. From existing PBRL methods, their algorithm
perhaps most resembles ours; however, compared to utility-based approaches, policy search methods
typically require either more samples or expert knowledge to craft the policy parameters [48, 26].

Beyond RL, preference-based learning has been the subject of much research. The closest to
RL is the bandit setting [53, 56, 2, 44, 15, 55, 32, 52, 41, 42], which is essentially a single-state
variant of RL. Other settings include: active learning [36, 23, 17], which is focused exclusively
on learning an accurate model rather than maximizing utility of decision-making; learning with
more structured preference feedback [31, 38, 33, 39], where the learner receives more than one bit
of information per preference elicitation; and batch supervised settings such as learning to rank
[22, 14, 25, 9, 54, 10, 27].

3 Problem statement

Preliminaries. We consider fixed-horizon Markov Decision Processes (MDPs), in which rewards
are replaced by preferences over trajectories. This class of MDPs can be represented as a tuple,
M = (S,A,�, φ, p, p0, h), where the state space S and action space A are finite sets. The agent,
using policy π, episodically interacts with the environment with length-h roll-out trajectories of the
form τ = {s1, a1, s2, a2, . . . , sh, ah, sh+1}. Since we are eliciting preference feedback, in each
episode i, the agent executes two roll-outs τi1 and τi2, and observes a preference between the two.
The initial state is sampled from p0, while p defines the transition dynamics: st+1 ∼ p(·|st, at).

We use � to denote the stochastic preference relationship between trajectories, and φ(τ, τ ′) =
P(τ > τ ′) ∈ [0, 1] to capture the feedback generation mechanism. We assume that � is a total
ordering over trajectories, and τ � τ ′ ⇔ φ(τ, τ ′) > 1

2 . We use τ > τ ′ to denote the event
that trajectory τ was preferred over τ ′ in a preference elicitation, i.e., τ > τ ′ is observed with
probability φ(τ, τ ′). We further assume an underlying utility function r(τ) for each trajectory,
such that τ � τ ′ ⇔ r(τ) > r(τ ′), and define φ using r. For instance, if the preferences are
noiseless, then: φ(τi, τj) = I[r(τi) > r(τj)]. Alternatively, φ could be the linear link function [2]:
φlin(τi, τj) := (1 + r(τi)− r(τj))/2. We primarily assume a logistic or Bradley-Terry link function:
φlog(τi, τj) := [1 + exp(−c(r(τi)− r(τj)))]−1 with “temperature” c ∈ (0,∞). Our problem setting
resembles the PSDP defined in [50], except that additionally, we incorporate the noise model through
which the underlying utilities are stochastically translated to preferences. Finally, we assume that the
utilities decompose additively: r(τ) ≡

∑h
i=1 r(si, ai) for state/action pairs in τ .

Given a policy π, we can define the standard RL value function as the expected total utility of being
in state s at step i, and following policy π:

Vπ,i(s) = E

 h∑
j=i

r(sj , π(sj))|si = s

 , (1)
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Algorithm 1 DUELING POSTERIOR SAMPLING (DPS)
H = ∅ {Initialize history}
T = ∅ {Initialize list of preference data}
Initialize prior for f {Initialize state transition model}
Initialize prior for g {Initialize utility model}
while True do
π1 ← ADVANCE(H , T , f , g)
π2 ← ADVANCE(H , T , f , g)
Sample trajectories τ1 and τ2 from π1 and π2

Observe feedback b = I(τ2 > τ1)
H = H ∪ (sτ11 , a

τ1
1 , s

τ1
2 ) ∪ . . . ∪ (sτ2h , a

τ2
h , s

τ2
h+1)

T = T ∪ (τ1, τ2, b)
FEEDBACK(H , T , f , g)

end while

and now we can define the optimal policy π∗ as the one with maximal value for all input states. Note
that Es1∼p0 [Vπ,1(s1)] ≡ Eτ∼π,M [r(τ)]. Given fully specified dynamics and reward models, p and
r, it is straightforward to apply standard dynamic programming approaches such as value iteration
to arrive at the optimal policy under p and r [43]. The goal of learning, then, is infer p and r to the
extent necessary for good decision-making.

Learning problem. In each iteration (or episode) i, the agent selects two policies, πi1 and πi2. The
two policies are rolled out to obtain trajectories τi1 and τi2, and a binary preference bi ∈ {0, 1}
between them is sampled according to the underlying utilities of τi1 and τi2. We quantify the
performance of the learning agent using expected cumulative regret relative to the optimal policy:

E[REGT ] = E


dT/(2h)e∑
i=1

∑
s∈S

p0(s) [2Vπ∗,1(s)− Vπi1,1(s)− Vπi2,1(s)]

 . (2)

To minimize regret, the agent must balance exploration (collecting new data) with exploitation
(behaving optimally w.r.t. existing models). Over-exploration of bad trajectories will incur large
regret, and under-exploration can prevent converging to the optimal policy. In contrast to the standard
formulation in RL [29], at each iteration/episode we compare the utilities of both selected policies.

4 Algorithm

As outlined in Algorithm 1, DUELING POSTERIOR SAMPLING (DPS) iterates over three main
steps: (a) sample two policies π1, π2 from the Bayesian posteriors of the dynamics and utility models
(ADVANCE – Algorithm 2); (b) roll out π1 and π2 to obtain trajectories τ1 and τ2, and receive
preference feedback between them; (c) store the new state transitions and feedback and update the
posterior (FEEDBACK – Algorithm 3). Compared to conventional posterior sampling with absolute
feedback [29], the two key differences are that: two policies are sampled rather than one each iteration,
and a credit assignment problem is solved when learning from feedback.

ADVANCE (Algorithm 2) samples from the Bayesian posteriors of the dynamics and utility models.
The sampled dynamics and utilities form an MDP, and value iteration is used to derive the optimal
policy π under the sample. One can also think of π as a random function whose randomness depends
on the sampling of the dynamics and utility models. In the Bayesian setting, it can be shown that
π is sampled according to its posterior probability of being the true optimal policy π∗ [29, 30].
Intuitively, peaked (i.e., certain) posteriors lead to less variability when sampling π, which implies
less exploration. On the other hand, diffuse (i.e., uncertain) posteriors lead to greater variability when
sampling π, which implies more exploration.

FEEDBACK (Algorithm 3) updates the Bayesian posteriors of the dynamics and utility models based
on new data. Updating the dynamics posterior is relatively straightforward, as we assume that
the dynamics are fully-observed; for instance, the dynamics prior can be modeled via Dirichlet
distributions with multinomial conjugate observation likelihoods [29]. In contrast, performing
Bayesian inference over state/action utilities from trajectory-level feedback is much more challenging.
We considered a range of approaches (see Appendix A1), and found Bayesian logistic regression
(Section 4.1) to both be well-performing and admit tractable analysis within our theoretical framework.
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Algorithm 2 ADVANCE: Sample policy from dynamics and utility models
Input: H,T, f, g
Sample M ∼ f(·|H) {Sample MDP transition dynamics from posterior}
Sample R ∼ g(·|T ) {Sample utilities from posterior}
Compute π = argmaxπV (M,R) {Value iteration yields sampled MDP’s optimal policy}
Return π

Algorithm 3 FEEDBACK: Update dynamics and utility models based on new user feedback
Input: H,T, f, g
Apply Bayesian update to f , given H {Update dynamics model given history}
Apply Bayesian update to g, given T {Update utility model given preferences}
Return f , g

4.1 Bayesian logistic regression for utility inference and credit assignment

Credit assignment [47] is the problem of inferring which state/action pairs are responsible for observed
trajectory-level preferences. We detail a Bayesian logistic regression approach to address this task in
our setting. Logistic regression is a binary classification method that learns a weight vector w for
the model p(y = 1|x,w) = 1

1+exp(−wTx)
. Bayesian logistic regression [5, 28] maintains a posterior

over possible weight vectors. Because there is no convenient prior yielding a closed-form conjugate
posterior, we use the Laplace approximation to the posterior as specified below.

Preliminaries. Let N be the number of trajectories pairs observed so far, and D = SA be the total
number of state/action pairs. Let xij ∈ RD, j ∈ {1, 2} be the visitation vector corresponding to
trajectory τij , with the kth element x(k)

ij being the number of times that state/action pair k was visited
in τij . Define xi := xi1 − xi2. The observation matrix X and label vector y are defined as:

X =

 (x11 − x12)T

...
(xN1 − xN2)T

 , y =

 y1

...
yN

 =

 2I[τ11>τ12] − 1
...

2I[τN1>τN2] − 1

 , (3)

where the expression 2I[τi1>τi2] − 1 results in labels yi with values in {−1, 1}.

The observation matrixX ∈ RN×D has rank at mostD−1, since the elements of xi = xi1−xi2 must
sum to zero for each row. To obtain a full-row-rank observation matrix for Bayesian logistic regression,
we transform X ∈ RN×D to Z ∈ RN×(D−1) via the matrix V = [v1 . . . vD−1] ∈ RD×(D−1),
where the columns vi ∈ RD form an orthonormal basis spanning the (D − 1)-dimensional, full
possible row space of X . To obtain the vector zi ∈ RD−1 that expresses xi in this basis, apply:

zi = [xTi v1 . . . x
T
i vD−1]T = V Txi, (4)

while converting any vector zi ∈ RD−1 back to the original basis can be accomplished via:

xi =

D−1∑
j=1

zijvj = V zi, where zij is the jth element of zi. (5)

Note that this transformation preserves inner products. Equation (5) can be applied to show:

xT1 x2 =

(
D−1∑
i=1

z1ivi

)T D−1∑
j=1

z2jvj

 = zT1 z2, by orthonormality of {vi}. (6)

In particular, the transformation preserves orthogonality, so that X and Z have the same row-rank
and XTX and ZTZ have the same rank.

Utility model & posterior inference. We fit a Bayesian logistic regression model to the transformed
data (Z,y). Afterwards, this model predicts the probability that τ is preferred to τ ′ as a logistic
regression function of their visitation vector differences xτ − xτ ′ . The model parameters correspond
exactly to the state/action utilities r. The model internally computes an element-wise product between
xτ − xτ ′ and estimated reward vector r, within the (D − 1)-dimensional space given by (4). Given
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the inner product equivalence (6), this is exactly the trajectory utility, and taking the expectation over
trajectories generated by a policy is exactly the value function (1). We show in our experiments that
Bayesian logistic regression can robustly learn even with preference modeling mismatch.

We are chiefly interested in sampling from the posterior of parameter/utility vector r ∈ RD, which
can be combined with the sampled dynamics to perform value iteration and obtain a policy. As shown
below, via the Laplace approximation, the posterior is Gaussian distributed, and thus can be easily
sampled. The internal utility representation lies in r̃′ ∈ RD−1, and we convert to r̃ ∈ RD via (5).

We now describe the Bayesian logistic regression step itself. A Gaussian prior is defined over the
utilities r′ ∈ RD−1: p(r′) ∼ N (r′|r′0, V ′0). The logistic regression likelihood is:

p(Z,y|r′) =

N∏
i=1

p(zi, yi|r′) =

N∏
i=1

1

1 + exp(−yizTi r′)
. (7)

We approximate the posterior as Gaussian via the Laplace approximation:

p(r′|Z,y) ≈ N (r′|r̂′, H−1), where: (8)

r̂′ = argmin
r′

f(r′), f(r′) := −log p(Z,y, r′) = −log p(r′)− log p(Z,y|r′), (9)

H = ∇2
r′f(r′)

∣∣∣
r̂′
, and where the optimization problem in (9) is convex. (10)

To show a regret convergence using this approximate posterior, we leverage asymptotic normality of
the maximum likelihood estimator of logistic regression in our proofs.

5 Theoretical results

We now sketch our asymptotic no-regret analysis for DUELING POSTERIOR SAMPLING (DPS)
with Bayesian logistic regression. The full proof is in Appendix A2, while Appendix A2.1 discusses
possible avenues for extending this proof methodology toward additional credit assignment models.
The proof has two main parts: first proving that DPS with logistic credit assignment is asymptotically
consistent (Theorem 1), and then proving that DPS has a sublinear regret rate (Theorem 2). Both
parts leverage results on the asymptotic behavior of logistic regression [21]. As before, we consider
data Z ∈ RN×(D−1) and labels y ∈ RN , with [Z]ij = zij . To show that DPS is asymptotically
consistent in learning the reward function, we first provide some definitions and necessary conditions.

Definition 1 (Derivative of sigmoid). f : R −→ R, where f(x) = e−x

(1+e−x)2 . Note f(x) = f(−x).

Definition 2. Let r ∈ RD be the vector of true state/action utilities (assumed to exist) and r′ ∈ RD−1

be its transformation via (4). Define r̃′k ∈ RD−1 as the state/action rewards sampled from the
Bayesian logistic regression model posterior in episode k, r̂′k ∈ RD−1 as the model’s maximum a
posteriori (MAP) estimate at episode k, and r̂′ML,k ∈ RD−1 as its maximum likelihood estimate at k.
Lastly, r̃k ∈ RD, r̂k ∈ RD, and r̂ML,k ∈ RD are their respective equivalents given by (5).
Condition 1. ∃m0 <∞ such that |zij | ≤ m0 for all i ∈ {1, . . . , N}, j ∈ {1, . . . , D − 1}.

Condition 2. Let λ(k)
1 and λ

(k)
D−1 be the largest and smallest eigenvalues, respectively, of∑k

i=1 f(zTi r
′)ziz

T
i . Then, ∃m1 <∞ such that λ

(k)
1

λ
(k)
D−1

< m1, for all k.

Proposition 1 (Asymptotic consistency of logistic regression [21]). If Conditions 1 and 2 are satisfied,
then the maximum likelihood estimator r̂′ML,k of r′ exists almost surely as k −→ ∞, and r̂′ML,k

converges almost surely to the true values r′ if and only if lim
k−→∞

λ
(k)
D−1 =∞.

We first show that Proposition 1’s final condition is satisfied with known transition dynamics, and
afterwards consider the convergence of the dynamics model posterior.

Lemma 1. Under known transition dynamics, all eigenvalues of the matrix
∑k
i=1 f(zTi r

′)ziz
T
i

approach infinity as k −→∞.
Lemma 2 (Convergence of dynamics model). Given Lemma 1, DPS’s dynamics model converges to
the true dynamics, and as it converges, all eigenvalues of

∑k
i=1 f(zTi r

′)ziz
T
i approach infinity.
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Combining these results, we obtain:

Theorem 1 (Asymptotic consistency of DPS). If there exists a reward function such that a logistic
regression model explains the preference feedback, then DPS with a Bayesian logistic regression
credit assignment model will learn an asymptotically consistent reward model.

We turn next to characterizing the regret rate of DPS. We apply two prior results, one from [21]
regarding the asymptotic distribution of the logistic regression maximum likelihood estimate (Prop.
2), and the other from [29] regarding a regret bound for posterior sampling RL (Prop. 3).

Proposition 2 (Asymptotic normality of logistic regression maximum likelihood estimator [21]). If
Conditions 1 and 2 are satisfied, and if r̂′ML,k converges almost surely to the true value r′, then:[

k∑
i=1

f(zTi r̂
′
ML,k)ziz

T
i

] 1
2

(r̂′ML,k − r′)
D−→ N (0, I) as k −→∞, (11)

where D−→ implies convergence in distribution and Q
1
2 is the positive definite matrix associated with

positive definite matrix Q such that [Q
1
2 ]2 = Q.

Proposition 3 (Expected regret of posterior sampling RL [29]). Posterior sampling RL has expected
T -step regret O(hS

√
AT log(SAT )), with horizon h and numbers of states and actions S and A.

Leveraging these results, we show that under preference feedback, the regret can be decomposed into
two terms: one that reflects the converging dynamics model, and one that reflects the converging
reward model (inferred from trajectory-level preference feedback).

Lemma 3 (Regret decomposition). The expected regret of DPS can be decomposed into two terms.
One term can be bounded by the regret bound of [29], stated in Proposition (3). The other is bounded
by: h

∑dT/he
k=1 E[||r − r̃k||∞] ≤ h

∑dT/he
k=1 E[||r̂k − r||∞] + h

∑dT/he
k=1 E[||r̂k − r̃k||∞].

The final result is obtained by analyzing convergence of the samples r̃k to r̂k and of the credit
assignment model r̂k to r:

Theorem 2 (Asymptotic regret rate of DPS). If there exists a reward function such that a lo-
gistic regression model explains the preferences, then DPS has an asymptotic no-regret rate of

O
(
hS
√
AT log(SAT ) + h

√
SA
c0
T log(T )

)
, where c0 is a minimum rate at which eigenvalues of∑k

i=1 f(zTi r
′)ziz

T
i increase linearly with collection of samples zi that impact those eigenvalues.

6 Experiments

We validate the empirical performance of DUELING POSTERIOR SAMPLING (DPS) on two simulated
domains with varying levels of preference noise, as well as using alternative credit assignment models.
We find that DPS generally performs well and outperforms standard PBRL baselines [49].

Experimental setup. We evaluate on two simulated environments: RiverSwim and random MDPs.
The RiverSwim environment [29] has six states and two actions (actions 0 and 1); the optimal policy is
to always choose action 1, which maximizes the probability of reaching a particular goal state/action
pair. Meanwhile, a suboptimal policy—yielding a much smaller reward compared to the goal—is
quickly and easily discovered and incentivizes the agent to always select action 0. The algorithm
must demonstrate sufficient exploration to have hope of discovering the optimal policy quickly.

In the second simulated environment, we generate random MDPs as in [29] with 10 states and 5
actions. The transition dynamics and rewards are generated from Dirichlet (all parameters set to
0.1) and exponential (rate parameter set to 5) distributions, respectively. The parameter for these
distributions were chosen to generate MDPs with sparse dynamics and rewards. The sampled reward
vectors were shifted and normalized so that the minimum reward is zero and their mean is one.

In both of these environments, preferences between pairs of trajectories were generated by (noisily)
comparing the total rewards that they accumulated; this reward information was hidden from the
learning algorithm, which observed only the trajectory preferences and state transitions. Preference
noise is generated according to a logistic model: for trajectories τi and τj , P (τi > τj) = {1 +

7



(a) RiverSwim, c = 1, 000 (b) RiverSwim, c = 1 (c) Random MDP, c = 1

Figure 1: Empirical performance of DPS. a) and b) show RiverSwim with noise hyperparameters
c = 1,000, 1. c) displays random MDPs with c = 1. Posterior sampling RL (PSRL) [29] is an
upper bound that receives numerical rewards; Gaussian process regression (GPR), Bayesian linear
regression, and Bayesian logistic regression are all instances of DPS. EPMC is a baseline from [50]
as discussed. Plots display mean +/- one std over 100 runs of each algorithm tested. Additional
results (more values of c) are in Appendix A3. Normalization is with respect to the total reward
achieved by the optimal policy. Overall, we see that DPS performs well and is robust to the choice
of credit assignment model.

exp[−c(r(τi)−r(τj))]}−1, where r(τi) and r(τj) are the total rewards accrued by the two trajectories,
respectively, while the hyperparameter c controls the degree of noisiness.

Methods compared. We evaluate DPS under four different noise levels (c ∈ {0.1, 0.5, 1, 1000})
and three credit assignment models: 1) Bayesian logistic regression, 2) Bayesian linear regression,
and 3) Gaussian process regression, where the latter two methods are described in Appendix A1. In
addition, we evaluate the Every-Visit Preference Monte Carlo (EPMC) algorithm with probabilistic
credit assignment [50, 47] as a baseline. Lastly, we compare against the posterior sampling RL
algorithm [29], which learns using the true numerical rewards at each step, and thus yields an
upper-bound on the performance that a preference-based algorithm could achieve.

Results. Figure 1 shows the performance comparison for c = 1 in both environments, as well as
c = 1, 000 in RiverSwim (additional results are in Appendix A3, including hyperparameter details).
DPS performs well in all simulations, and significantly outperforms the EPMC baseline. This may be
because the EPMC algorithm uses a uniform exploration strategy, while DPS prioritizes exploration
by sampling high rewards in more uncertain regions of the state/action space. Notice that c = 1,000
results in nearly-noiseless preferences; this can decrease performance in RiverSwim in some cases,
since preference noise can help the agent to escape the local minimum. We also see that DPS is
competitive with PSRL, which has access to the full cardinal rewards at each state/action. Finally, we
see that the performance of DPS is robust to the choice of credit assignment model, and in fact using
Gaussian process regression (for which we do not have an end-to-end regret analysis) often leads to
the best empirical performance. These results suggest that DPS is a practically promising approach
that can robustly incorporate many modeling approaches as subroutines.

7 Conclusion

We investigate the preference-based reinforcement learning problem, which receives comparative
preferences instead of absolute real-valued rewards as feedback. We develop the DUELING POS-
TERIOR SAMPLING (DPS) algorithm, which optimizes policies in an highly efficient and flexible
way. To our knowledge, DPS is the first preference-based RL algorithm with a regret guarantee.
DPS also performs well in our simulations, and seems practically promising. That makes it both a
theoretically-justified and practically promising algorithm.

There are many directions for future work. The Bayesian logistic regression model could be improved
with more accurate posterior estimates. Assumptions governing the user’s preferences, such as
requiring an underlying utility model, could be relaxed. One can also incorporate kernelized methods
to further improve sample efficiency. It is also important to extend to other credit assignment models,
such as the Gaussian process regression and Bayesian linear regression methods, for which the same
concept of the regret decomposition still applies. We expect that DPS would perform well with any
asymptotically consistent reward model that sufficiently captures users’ preference behavior.
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A1 Bayesian state/action credit assignment: two additional approaches

Credit assignment [48] is the problem of inferring which states or state/action pairs are responsible
for observed user preferences. This paper derives theoretical guarantees for a Bayesian logistic
regression credit assignment model. In this Appendix, we detail two additional credit assignment
models—employing Bayesian linear regression and Gaussian process regression, respectively—for
inferring a posterior over state/action utilities using trajectory preferences. (Note that these methods
could similarly model utilities over states, rather than state/action pairs.)

In what follows, s̃ denotes a state/action pair, with D = SA representing the number of possible
values of s̃. For each trajectory τ = {s̃1, s̃2, s̃3, . . . , s̃h}, we observe the user’s preference, yielding
a dataset {τi|i ∈ 1, . . . , N} of N labeled trajectories. Define X ∈ RN×D such that xij := [X]ij
is the number of times that trajectory i visits state/action s̃j . Finally, we denote the label vector as
y ∈ {0, 1}N , where the ith element yi is the preference label corresponding to τi; for instance, if τ1
is preferred to τ2, then we would have y1 = 1 and y2 = 0.

As before, r(s̃) represents the true state/action utilities, such that r(τ) =
∑h
i=1 r(s̃i), with r(τ) being

trajectory τ ’s total (unobserved) utility. To apply regression methods to this data using preference
labels, we approximate yi ≈ r(τi) to infer r(s̃). In the following, we denote r̂(s̃) as our model of the
true utilities r(s̃). Also, define r̂ ∈ RD as a vector in which the ith element is r̂(s̃i).

In the following, we discuss how to perform Bayesian inference on r(s̃) using r(τi), which is
approximated in practice via preferences. Note that the approximation yi ≈ r(τi) performs well
empirically, though future work could perhaps apply Bayesian methods such as those in [14] to infer
trajectories’ total utilities from the preference labels.

A1.1 Bayesian linear regression

One can estimate state/action utilities from preferences via linear regression: y = Xr̂ + ε, where
ε is a vector of residuals and the other quantities are defined above. Bayesian linear regression
infers a distribution over likely values of r̂. We define conjugate Gaussian prior and likelihood
distributions over the state/action utilities and preference labels, respectively, to obtain a Gaussian
posterior distribution over r̂. The prior, likelihood, and posterior take the following form, where
Λ ∈ RD×D and σ ∈ R are prior parameters, Λ is positive definite, and we set Λ = λI for some
λ > 0:

Prior: r̂ ∼ N (0,Λ−1), Λ = λI; Likelihood:

p(y|X, r̂;σ2) =
1

(2πσ2)
N
2

exp

(
− 1

2σ2
||y −Xr̂||2

)

Posterior: r̂|X,y, σ2,Λ ∼ N (µ,Σ), where: (12)

µ = (XTX + σ2λI)−1XTy (13)

Σ = σ2(XTX + σ2λI)−1 (14)

A1.2 Gaussian process regression

Gaussian process regression [34] extends Bayesian linear regression credit assignment to larger state
and action spaces by generalizing across nearby states and actions. We will model the state/action
utilities r̂(s̃) as a Gaussian process [34] over s̃, and then use the observed preferences to perform
Gaussian process inference on r̂.

We model r̂ as a Gaussian process: r̂ ∼ GP(µr,Kr), where µr is the prior mean vector and Kr is
the prior covariance matrix, such that [Kr]ij gives the prior covariance between r̂(s̃i) and r̂(s̃j). We
model r(τi), the total utility for trajectory τi, as a sum over the latent state/action utilities:

r(τi) =

D∑
j=1

xij r̂(s̃j) + εi, (15)
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with i.i.d. residuals εi ∼ N (0, σ2
ε). Because any linear combination of jointly Gaussian variables is

Gaussian, r(τi) is a Gaussian process over the xij’s . Let R ∈ RN be the vector with ith element
equal to Ri = r(τi). Calculating the relevant expectations and covariances (see A1.3), one can show
that r̂ andR are jointly normally distributed as follows:[

r̂
R

]
∼ N

([
µr

Xµr

]
,

[
Kr KrX

T

XKT
r XKrX

T + σ2
εI

])
. (16)

The standard approach for obtaining a conditional distribution from a joint Gaussian distribution [34]
yields r̂|R ∼ N (µ,Σ), where:

µ = µr +KrX
T [XKrX

T + σ2
εI]−1(R−Xµr) (17)

Σ = Kr −KrX
T [XKrX

T + σ2
εI]−1XKT

r . (18)

In practice,R is substituted with y to perform the inference.

A1.3 Using Gaussian processes to infer state/action utilities from preferences

This section derives the posterior inference equations (17) and (18), used in Gaussian process credit
assignment. In this derivation, we act as though we observe the trajectories’ total utilitiesR, while
remembering that in practice, R is approximated via the user’s preferences. Recall that r̂ ∈ RD
has ith element r̂(s̃i), which models the utility of state/action i, while R ∈ RN has ith element
Ri = r(τi). Let xi be the transpose of the ith row of X .

Our goal is to infer the values of r̂ given observationsR of the trajectories’ total utilities. This can be
accomplished via the following four steps:

1. Model the state/action utilities r̂(s̃) as a Gaussian process over s̃.
2. Model the trajectory utilitiesR as a Gaussian process that can be defined as a sum of the

state/action utilities r̂(s̃).
3. Using the two Gaussian processes defined in 1) and 2), obtain the covariance matrix between

the values of {r̂(s̃)|s̃ ∈ 1, . . . , D} and {Ri|i ∈ 1, . . . , N}.
4. Write the joint Gaussian distribution between the values of {r̂(s̃)|s̃ ∈ 1, . . . , D} and
{Ri|i ∈ 1, . . . , N}, and obtain the posterior distribution of r̂ at all state/actions givenR.

The four subsequent subsections correspond to these four steps, respectively.

A1.3.1 The state/action utility Gaussian process

We model the state/action utilities as a Gaussian process over s̃, with mean E[r̂(s̃)] = µr(s̃) and
covariance kernel Cov(r̂(s̃), r̂(s̃′)) = kr(s̃, s̃

′), for all state/action pairs s̃, s̃′. Thus,

r̂(s̃) ∼ GP(µr(s̃), kr(s̃, s̃
′)). (19)

Define µr ∈ RD such that the ith element is [µr]i = µr(s̃i), the prior mean for the utility of
state/action s̃i. Let Kr ∈ RD×D be the covariance matrix over state/action utilities, such that
[Kr]ij = kr(s̃i, s̃j). Therefore, r̂, the vector for which [r̂]i = r̂(s̃i), is also a Gaussian process:

r̂ ∼ GP(µr,Kr). (20)

A1.3.2 The trajectory utility Gaussian process

By assumption, the trajectory utilities R ∈ RN are sums of the latent state/action utilities via the
following relationship betweenR and r̂:

R(xi) := Ri =

D∑
j=1

xij r̂(s̃j) + εi, (21)

where εi are i.i.d. Gaussian noise variables with distribution N (0, σ2
ε).
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Note that R(xi) is a Gaussian process over xi ∈ RD because {r̂(s̃),∀s̃} are jointly normally
distributed by definition of a Gaussian process, and any linear combination of jointly Gaussian
variables has a univariate normal distribution.

Next, we calculate the expectation and covariance ofR over the observations. The expectation of its
ith element Ri = R(xi) can be expressed as follows:

E[Ri] = E

 D∑
j=1

xij r̂(s̃j) + εi

 =

D∑
j=1

xijE[r̂(s̃j)] =

D∑
j=1

xijµr(s̃j). (22)

The expectation overR(X) can thus be written as:

E[R(X)] = Xµr. (23)

Next, we model the covariance matrix ofR(X). The ijth element of this matrix is the covariance of
R(xi) and R(xj):

Cov(R(xi), R(xj)) = E[R(xi)R(xj)]− E[R(xi)]E[R(xj)] (24)

= E[R(xi)R(xj)]−

(
D∑
k=1

xikµr(s̃k)

)(
D∑
m=1

xjmµr(s̃m)

)
(25)

= E

[(
D∑
k=1

xikr̂(s̃k) + εi

)(
D∑
m=1

xjmr̂(s̃m) + εj

)]
(26)

−

(
D∑
k=1

xikµr(s̃k)

)(
D∑
m=1

xjmµr(s̃m)

)
(27)

=

D∑
k=1

D∑
m=1

xikxjmE[r̂(s̃k)r̂(s̃m)] + E[εiεj ]−
D∑
k=1

D∑
m=1

xikxjmµr(s̃k)µr(s̃m)

(28)

=

D∑
k=1

D∑
m=1

xikxjm[Cov(r̂(s̃k), r̂(s̃m)) + µr(s̃k)µr(s̃m)] (29)

−
D∑
k=1

D∑
m=1

xikxjmµr(s̃k)µr(s̃m) + σ2
εI[i=j] (30)

=

D∑
k=1

D∑
m=1

xikxjmCov(r̂(s̃k), r̂(s̃m)) + σ2
εI[i=j] (31)

=

D∑
k=1

D∑
m=1

xikxjmkr(s̃k, s̃m) + σ2
εI[i=j] = xTi Krxj + σ2

εI[i=j]. (32)

We can then write the covariance matrix ofR as KR(X), where:

[KR(X)]ij = Cov(R(xi), R(xj)) = xTi Krxj + σ2
εI[i=j]. (33)

From here, it can be seen that KR(X) = XKrX
T + σ2

εI :

XKrX
T =


xT1
xT2

...
xTN

Kr [x1 x2 . . . xN ] =


xT1
xT2

...
xTN

 [Krx1 Krx2 . . . KrxN ] (34)

=

x
T
1 Krx1 . . . xT1 KrxN

...
. . .

...
xTNKrx1 . . . xTNKrxN

 = KR(X)− σ2
εI. (35)
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A1.3.3 Covariance between state/action and trajectory utilities

In this subsection, we consider the covariance between r̂ andR, denoted Kr̂,R:

[Kr̂,R]ij = Cov([r̂]i, [R]j) = Cov(r̂(s̃i), R(xj)). (36)

This covariance matrix can be expressed in terms of X,Kr, and µr:

[Kr̂,R]ij = Cov(r̂(s̃i), R(xj)) = Cov

(
r̂(s̃i),

D∑
k=1

xjkr̂(s̃k) + εj

)
(37)

= E

[
r̂(s̃i)

D∑
k=1

xjkr̂(s̃k) + εj r̂(s̃i)

]
− E[r̂(s̃i)]E

[
D∑
k=1

xjkr̂(s̃k) + εj

]
(38)

=

D∑
k=1

xjkE[r̂(s̃i)r̂(s̃k)]− [µr(s̃i)][x
T
j µr] (39)

=

D∑
k=1

xjk{Cov(r̂(s̃i), r̂(s̃k)) + E[r̂(s̃i)]E[r̂(s̃k)]} − µr(s̃i)xTj µr (40)

=

D∑
k=1

xjk[kr(s̃i, s̃k) + µr(s̃i)µr(s̃k)]− µr(s̃i)xTj µr (41)

=

D∑
k=1

xjkkr(s̃i, s̃k) + µr(s̃i)x
T
j µr − µr(s̃i)xTj µr =

D∑
k=1

xjkkr(s̃i, s̃k) = xTj [Kr]i,:,

(42)

where [Kr]i,: is the column vector obtained by transposing the ith row of Kr. From here, one can see
that Kr̂,R = KrX

T :

KrX
T =


[Kr]

T
1,:

[Kr]
T
2,:

...
[Kr]

T
D,:

 ∗ [x1 x2 . . . xN ] = Kr̂,R. (43)

A1.3.4 Posterior inference over state/action utilities

The results of the previous three subsections can be combined to obtain the following joint probability
density between r̂ andR:[

r̂
R

]
∼ N

([
µr

Xµr

]
,

[
Kr KrX

T

XKT
r XKrX

T + σ2
εI

])
. (44)

This relationship expresses all components of the joint Gaussian density in terms of X,Kr, and µr,
or in other words, in terms of the state/action visit counts in the observed trajectories (captured by X)
and the Gaussian process prior on r̂.

Using the standard approach for obtaining a conditional distribution from a jointly Gaussian distribu-
tion (see Appendix A.2 in [34]), we arrive at:

r̂|R ∼ N (µ,Σ), where: (45)

µ = µr +KrX
T [XKrX

T + σ2
εI]−1(R−Xµr) (46)

Σ = Kr −KrX
T [XKrX

T + σ2
εI]−1XKT

r . (47)

Thus, we have expressed the conditional posterior density of r̂ in terms of X,Kr, µr, and the
observationsR ≈ y.
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A2 Proofs

This section proves the theoretical results stated in Section 5 of the paper.

We begin by restating a result from Gourieroux and Monfort [21] establishing conditions in which
logistic regression is asymptotically consistent, after defining two necessary conditions.

Definition 1 (Derivative of sigmoid). f : R −→ R, where f = e−x

(1+e−x)2 . Note that f(x) = f(−x).
This is the derivative of the sigmoid function, σ(x) = 1

1+e−x .

Definition 2. Let r ∈ RD be the vector of true state/action utilities (assumed to exist) and r′ ∈ RD−1

be its transformation via (4). Define r̃′k ∈ RD−1 as the state/action rewards sampled from the
Bayesian logistic regression model posterior in episode k, r̂′k ∈ RD−1 as the model’s maximum a
posteriori (MAP) estimate at episode k, and r̂′ML,k ∈ RD−1 as its maximum likelihood estimate at k.
Lastly, r̃k ∈ RD, r̂k ∈ RD, and r̂ML,k ∈ RD are their respective equivalents given by (5).
Condition 1. ∃m0 <∞ such that |zij | ≤ m0 for all i ∈ {1, . . . , N}, j ∈ {1, . . . , D − 1}.

Condition 1 is always satisfied because zij = xTi vj by (4), where vj is a unit vector. Additionally,
xi = x1i − xi2 is difference of two vectors that both count how many times each state/action pair is
visited in an episode, and thus both have only positive elements that sum to the episode horizon, h.
So, |zij | ≤ ||xi||2||vj ||2 = ||xi||2 ≤ ||x1i−xi2||1 = ||x1i||+ ||xi2||1 = 2h, where the inequalities
are respectively the Cauchy-Schwarz inequality, ||x||p < ||x||q for p > q > 0, and the triangle
inequality. So, Condition 1 holds for m0 = 2h.

Condition 2. Let λ(k)
1 and λ

(k)
D−1 be the largest and smallest eigenvalues, respectively, of∑k

i=1 f(zTi r
′)ziz

T
i . Then, ∃m1 <∞ such that λ

(k)
1

λ
(k)
D−1

< m1, for all k.

Intuitively, Condition 2 requires that an arbitrarily-high fraction of observations cannot lie in a
proper subspace of their possible span. This condition is necessary, as otherwise data outside this
subspace would become increasingly ignored as more data points are obtained. Condition 2 states
that the inverse Hessian of the negative log reward posterior—evaluated at the true rewards r′—has
an upper-bounded ratio between its largest and smallest eigenvalues. This can be explicitly enforced
by bounding this maximum-to-minimum eigenvalue ratio for the matrix

∑k
i=1 f(zTi r̂

′
k)ziz

T
i , and

only updating the reward posterior when the eigenvalue ratio is below-threshold. As shown in Lemma
1 below, satisfying this restriction bounds the eigenvalue ratio for

∑k
i=1 f(zTi r

′)ziz
T
i , as desired.

Condition 2 may also be guaranteed in certain situations, e.g., if randomness in the dynamics
is sufficient to ensure a full-row-rank observation matrix Z. In this case, the eigenvalue ratio
will be bounded regardless of the specific policies executed. If properties of the environment are
known to guarantee Condition 2, then it need not be explicitly enforced. Meanwhile, weakening
the requirements of Condition 2—for instance, by strengthening the Bayesian logistic regression
convergence analysis or considering other credit assignment models—would be an interesting avenue
for future work.

Lemma 1 (Enforcing Condition 2). The eigenvalue ratio
λmax(

∑k
i=1 f(zTi r′)ziz

T
i )

λmin(
∑k
i=1 f(zTi r′)zizTi )

has a constant

upper bound that holds for all k if and only if the eigenvalue ratio
λmax(

∑k
i=1 f(zTi r̂′k)ziz

T
i )

λmin(
∑k
i=1 f(zTi r̂′k)zizTi )

has a

constant upper bound that holds for all k. Therefore, one can ensure that the former condition holds
by enforcing the latter.

Proof. We apply the result in Lemma 1.1 below. To verify that the conditions for this result hold,
we must show that both f(zTi r

′) and f(zTi r̂
′
k) have upper and lower bounds for all i, k, where the

lower bound exceeds zero. The upper bound exists because f(x) ∈ (0, 1] ∀x.

It remains to show that both f(zTi r
′) and f(zTi r̂

′
k) are lower-bounded above zero. Because f(x)

monotonically decreases as |x| increases, this is true as long as |zTi r′| and |zTi r̂′k| are upper-bounded.
In the former case, |zTi r′| < ||zi||2||r′||2. The quantity ||zi||2 is upper-bounded by Condition 1.
The rewards r′ produce the same policy when scaled by any positive quantity, and so their magnitude
can be viewed as fixed. The same logic holds in the latter case.
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Lemma 1.1 (Bounded eigenvalue ratios). Let Ak, Bk ∈ Rn×n be two matrices of the form Ak =∑k
i=1 αiviv

T
i , Bk =

∑k
i=1 βiviv

T
i , where αi ∈ [αmin, αmax], βi ∈ [βmin, βmax], αmin > 0, βmin > 0,

and vi ∈ Rn for i ∈ {1, . . . , k}. Let λmax(M) and λmin(M) respectively be the largest eigenvalues
of a matrix M . Then, λmax(Ak)

λmin(Ak) is upper-bounded for all T if and only if λmax(Bk)
λmin(Bk) is upper-bounded

for all T .

Proof. Without loss of generality, we assume that λmax(Ak)
λmin(Ak) < m1 < ∞ for some m1 and for all

k, and will show that λmax(Bk)
λmin(Bk) has an upper bound for all k. Note that auuT � 0 (i.e., is positive

semidefinite) for any a > 0 and vector u, and that sums of positive semidefinite matrices are also
positive semidefinite. In addition, we will use the following facts about arbitrary positive semidefinite
matrices A,B � 0 (which can be shown from the Courant-Fischer-Weyl min-max principle):

λmax(A) ≤ λmax(A+B) (48)
λmin(A) ≤ λmin(A) + λmin(B) ≤ λmin(A+B) (49)

The desired result is an outcome of the following four relations:

λmax(Ak) = λmax

(
k∑
i=1

αiviv
T
i

)
= λmax

(
k∑
i=1

(αi − αmin)viv
T
i +

k∑
i=1

αminviv
T
i

)
(50)

≥ λmax

(
k∑
i=1

αminviv
T
i

)
= αminλmax

(
k∑
i=1

viv
T
i

)
, by (48) (51)

λmin(Ak) = λmin

(
k∑
i=1

αiviv
T
i

)
≤ λmin

(
k∑
i=1

αiviv
T
i

)
+ λmin

(
k∑
i=1

(αmax − αi)vivTi

)
(52)

≤ λmin

(
k∑
i=1

αmaxviv
T
i

)
= αmaxλmin

(
k∑
i=1

viv
T
i

)
, by (49) (53)

λmax(Bk) = λmax

(
k∑
i=1

βiviv
T
i

)
≤ λmax

(
k∑
i=1

βiviv
T
i +

k∑
i=1

(βmax − βi)vivTi

)
, by (48) (54)

= λmax

(
k∑
i=1

βmaxviv
T
i

)
= βmaxλmax

(
k∑
i=1

viv
T
i

)
(55)

λmin(Bk) = λmin

(
k∑
i=1

βiviv
T
i

)
= λmin

(
k∑
i=1

(βi − βmin)viv
T
i +

k∑
i=1

βminviv
T
i

)
(56)

≥ λmin

(
k∑
i=1

βminviv
T
i

)
= βminλmin

(
k∑
i=1

viv
T
i

)
, by (49) (57)

Now, we can upper bound the eigenvalue ratio for Bk:

λmax(Bk)

λmin(Bk)
≤
βmaxλmax

(∑k
i=1 viv

T
i

)
βminλmin

(∑k
i=1 viv

T
i

) , by (55) and (57) (58)

≤ βmax

βmin

λmax(Ak)

αmin

[
λmin(Ak)

αmax

]−1

, by (51) and (53) (59)

=
βmaxαmax

βminαmin

λmax(Ak)

λmin(Ak)
≤ βmaxαmax

βminαmin
∗m1. (60)
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We will apply the following result from Gourieroux and Monfort [21] concerning asymptotic consis-
tency of the maximum likelihood estimator:
Proposition 1 (Asymptotic consistency of logistic regression [21]). If Conditions 1 and 2 are satisfied,
then the maximum likelihood estimator r̂′ML,k of r′ exists almost surely as k −→ ∞, and r̂′ML,k

converges almost surely to the true value r′ if and only if lim
k−→∞

λ
(k)
D−1 =∞.

Proof. This result is a restatement of Proposition 3 in Gourieroux and Monfort [21].

Remark: The proof of Proposition 1 in [21] can be adapted such that the same result holds when the
maximum likelihood estimator r̂′ML,k is replaced with the MAP estimator r̂′k; thus, it applies to our
setting. We show that Proposition 1’s final condition for convergence of the MAP estimator holds:

Lemma 2. Under known transition dynamics, all eigenvalues of the matrix
∑k
i=1 f(zTi r

′)ziz
T
i

approach infinity as k −→∞.

Proof. Let αi = f(zTi r
′) and α̂(k)

i = f(yiz
T
i r̂
′
k). The values αi are both upper-bounded and

non-decaying: f(x) ∈ (0, 1) for all x, and zTi r
′ is bounded in magnitude since we assume the true

rewards r′ are bounded. We can write:

N∑
i=1

f(zTi r
′)ziz

T
i =

N∑
i=1

αiziz
T
i = [

√
α1z1

√
α2z2 . . .

√
αNzN ]


√
α1z

T
1√

α2z
T
2

...√
αNz

T
N

 . (61)

Define M ∈ RN×(D−1), M1 ∈ Rm×(D−1), and M2 ∈ R(N−m)×(D−1) as:

M =


√
α1z

T
1√

α2z
T
2

...√
αNz

T
N

 , M1 =


√
α1z

T
1√

α2z
T
2

...√
αmz

T
m

 , M2 =


√
αm+1z

T
m+1

...√
αNz

T
N

 . (62)

Then,

M =

[
M1

M2

]
, and MTM =

N∑
i=1

αiziz
T
i = MT

1 M1 +MT
2 M2. (63)

Also, define M̂ ∈ RN×(D−1), M̂1 ∈ Rm×(D−1), and M̂2 ∈ R(N−m)×(D−1) analogously, but
replacing αi with α̂(N)

i . Note that MTM and M̂T M̂ have the same rank, since M and M̂ have the
same row-rank; similarly MTMi and M̂T

i M̂i have the same rank for i ∈ {1, 2}.

Assume that there existsm ∈ N such that M̂T
2 M̂2 has rank less than (D−1); let r ≥ 1 be the number

of zero eigenvalues of M̂T
2 M̂2. We will show that asN increases, the probability of drawing a sample

zi that is linearly independent of the rows already in M̂2 (that is, a sample that increases the rank
of MT

2 M2) does not decay to zero. This means that there will be infinitely-many non-overlapping
sets of indices {j, . . . , k} such that

∑k
i=j αiziz

T
i has rank (D − 1). From here, we can show that

(D − 1) of the eigenvalues of MTM approach infinity (recall that the αi values are lower-bounded).

Under the Laplace approximation, the posterior covariance after N episodes takes the form ΣN =(∑N
i=1 f(yiz

T
i r̂N )ziz

T
i + V −1

0

)−1

=
(
M̂T M̂ + V −1

0

)−1

. Under our assumption that M̂T
2 M̂2

has r ≥ 1 eigenvalues equal to zero, the row-rank of M̂2 is (D − 1− r).

We show that ΣN has r eigenvalues that are bounded away from zero. We write the eigenvalues
of any square matrix M0 ∈ Rn×n as λ1(M0) ≥ λ2(M0) ≥ . . . ≥ λn(M0). Then, we apply the
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following fact (which can be shown from the Courant-Fischer-Weyl min-max principle): for positive
semidefinite matrices A,B ∈ Rn×n,

λn(A) + λk(B) ≤ λk(A+B) ≤ λ1(A) + λk(B). (64)

Clearly,
∑N
i=1 α̂

(N)
i ziz

T
i and V −1

0 are both positive semidefinite (V0 is positive definite by its
definition), and so:

0 ≤ λk

(
N∑
i=1

α̂
(N)
i ziz

T
i + V −1

0

)
≤ λ1

(
V −1

0

)
+ λk

(
N∑
i=1

α̂
(N)
i ziz

T
i

)
, (65)

where the first inequality holds because the sum of two positive semidefinite matrices is also positive
semidefinite, and the second inequality is an application of the inequality in (64). The first term in
(65) is a constant, while the second is zero for k > D− 1− r. Thus, Σ−1

N =
∑N
i=1 α̂

(N)
i ziz

T
i +V −1

0
has r eigenvalues that are upper-bounded, where the upper bound depends only on V0. Therefore, Σ

has r eigenvalues that are lower-bounded by
[
λ1

(
V −1

0

)]−1
=
[

1
λD−1(V0)

]−1

= λD−1(V0) > 0; the
other D − 1− r eigenvalues of Σ all decay to zero.

To complete the proof, we argue that the following statements hold; the first two of these statements
are proven in the two subsequent sub-lemmas; the third statement completes the proof.

1. Note thatMTM and M̂T M̂ have the same rank, due toM and M̂ having the same row-rank.
Assume that for some m, M̂T

2 M̂2 has r ≥ 1 zero eigenvalues. The reward vector r̃′ sampled
from the logistic regression posterior can be expressed in terms of the eigenbasis of M̂T

2 M̂2,
{νi|i = 1, . . . , D − 1}: r̃′ =

∑D−1
i=1 βiνi for some coefficients βi. Then, as N −→ ∞,

for j such that vj is in the null-space of M̂T
2 M̂2, the probability of sampling r̃′N such that

|βj |∑D−1
i=1 |βi|

≥ b for any b ∈ (0, 1) does not decay to zero.

2. There exists b ∈ (0, 1) such that if βj∑D−1
i=1 βi

≥ b, then with probability above zero, the
policy will sample a trajectory such that the next zi sample has a nonzero component in νj .

3. If a trajectory as described in 2) is sampled, a zero-eigenvalue of MT
2 M2 increases by a

lower-bounded amount. This comes from the fact that there are only finitely-many possible
zi vectors, so if zi has nonzero inner product with an eigenvector, this inner product cannot
be arbitrarily close to zero. This contradicts that Rank(MT

2 M2) remains below D − 1 as
N −→∞.

Lemma 2.1 (Proof of Statement 1 in Lemma 2).

Proof. In episode N , the sampled reward vector r̃′N is drawn from the logistic regression posterior,

N (r̂′,ΣN ), with covariance matrix ΣN =
(∑N

i=1 α̂
(N)
i ziz

T
i + V −1

0

)−1

. Consider a sample r̃′N
with a multivariate normal distribution in RD−1:

N (r̃′N |r̂′N ,ΣN ) ∝ exp

(
−1

2
(r̃′N − r̂′N )TΣ−1

N (r̃′N − r̂′N )

)
. (66)

The intuition for this proof is as follows. There is a decreasing probability of sampling a vector r̃′N
such that (r̃′N − r̂′N ) has components in eigenvectors of ΣN whose eigenvalues decay toward zero.
Rather, the probability density concentrates toward the span of eigenvectors of ΣN whose eigenvalues
are bounded away from zero.

The probability density of r̃′N can be viewed as a function of (r̃′N − r̂′N )TΣ−1
N (r̃′N − r̂′N ). This fact

can be used to define Rα,N ⊂ RD−1:

Rα,N = {r̃′ ∈ RD−1 | (r̃′ − r̂′N )TΣ−1(r̃′ − r̂′N ) ≤ α}. (67)
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For ε ∈ (0, 1), define α0(ε) as the maximum possible value of α such that P (r̃′ ∈ Rα) ≥ 1− ε:

α0(ε) = max
s.t. P (r̃′∈Rα)≥1−ε

α. (68)

Thus, Rα0(ε) contains at least 1− ε of the probability density of r̃′N .

Recall that Σ−1
N has r eigenvalues that are upper-bounded, while the other D − 1− r eigenvalues

of Σ−1
N all approach infinity as N −→ ∞. Let (λi,µi) represent the eigenvalues and eigenvectors

of Σ−1
N , respectively. Then, r̃′N − r̂′N can be expressed in terms of the eigenbasis: r̃′N − r̂′N =∑D−1

i=1 ηiµi for some coefficients ηi, and:

(r̃′N − r̂′N )TΣ−1(r̃′N − r̂′N ) =

D−1∑
i=1

η2
i λi. (69)

Then, Rα0(ε) can be written as,

Rα0(ε) =

{
r̃′N ∈ RL−1

∣∣∣∣∣
D−1∑
i=1

η2
i λi ≤ α0(ε)

}
. (70)

We can divide r̃′N − r̂′N for r̃′N ∈ Rα0(ε) into two terms:

r̃′N − r̂′N =

D−1−r∑
i=1

ηiµi +

D−1∑
i=D−r

ηiµi, (71)

where λi −→ ∞ for i ≤ D − 1 − r. The first term contains eigenvectors µi corresponding to
eigenvalues of Σ−1

N that grow to infinity, while the second term contains eigenvectors corresponding
to upper-bounded eigenvalues of Σ−1

N . For r̃′N belonging to Rα0(ε), as λi −→∞, the ηi coefficients
in the first term will decay; otherwise, the sum

∑D−1
i=1 η2

i λi grows unboundedly, while
∑D−1
i=1 η2

i λi
remains comparatively-smaller for increasingly-many vectors that place weight only on µi for
i > D − 1 − r. In other words, as N −→ ∞, the probability density of r̃′N − r̂′N increasingly
concentrates toward vectors that can be expressed as linear combinations of eigenvectors of Σ−1

N
corresponding to upper-bounded λi. Thus, as long as λj , j > D − 1 − r, are upper-bounded, the
probability of sampling r̃′N − r̂′N such that ηj∑D−1

i=1 ηi
≥ b for any j > D − 1− r and any b ∈ (0, 1)

does not decay to zero.

Next, we argue that the eigenvectors of Σ−1
N approach a set of vectors spanning the null space of

M̂T
2 M̂2 as N −→∞. For j ≤ D − 1− r, (λj ,µj) is an eigenpair of Σ−1

N for which λj −→∞ as
N −→∞. The eigenpair relationship gives:(

N∑
i=1

α̂
(N)
i ziz

T
i + V −1

0

)
µj = λjµj . (72)

Dividing by λj , (
1

λj

N∑
i=1

α̂
(N)
i ziz

T
i +

1

λj
V −1

0

)
µj = µj . (73)

The term 1
λj
V −1

0 becomes insignificant as λj −→ ∞, since V0 is constant, while scaling the first
term by 1

λj
does not affect its eigenbasis. Thus, for j ≤ D − 1− r, µj approaches an eigenvector

of
∑N
i=1 α̂

(N)
i ziz

T
i that has an unbounded eigenvector. Meanwhile, the span of eigenvectors µj

for j > D − 1 − r approaches the span of eigenvectors of
∑N
i=1 α̂

(N)
i ziz

T
i with upper-bounded

eigenvalues. Equivalently, the span of eigenvectors µj for j > D − 1− r approaches the null space
of M̂T

2 M̂2 =
∑N
i=m+1 α̂

(N)
i ziz

T
i .
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Recall from Statement 1 that the eigenvectors of M̂T
2 M̂2 are {νi|i = 1, . . . , D − 1}. The r smallest

of these eigenvectors correspond to Null(M̂T
2 M̂2); so, for i > D − 1 − r, λi are upper-bounded

and Span(µi, i > D − r − 1) approaches Span(νi, i > D − r − 1). The probability of sampling
r̃′N−r̂′N =

∑D−1
i=1 βiνi—with βi > ε for i < D−r−1 and fixed ε > 0—decays asN −→∞. Thus

r̃′N − r̂′N increasingly coincides with Null(M̂T
2 M̂2). Meanwhile, for j such that vj ∈ Null(M̂T

2 M̂2),
the probability of sampling r̃′N − r̂′N such that |βj |∑D−1

i=1 |βi|
≥ b for any b ∈ (0, 1) does not decay to

zero.

We have shown that r̃′N − r̂′N increasingly coincides with Null(M̂T
2 M̂2). To show that DPS is

guaranteed to draw samples r̃′N that coincide with this null space, we must consider the effect of r̂′N .
It suffices to show that its magnitude does not increase enormously with N , since the probability
of sampling r̃′N − r̂′N ∈ Null(M̂T

2 M̂2) with an arbitrarily-large magnitude does not decay to zero.
Note that the magnitude of r̂′N can be considered upper-bounded, since a reward vector can always
be scaled arbitrarily without affecting the resultant policy learned by value iteration.

Lemma 2.2 (Proof of Statement 2 in Lemma 2).

Proof. As in Statement 1, express the reward vector r̃′N sampled from the logistic regression posterior
in terms of the eigenbasis of M̂T

2 M̂2, {νi|i = 1, . . . , D−1}: r̃′N =
∑D−1
i=1 βiνi for some coefficients

βi. Then, as N −→∞, consider vj in the null-space of M̂T
2 M̂2. Assume that there exists b ∈ (0, 1)

such that |βj |∑D−1
i=1 |βi|

≥ b. We show that for b high enough, with probability above zero, the policy
will sample a trajectory such that the next sampled observation wi has a nonzero component in νj .

First, note that if zi =
∑D−1
k=1 γkνk, then νTj zi =

∑D−1
k=1 γkν

T
j νk =

∑D−1
k=1 γkδjk = γj . Thus,

because the eigenvectors {νi} form an orthonormal basis, for wi to have a nonzero component γj in
νj is equivalent to zTi νj 6= 0.

By assumption—that is, our ability to choose b arbitrarily close to 1—we can assume that r̃′N is
arbitrarily aligned with νj : for any ε0 > 0, we can assume that ||αr̃′N − νj ||2 < ε0. Define
z := −αr̃′N + νj . Then, ||z||2 < ε0 and νj = αr̃′N + z.

We aim to show that zTi νj 6= 0. We can write, zTi νj = zTi (αr̃′N + z) = αzTi r̃
′
N + zTi z. The

second term has upper-bounded magnitude:

|zTi z| ≤ ||zi||2||z||2 , by the Cauchy-Schwarz inequality (74)

≤ ||zi||2ε0 = ε0

√
zTi zi = ε0

√
xTi xi , because Equation (4) preserves inner products

(75)
= ε0||xi||2 ≤ ε0||xi||1 , since ||y||2 ≤ ||y||1 holds for arbitrary vector y ∈ Rn (76)
≤ 2ε0h , where h is the episode horizon, (77)

where the final inequality holds because xi = xi1−xi2, and the vectors xi1 and xi2 contain positive
integer elements that sum to h.

Set ε > 0. Since |zTi z| ≤ 2ε0h, we can set ε0 ≤ αε
2h to ensure that if ||z||2 = ||αr̃′N − νj ||2 < ε0,

then |zTi z| < αε. To show that zTi νj = αzTi r̃
′
N +zTi z 6= 0, it thus suffices to show that |zTi r̃′N | > ε

with nonzero probability, for some ε > 0 that we specify (note that selecting the value of ε determines
the possible values of b).

Observe that |zTi r̃′N | = |xTi r̃N | = |(xi1 − xi2)T r̃N |, again because the linear transformation zi =
V Txi (4) preserves inner products. This is the difference in the total rewards of the two trajectories.
Recall that the probability of at least a certain component of r̃′N belonging to Null(M̂T

2 M̂2) is
non-decaying. For r̃′N ∈ Null(M̂T

2 M̂2), the total reward is zero for any zi in the row-space of
M̂2. Thus, αr̃′N = νj maximally encourages the induced policy to explore necessary parts of the
state/action space that lead to increasing the row-rank of M̂2.

We have ||αr̃′N − νj ||2 < ε0. The optimal policy is determined by comparing value functions of
competing policies; value functions are continuous in rewards, so ε0 can be set small enough that this
necessary exploration occurs with positive probability.
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Lemma 3 (Convergence of dynamics model). Given Lemma 2, DPS’s dynamics model converges to
the true dynamics, and all eigenvalues of

∑k
i=1 f(zTi r

′)ziz
T
i approach infinity as k −→∞.

Proof. DPS updates and samples from the dynamics model via the same procedure as the posterior
sampling RL algorithm of Osband et al. [29], which conducts posterior sampling RL with numerical
rewards; the difference between the two algorithms lies in their handling of rewards, but not of
dynamics. In [29], the theoretical result uses the fact that as a particular state/action pair is observed
infinitely-often, samples of the dynamics parameters p(s′|s, a) concentrate to their true values. This
fact comes from Lemma 17 in [24], which proves that the deviation between the empirical mean
and true value of p(s′|s, a) decays as the number of visits to state/action pair (s, a) increases. This
lemma is proven via the following concentration inequality:

P {||p̂(·)− p(·)||1 ≥ ε} ≤ (2S − 2)exp
(
−nε

2

2

)
, (78)

where S is the size of the state space, n is the number of times that (s, a) has been visited, p(s, a) is
the true vector of transition probabilities [p(s1|s, a), p(s2|s, a), . . . , p(sS |s, a)]T , and p̂(s, a) is the
empirical mean of the observations of p(s, a).

We apply the following two results to prove Lemma 3:

1. For any state/action pair that is sampled infinitely-often, the posterior over that state/action’s
transition probabilities (i.e., the distribution over possible next states) converges to its true
values. Thus, if every state/action pair is sampled infinitely-often, then the dynamics model
as a whole converges to the true dynamics.

2. Assuming a given dynamics model, the utility model is such that all eigenvalues of MTM
approach infinity as infinitely-many samples are collected, with M defined in (62)-(63);
Lemma 2 demonstrates that Bayesian logistic regression satisfies this requirement.

The proof of Lemma 3 consists of proving the two statements below:

A) If the sampled dynamics p̃(s, a) are sufficiently-close to the true dynamics (in l1-norm
||p̃(s, a)− p(s, a)||1) with high probability and MT

2 M2 is not full-rank, then there exists
c ∈ (0, 1) such that P (Sample zi /∈ Range(MT

2 M2)) ≥ c > 0.

B) Every state/action pair will be sampled infinitely-often.

Proof of Statement A:

Let v ∈ Null(MT
2 M2). Treating sampled dynamics model p̃ as if it were the true dynamics, Lemma

2 establishes that P (Sample zi s.t. zTi v 6= 0 | p̃) ≥ f(p̃) > 0, where the lower bound f(p̃) depends
on the sampled dynamics p̃, and the probability P (·) is with respect to sampling the reward model
(which determines the policy to execute) and the dynamics transitions during the policy roll-out.

We argue that there exists such a lower bound f that is continuous in the dynamics p̃. To do so,
we define g(p̃) := P (Sample zi s.t. zTi v 6= 0 | p̃), and show that g(p̃) has at most finitely-many
discontinuities. This is sufficient to show that there must exist a continuous function f such that for
any dynamics p̃, g(p̃) ≥ f(p̃) > 0.

The rewards are sampled independently of the dynamics, and the probability of sampling rewards
that are aligned with v to at least a specified degree does not decay: P

(∣∣∣ (r̃′)T

||r̃′||2 ·
v
||v||2

∣∣∣ > b
)
6−→ 0,

for any b ∈ (0, 1). Statement A considers only a specific iteration of the algorithm, rather than a
sequence of episodes, and so the reward distribution can be treated as fixed.

Given dynamics p̃, the probability of sampling any trajectory τ = {s1, a1, s2, a2, . . . , sh+1} under
policy π is continuous in p̃:

P (τ) = p̃0(s1)

h∏
i=1

π(ai|si)p̃(si+1|si, ai). (79)
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Letting L be the set of trajectories such that zTi v 6= 0, the probability of sampling a trajectory τ ∈ L
is:

P (τ ∈ L) =
∑
τ ′∈L

P (τ ′), (80)

where the probability P (τ ′) is given by (79). The function g(p̃) = P (τ ∈ L|p̃) is therefore
continuous in the parameters of p̃. The policy π, meanwhile, depends upon the dynamics p̃ and
sampled rewards r̃, and is selected via value iteration to optimize the expected total reward:

π∗ = argmax
π

V M̃π,1(s) = argmax
π

EM,π

 h∑
j=1

r̃(sj , aj)|s1 = s

 , (81)

where M̃ is the sampled MDP (i.e., consisting of p̃ and r̃).

Value iteration selects the deterministic policy that maximizes the expected total trajectory reward in
(81). Given finite state and action spaces and a finite time horizon, there are finitely-many possible
deterministic policies. If for given dynamics p̃, only a single policy π(p̃) maximizes the value
function, then under a sufficiently-small change in the dynamics, that same policy π(p̃) still yields
the optimal value function. Under a fixed policy, the probability of generating any trajectory is
continuous in the dynamics, and so g is continuous at p̃.

Thus, the function g(p̃) can only be discontinuous at points in the dynamics space at which multiple
policies maximize (81). We argue that g(p̃) has finitely-many such discontinuities. If this were not the
case, there would exist a region of the dynamics space in which the policy maximizing (81) changes
infinitely-many times. Since the set of dynamics models is bounded (each dynamics parameter is in
[0, 1]), this would imply that for any ε > 0, there exists a region of the dynamics parameter space
with area below ε, in which the policy optimizing (81) changes infinitely-many times. To see that this
is impossible, notice that any dynamics p̃ and policy π induce a distribution ñ(s, a) over the expected
number of times a trajectory visits each state/action pair. The expected total reward, given ñ(s, a)
and sampled rewards r̃, can be expressed as,

V M̃π,1(s) =
∑

(s,a)∈S×A

ñ(s, a)r̃(s, a). (82)

Since ñ(s, a) depends on the policy and dynamics according to (79) for each possible trajectory, its
slope with respect to the dynamics is upper-bounded, and it cannot oscillate infinitely with respect to
the dynamics.

Given the continuous lower bound f , for ε > 0, there exists δ such that if ||p̃ − p||1 < δ, then
|f(p̃)− f(p)| < ε. If we set ε < f(p)

2 , then P (Sample zi s.t. zTi v 6= 0 |p) ≥ f(p) > f(p̃)
2 > 0.

Proof of Statement B:

Statement B asserts that every state/action pair will be sampled infinitely-often. To show this, we first
define known and unknown state/action pairs:

Definition 3. (ε, δ)-known state/action pair: Fix ε, δ > 0, and let p̃(s, a) be a sample from the
dynamics model’s posterior. An (ε, δ)-known state/action pair is one for which ||p̃(s, a)−p(s, a)||1 <
ε with probability 1− δ.

Definition 4. Unknown state/action pair: An (ε, δ)-unknown state/action pair is one that does not
satisfy Definition 3.

Previously, we noted that for any state/action pair that is sampled infinitely-often, the model of that
state/action’s transition probabilities (that is, the distribution over possible next states) converges
to the true values. For any fixed ε and δ, after enough steps in the MDP are taken, at least one
state/action pair is guaranteed to eventually be sampled enough that it becomes (ε, δ)-known.

To prove Statement B, it suffices to show that if part of the dynamics are known and part are
unknown, then the MDP is guaranteed to eventually leave its known portion. We will prove this by
contradiction: we will assume that all sampled policies stay only in the known portion of the MDP,
and then contradict this assumption by showing that the MDP is guaranteed to exit the known region.
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For ε, δ > 0, an (ε, δ)-known state/action pair is one for which ||p̃(s, a) − p(s, a)||1 < ε with
probability 1 − δ. For unknown state/action pairs (s, a), due to the assumption that only known
state/actions are visited, the distribution from which p̃(s, a) is sampled does not change. Without
loss of generality, let s̃1 be an unknown state/action pair. This means that s̃1 is not visited past some
iteration m.

Without visiting s̃1, MT
2 M2 cannot be full-rank. As a result, there exists v ∈ Null(MT

2 M2) which
directly corresponds to the lack of s̃1 observations. As in the proof of Statement A, there exists a
function f such that P (Sample zi s.t. zTi v 6= 0|p̃) ≥ f(p̃) > 0. While p̃ itself changes in each
episode, we can show that E[f(p̃)] does not decay to zero. To do so, denote the samples of the known
and unknown portions of the dynamics parameters as p̃known and p̃unknown, respectively. Also, let Sε
be the set of known dynamics parameters p̃known that lie inside the ε1-ball ||p̃(s, a)− p(s, a)||1 < ε
for known (s, a). Then:

E[f(p̃)] =

∫
Pr(p̃)f(p̃)d(p̃) (83)

≥ min
p̃known∈Sε

∫
Pr(p̃unknown)f(p̃)d(p̃unknown) (with prob. ≥ 1− δ). (84)

By minimizing the known dynamics over the area in which they lie with high probability, we obtain
an integral in which all dynamics parameters are either fixed (i.e., the known dynamics) or drawn
from an unchanging distribution (i.e., the unknown dynamics). Therefore, since f(p̃) is strictly
positive everywhere, and we are integrating it over an unchanging probability distribution, the integral
must evaluate to a strictly positive, unchanging quantity.

Hence, as long as s̃1 is unknown and not visited, Ep̃[P (Sample zi s.t. zTi v 6= 0)] ≥ c > 0 with
probability ≥ 1 − δ, for some c > 0. In general, when sampling a sequence of random vari-
ables Xi with bounded support and E[Xi] ≥ c for all i, we observe Xi ≥ c infinitely-often.
Since f(·) has support in [0, 1], we are guaranteed to infinitely-often sample dynamics p̃ such that
P (Sample zi s.t. zTi v 6= 0) ≥ c > 0, in which event state/action s̃1 has nonzero probability of being
sampled. This completes the proof by contradicting the hypothesis that the MDP will only visit
known state/action pairs.

Theorem 1 (Asymptotic consistency of DPS). If there exists a reward function such that a logistic
regression model explains the user’s preferences, then DPS with a Bayesian logistic regression
credit assignment model will learn an asymptotically consistent reward model.

Proof. To prove this result, we apply Proposition 1. Given that Lemma 2, Lemma 3, and Condition
1 hold, it remains only to argue that Condition 2 must hold. To see this, refer back to the proof of
Lemma 2. As long as a particular eigenvalue of ZTZ does not increase, there is a non-decaying
probability of sampling an observation that increases it by at least some minimum amount. The
probabilities of sampling such vectors depend on the ratios of the covariance matrix Σk’s eigenvalues,
and so the ratio of λ1 and λD−1 must always have some upper bound.

We turn next to characterizing the regret rate of DPS. We will apply two prior results, one from
Gourieroux and Monfort [21] regarding the asymptotic distribution of the logistic regression maxi-
mum likelihood estimate, while the other (Osband et al. [29]) presents a regret bound for posterior
sampling RL.

Proposition 2 (Asymptotic normality of logistic regression maximum likelihood estimator [21]). If
Conditions 1 and 2 are satisfied, and if r̂′ML,k converges almost surely to the true value r′, then:[

k∑
i=1

f(zTi r̂
′
ML,k)ziz

T
i

] 1
2

(r̂′ML,k − r′)
D−→ N (0, I) as k −→∞, (85)

where D−→ implies convergence in distribution and Q
1
2 is the positive definite matrix associated with

positive definite matrix Q such that [Q
1
2 ]2 = Q.

Proof. See Proposition 4 in Gourieroux and Monfort [21].
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Remark: Just as with Proposition 1, the proof of Proposition 2 in [21] can be adapted such that the
result holds when the maximum likelihood estimator r̂′ML,k is replaced with the MAP estimator r̂′k.

Proposition 3 (Expected regret of posterior sampling RL). In posterior sampling RL with episode
horizon h and numbers of states and actions S and A, the expected T -step regret is bounded as:

E[Regret(T, πPS
h )] = O

(
hS
√
AT log(SAT )

)
. (86)

Proof. See Theorem 1 in Osband et al. [29].

Next, we show that under preference feedback, the regret can be decomposed into two terms: one
that reflects the converging dynamics model, and one that reflects the converging reward model.

Lemma 4 (Regret decomposition). The expected regret of DPS can be decomposed into two terms.
One of these terms can be upper bounded by the same regret bound as in Osband et al. [29], stated
in Proposition (3). The second term may be upper-bounded by

h

dT/he∑
k=1

E[||r − r̃k||∞] ≤ h
dT/he∑
k=1

E[||r̂k − r||∞] + h

dT/he∑
k=1

E[||r̂k − r̃k||∞]. (87)

Proof. Recall that the value of state s at time-step i and under policy µ and MDP M is:

VMµ,i(s) := EM,µ

 h∑
j=i

rM (sj , aj)|si = s

 , (88)

where rM (s, a) is the average utility for taking action a in state s and MDP M . Then, the regret from
episode k is defined as:

∆k :=
∑
s∈S

p0(s)(VM
∗

µ∗,1 − VM
∗

µk,1
), (89)

where M∗ is the true (unknown) MDP, µ∗ is the optimal policy in M∗, and µk is the policy that the
algorithm follows in episode k. The total regret over T time-steps is then:

Regret(T, π) :=

dT/he∑
k=1

∆k. (90)

For a sampled MDP Mk, drawn from the posterior model of the environment, Osband et al. [29]
define:

∆̃k :=
∑
s∈S

p0(s)(VMk
µk,1
− VM

∗

µk,1
). (91)

In Osband et al. [29], the authors prove the following regret equivalence result:

E

[
m∑
k=1

∆k

]
= E

[
m∑
k=1

∆̃k

]
, (92)

which they use to derive the posterior sampling RL regret bound restated in Proposition 3.

The true (unknown) MDP M∗ consists of the true dynamics P ∗ and average rewards r(sj , aj),
while Mk has a sampled dynamics model and sampled rewards r̃(sj , aj). In addition, we introduce
M∗k , which pairs the true dynamics model P ∗ with the sampled rewards r̃(sj , aj). By adding and
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subtracting terms based upon M∗k , the terms of ∆̃k can be decomposed:

VMk
µk,1

(s)− VM
∗

µk,1
(s) = EMk,µk

 h∑
j=1

r̃(sj , aj)|s1 = s

− EM∗,µk

 h∑
j=1

r(sj , aj)|s1 = s

 (93)

= EMk,µk

 h∑
j=1

r̃(sj , aj)|s1 = s

− EM∗k ,µk

 h∑
j=1

r̃(sj , aj)|s1 = s

 (94)

+ EM∗k ,µk

 h∑
j=1

r̃(sj , aj)|s1 = s

− EM∗,µk

 h∑
j=1

r(sj , aj)|s1 = s

 (95)

= EMk,µk

 h∑
j=1

r̃(sj , aj)|s1 = s

− EM∗k ,µk

 h∑
j=1

r̃(sj , aj)|s1 = s

 (96)

+ EP∗,µk

 h∑
j=1

(r̃(sj , aj)− r(sj , aj)) |s1 = s

 , (97)

where in the final term, recall that P ∗ is the true transition model.

The regret arising from the first two terms of this expression can be upper-bounded by the same regret
bound as in [29], stated in (86) above. This holds because the regret bound of [29] arises from both
dynamics and reward models that converge based upon direct observations of each model parameter,
i.e., direct observations of both state/action transitions and rewards. In the two terms in (96), however,
the rewards are identical among the two terms, while the dynamics are modeled identically to the
setup of [29].

It remains to consider the third term of the regret decomposition (97), which is the error due to credit
assignment. Let REGRT be the total component of the T -step regret arising from this credit assignment
error term. Our goal is to upper-bound its expectation:

E[REGRT ] = Ep0,r̃


dT/he∑
k=1

EP∗,µk

 h∑
j=1

(r̃(sj , aj)− r(sj , aj))
∣∣∣s1 = s

 . (98)

Note that because M∗ and M∗k have the same transition dynamics and initial state distributions p0,
and that because the expectation over both summations in (98) is taken with respect to the same
policy µk, the two MDPs M∗ and M∗k have the same probabilities of reaching any state/action pair
(s, a) at each step j.

Recall that r ∈ RD is the vector of true state/action rewards, r̃k ∈ RD is the vector of sampled
state/action rewards (from the model posterior) in episode k, and r̂k ∈ RD is the expected value of
the reward model’s posterior distribution at episode k.

Given the observation that M∗ and M∗k have the same probabilities of reaching any state/action pair
(s, a) at each step j, we can write:

E[REGRT ] ≤ h
dT/he∑
k=1

E[||r − r̃k||∞]. (99)

Applying the triangle inequality yields:

E[REGRT ] ≤ h
dT/he∑
k=1

E[||r− r̃k + r̂k − r̂k||∞] ≤ h
dT/he∑
k=1

E[||r̂k − r||∞] + h

dT/he∑
k=1

E[||r̂k − r̃k||∞].

(100)
Thus, to bound the total credit assignment error in (98), we must consider the rates at which r̂k
converges to r and at which r̃k converges to r̂k.
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The final two lemmas characterize the convergence of r̃k to r̂k, and of r̂k to r, respectively.

Lemma 5. Sampling r̃′k via the Laplace approximation to the Bayesian logistic regression posterior
gives r̃′k ∼ N (r̂′k,Σk), with r̂′k and Σk defined in (9) and (10). All eigenvalues of Σ−1

k approach
infinity as k −→∞. Moreover, given Condition 2, there exists c0 such that λ(k)

D−1 ≥ kc0, where recall

that λ(k)
D−1 is the smallest eigenvalue of

∑k
i=1 f(zTi r

′)ziz
T
i . Thus, asymptotically λ(k)

D−1(Σ−1
k ) ≥

kc0, where λ(k)
D−1(Σ−1

k ) is the smallest eigenvalue of Σ−1
k .

Proof. From Theorem 1 (see subsequent remark), r̂′k −→ r′ almost surely. Due to this convergence,

Σ−1
k =

k∑
i=1

exp(zTi r̂
′
k)

(1 + exp(zTi r̂
′
k))2

ziz
T
i

k−→∞−→
k∑
i=1

exp(zTi r
′)

(1 + exp(zTi r
′))2

ziz
T
i , (101)

and all eigenvalues of Σ−1
k approach infinity as k −→∞ by Lemma 3. Also, Condition 2 asymptoti-

cally holds for Σ−1
k as k increases, so that if λ(k)

1 (Σ−1
k ) and λ(k)

D−1(Σ−1
k ) are the largest and smallest

eigenvalues of Σ−1
k , respectively, then ∃M1 such that λ

(k)
1 (Σ−1

k )

λ
(k)
D−1(Σ−1

k )
≤ m1 for large enough k.

To complete the proof, we argue that Tr(Σ−1
k ) increases by a lower-bounded amount on average

with each time step, where Tr denotes the trace, or sum of a matrix’s eigenvalues. Combining that

1) λ
(k)
1 (Σ−1

k )

λ
(k)
D−1(Σ−1

k )
≤ m1 for large enough k, and 2) Tr(Σ−1

k ) =
∑D−1
i=1 λi(Σ

−1
k ) increases (on average)

by a lower-bounded amount with each new iteration, one can see that there exists c0 such that
asymptotically λ(k)

D−1(Σ−1
k ) ≥ kc0.

The quantity Tr(Σ−1
k ) can only increase:

Tr
[
Σ−1
k

]
=

k∑
i=1

exp(zTi r̂
′
k)

(1 + exp(zTi r̂
′
k))2

Tr(zizTi ), by linearity of trace (102)

=

k∑
i=1

exp(zTi r̂
′
k)

(1 + exp(zTi r̂
′
k))2

zTi zi, by the cyclic property of trace (103)

=

k∑
i=1

exp(zTi r̂
′
k)

(1 + exp(zTi r̂
′
k))2

xTi xi, by (6). (104)

The quantity exp(zTi r̂′k)

(1+exp(zTi r̂′k))2
is bounded away from zero because it approaches exp(zTi r′)

(1+exp(zTi r′))2
, which is

bounded away from zero as justified previously. For any observation xi such that xi = xi1−xi2 6= 0,
xTi xi ≥ 1 always, since xi1 and xi2 differ by at least one. It remains to argue that the event
{xi1 − xi2 = 0} cannot occur increasingly-often: there must be some below-one upper-bound to the
probability that this event takes place. This is indeed the case; if it were not, this would imply that
the model converges toward always sampling a single trajectory x; however, as long as a particular
eigenvalue of ZTZ does not increase, there is a non-decaying probability of sampling an observation
x′ that increases it by at least some minimum amount (Lemma 1). The probability of sampling a
trajectory x′ 6= x depends on the ratios of the covariance matrix’s eigenvalues, which are bounded
according to Condition 2.

Lemma 6. Under the conditions for asymptotic consistency of logistic regression (Theorem 1),

the vector r̂′k − r′ behaves asymptotically as N
(
0,
[∑k

i=1 f(zTi r
′)ziz

T
i

]−1
)

. This is the same

distribution as that characterizing r̃′k − r̂′k as k −→∞, as discussed in Lemma 5. Thus, similarly,
r̂′k − r′ asymptotically has covariance Σk.
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Proof. By Proposition 2 (see subsequent remark),[
k∑
i=1

f(zTi r̂
′
k)ziz

T
i

] 1
2

(r̂′k − r′)
D−→ N (0, I) as k −→∞. (105)

Multiplying both sides by
[∑k

i=1 f(zTi r
′)ziz

T
i

]−1/2

gives that:[
k∑
i=1

f(zTi r
′)ziz

T
i

]−1/2 [ k∑
i=1

f(zTi r̂
′
k)ziz

T
i

]1/2

(r̂′k − r′) (106)

behaves asymptotically as N

0,

[
k∑
i=1

f(zTi r
′)ziz

T
i

]−1
 . (107)

Note that
[∑k

i=1 f(zTi r
′)ziz

T
i

]−1/2 [∑k
i=1 f(zTi r̂

′
k)ziz

T
i

]1/2
−→ I because r̂′k −→ r′, so that

r̂′k − r′ behaves asymptotically as N
(
0,
[∑k

i=1 f(zTi r
′)ziz

T
i

]−1
)

.

Theorem 2 (Asymptotic regret rate of DPS). If there exists a reward function such that a lo-
gistic regression model explains the preferences, then DPS has an asymptotic no-regret rate of

O
(
hS
√
AT log(SAT ) + h

√
SA
c0
T log(T )

)
, where c0 is a minimum rate at which eigenvalues of∑k

i=1 f(zTi r
′)ziz

T
i increase linearly with collection of samples zi that impact those eigenvalues.

Proof. From Lemma 3, the regret is upper-bounded by a sum of two terms, where the first of those
terms is bounded by O

(
hS
√
AT log(SAT )

)
as proven in [29]. Here, we analyze the second term,

given in (98), and upper-bounded by the expression in (99), restated here:

E[REGRT ] ≤ h
dT/he∑
k=1

E[||r − r̃k||∞].

We use that ||x||∞ ≤ ||x||2 for any x ∈ Rn, and that the linear transformation in (4) preserves inner
products, as established in Equation (6). In particular, the linear transformation preserves l2-norms of
vectors, since for any vector x ∈ Rn, ||x||2 =

√
xTx. Applying both of these facts gives:

E[REGRT ] ≤ h
dT/he∑
k=1

E[||r − r̃k||∞] ≤ h
dT/he∑
k=1

E[||r′ − r̃′k||2]. (108)

Consider the expected l2-norm of a Gaussian vector x ∈ Rn, x ∼ N (0,Σ). It can be upper-bounded
in terms of n and the eigenvalues of Σ:

E[||x||2] ≤
√
E[||x||22], by Jensen’s inequality (109)

=

√√√√E

[
n∑
i=1

x2
i

]
=

√√√√ n∑
i=1

E [x2
i ] =

√√√√ n∑
i=1

Var [xi] (110)

=
√

Tr(Σ) =

√√√√ n∑
i=1

λi(Σ) ≤
√
nλmax(Σ). (111)

Next, consider the asymptotic probability distribution of r̃′k − r′ = (r̃′k − r̂′k) + (r̂′k − r′).
Given r′, which is constant, the two quantities in parentheses are independent due to the na-
ture of Laplace sampling, in which r̃′k is drawn from a normal distribution centered at r̂′k. By
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Lemmas 5 and 6, both r̃′k − r̂′k and r̂′k − r′ behave asymptotically according to N (0,Σk), where

Σk :=
[∑k

i=1 f(zTi r
′)ziz

T
i

]−1

. Therefore, r̃′k−r′ behaves asymptotically according toN (0, 2Σk).

Combining (108) and (111) gives:

E[REGRT ] ≤ h
dT/he∑
k=1

√
(D − 1)λmax(2Σk) ≤ h

√
2SA

dT/he∑
k=1

λmax(Σk). (112)

Although λmax(Σk) decays to zero over time by Lemma 2, this result is too loose: there could be
many consecutive iterations in which λmax(Σk) remains constant. For instance, if Condition 2 is
enforced explicitly as discussed earlier, then as the model posterior converges, one would expect to
find increasingly-many consecutive iterations in which the reward posterior is not updated; in these
iterations, λmax(Σk) is fixed.

The key intuition, formalized below, is that when a non-optimal episode is sampled, the covariance
matrix Σk shrinks with respect to the directions (i.e., its eigenvectors) responsible for estimating
the rewards suboptimally. Meanwhile, if particular eigenvectors of Σk do not result in a suboptimal
policy during episode k, then for that episode, the corresponding eigenvalues can be removed from
the right-hand sum in (112). Thus, eigenvalues do not appear in the regret’s upper bound except for
when their corresponding eigenvectors affect an episode’s regret. In this event, however, the sampled
observations cause Σk to shrink along the dimensions of the guilty eigenvectors.

To see this, first note that in the context of preference-based learning, the true reward function r is
unobserved. One can define an equivalence class of reward functions that, when coupled with the
true transition dynamics, induce the optimal policy with respect to the user’s preferences. In the
preference-based setting, an optimal policy is defined as any policy π∗ such that when compared to
any other policy πi:

Eτ∗∼π∗,τi∼πi [P (τ∗ > τi)] ≥
1

2
, (113)

where τ∗ is a trajectory sampled from policy π∗, and τi is a trajectory sampled from πi.

Let Seq ⊂ RD−1 be the equivalence class of reward functions that induce policies satisfying (113)
when coupled with the true dynamics. To see that there are indeed multiple such functions, notice
that for any reward vector r′ ∈ Seq, ar′ + b1 ∈ Seq for any a > 0 and b ∈ R, where 1 ∈ RD−1 is
a vector of ones. Therefore, in (108), we can minimize each episode’s regret over reward vectors
belonging to Seq:

E[REGRT ] ≤ h
dT/he∑
k=1

min
r′∈Seq

{
E
[
||r̃′k − r′||2

]}
. (114)

Even given specified scaling and normalization of the rewards (e.g. specified values of the smallest
and largest state/action rewards), there could be multiple reward functions that give rise to the optimal
policy. For instance, a small perturbation to the rewards might not change the policy. Given specified
scaling and normalization, however, there is only one true latent reward function governing the
preferences; this is the specific r′ ∈ Seq to which the logistic regression posterior converges.

Define Σk :=
[∑k

i=1 f(zTi r
′)ziz

T
i

]−1

, and let {vk1, . . . ,vk(D−1)} be an orthonormal basis of
eigenvectors of Σk. For r′ ∈ Seq, the quantity r̃′k − r′ can be expressed in this eigenbasis:

E[REGRT ] ≤ h
dT/he∑
k=1

min
r′∈Seq

{
E

[∣∣∣∣∣
∣∣∣∣∣
D−1∑
i=1

((r̃′k − r′)Tvki)vki

∣∣∣∣∣
∣∣∣∣∣
2

]}
. (115)

Consider the inner sum,
∑D−1
i=1 ((r̃′k − r′)Tvki)vki. We will show that if any terms in this sum are

known not contribute to the regret (i.e., to sampling a non-optimal policy in episode k), then they can
be eliminated from the sum. In particular, if an episode’s sampled reward belongs to Seq, then its
reward regret REGRT is zero. Otherwise, the components of the reward function that make the policy
non-optimal cause the corresponding eigenvalues of Σk to shrink.
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Assume that in episode k, the reward sample’s projection onto vi does not affect the regret. In other
words, there exists r′ ∈ Seq such that ((r̃′k − r′)Tvki)vki = 0. Let Ik ⊂ {1, . . . , D− 1} be a set of
indices that jointly do not affect the regret, such that there exists r∗′k ∈ Seq satisfying:

∑
i∈Ik

(vTi (r̃′k − r∗′))vi = 0. (116)

Let Jk be the set of indices not contained in Ik: Jk = {1, . . . , D − 1} \ Ik; we make no particular
assumptions on how vectors in Jk affect the regret. The vector r∗′k can then be written as:

r∗′k =
∑
i∈Ik

(vTi r̃
′
k)vi +

∑
j∈Jk

α∗jvj , (117)

for some constants α∗j , j ∈ Jk.

Due to orthogonality of vi and vj , (116) can be modified by adding any linear combination of the
vectors vj , j ∈ Jk, to r∗′:

∑
i∈Ik

vTi
r̃′k − r∗′ − ∑

j∈Jk

αjvj

vi = 0, for any values of αj . (118)

Conditioning on knowledge of the set Ik, we can upper-bound the minimization in (115) as follows:

min
r′∈Seq

E

[∣∣∣∣∣
∣∣∣∣∣
D−1∑
i=1

((r̃′k − r′)Tvki)vki

∣∣∣∣∣
∣∣∣∣∣
2

∣∣∣∣∣ Ik
]

(119)

= min
r′∈Seq

E

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
i∈Ik

((r̃′k − r′)Tvki)vki +
∑
j∈Jk

((r̃′k − r′)Tvki)vki

∣∣∣∣∣∣
∣∣∣∣∣∣
2

∣∣∣∣∣ Ik
 (120)

≤ min
r′∈Seq

E

∣∣∣∣∣
∣∣∣∣∣∑
i∈Ik

((r̃′k − r′)Tvki)vki

∣∣∣∣∣
∣∣∣∣∣
2

+

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
j∈Jk

((r̃′k − r′)Tvki)vki

∣∣∣∣∣∣
∣∣∣∣∣∣
2

∣∣∣∣∣ Ik
 , (121)

where the last step comes from the triangle inequality. The expression can be further upper-bounded
by restricting the set over which the minimization takes place:

min
r′∈Seq

E

[∣∣∣∣∣
∣∣∣∣∣
D−1∑
i=1

((r̃′k − r′)Tvki)vki

∣∣∣∣∣
∣∣∣∣∣
2

∣∣∣∣∣ Ik
]

≤ min
r′∈Seq

r′=r∗′+
∑
j∈Jk

αjvj ,

αj∈R

E

∣∣∣∣∣
∣∣∣∣∣∑
i∈Ik

((r̃′k − r′)Tvki)vki

∣∣∣∣∣
∣∣∣∣∣
2

+

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
j∈Jk

((r̃′k − r′)Tvki)vki

∣∣∣∣∣∣
∣∣∣∣∣∣
2

∣∣∣∣∣ Ik
 .

Note that the constraint set of the minimization is nonempty, since r∗′ ∈ Seq and satisfies r′ =
r∗′+

∑
j∈Jk αjvj when αj = α∗j ∀j ∈ Jk. Next, for any r′ satisfying the minimization constraints,

the first l2-norm expression is equal to zero by (118). The second term, meanwhile, is not affected
by the projections of r′ onto vi for any i ∈ Ik, and so the constraint r′ = r∗′ +

∑
j∈Jk αjvj is

irrelevant to the minimization. This gives:

min
r′∈Seq

E

[∣∣∣∣∣
∣∣∣∣∣
D−1∑
i=1

((r̃′k − r′)Tvki)vki

∣∣∣∣∣
∣∣∣∣∣
2

∣∣∣∣∣ Ik
]
≤ min

r′∈Seq
E

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
j∈Jk

((r̃′k − r′)Tvki)vki

∣∣∣∣∣∣
∣∣∣∣∣∣
2

∣∣∣∣∣ Ik
 .

This can again be upper-bounded by setting r′ to any specific value in Seq. In particular, we can set
r′ = r′, the true latent reward function governing the preferences. Recall that while multiple reward
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functions may give rise to the optimal policy, the true rewards r′ are unique under fixed scaling and
normalization. Therefore,

min
r′∈Seq

E

[∣∣∣∣∣
∣∣∣∣∣
D−1∑
i=1

((r̃′k − r′)Tvki)vki

∣∣∣∣∣
∣∣∣∣∣
2

∣∣∣∣∣ Ik
]
≤ E

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
j∈Jk

((r̃′k − r′)Tvki)vki

∣∣∣∣∣∣
∣∣∣∣∣∣
2

∣∣∣∣∣ Ik
 . (122)

Recall from above that r̃′k−r′ behaves asymptotically asN (0, 2Σk). The right-hand-side summation
in (122) is the projection of r̃′k − r′ onto the subspace of eigenvectors of Σk corresponding to Jk.
Applying the result in (111) to (122), we finally obtain:

min
r′∈Seq

E

[∣∣∣∣∣
∣∣∣∣∣
D−1∑
i=1

((r̃′k − r′)Tvki)vki

∣∣∣∣∣
∣∣∣∣∣
2

∣∣∣∣∣ Ik
]
≤
√∑
j∈Jk

λj(2Σk) (123)

≤
√

2SAmax
j∈Jk

λj(Σk). (124)

This result demonstrates that if an eigenvector of Σk does not affect the regret, then its corresponding
eigenvalue can be removed from the regret’s upper bound in (111). Therefore, an eigenvector of
Σk does not affect the regret unless its contribution to the sampled reward r̃k makes the policy
non-optimal.

A non-optimal policy’s distribution over sampled observations differs from that of the optimal policy.
When a non-optimal policy is sampled, the covariance matrix is more likely to shrink along directions
of worse observations, decreasing the future probability of sampling a non-optimal policy. This
shrinkage occurs linearly with respect to the episodes in which non-optimal policies are sampled
because (Σk)−1 grows linearly in directions favored by the non-optimal policies, with respect to the
number of times that they are executed. Indeed, for an arbitrary vector v ∈ RD−1:

vT (Σk)−1v =

k∑
i=1

αiv
T (ziz

T
i )v =

k∑
i=1

αi(z
T
i v)2, (125)

where αi = f(zTi r
′) lives in a bounded range as discussed in Lemma 1; this quantity increases

linearly on average with respect to observations zi that are similarly-aligned with v. Also,

vT (Σk)−1v = vT

(
D−1∑
i=1

[λi(Σk)]−1viv
T
i

)
v =

D−1∑
i=1

[λi(Σk)]−1(vTi v)2. (126)

Comparing (125) and (126), one can see that the eigenvalues of (Σk)−1 associated with non-optimal
policies should increase linearly with the collection of observations zi associated with those non-
optimal policies.

The regret for an episode is zero if the optimal policy is selected. Otherwise, examine the bound
from (123):

√
2SAmax

j∈Jk
λj(Σk) =

√
2SA

min
j∈Jk

λj(Σ
−1
k )

. The denominator increases linearly with respect

to episodes with non-optimal policies, so that asymptotically:

min
r′∈Seq

E

[∣∣∣∣∣
∣∣∣∣∣
D−1∑
i=1

((r̃′k − r′)Tvki)vki

∣∣∣∣∣
∣∣∣∣∣
2

∣∣∣∣∣ Ik
]
≤
√

2SA

c0k
, (127)

where c0 is a constant related to the rate at which eigenvalues of (Σk)−1 increase with respect to
trajectories sampled from non-optimal policies. Summing over all the episodes gives:

E[REGRT ] ≤ h
√

2SA

c0

T∑
k=1

1√
k
≤ h
√

2SA

c0

√
T log(T ) for all T ≥ 17. (128)

Combining (128) with the regret decomposition result of Lemma 4 and the posterior sampling regret
bound from Osband et al. [29] (Proposition 3) yields the stated result.
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A2.1 Extending proof techniques to other credit assignment models

Currently, this proof methodology extends only to the Bayesian logistic regression credit assignment
model. Therefore, extending it to other credit assignment models, such as the Gaussian process
regression and Bayesian linear regression methods detailed in Appendix A1, is an important direction
for future work. The concept of regret decomposition, as introduced in Lemma 3, is not dependent on
a specific credit assignment model. Thus, the concept of decomposing the total regret into two terms,
dependent on the convergence of the dynamics and reward models, respectively, holds under any
credit assignment model. For the dynamics-dependent term, the regret result from Osband et al. [29]
can be applied. The second, reward-dependent term can be bounded if: (1) posterior samples from
the reward model concentrate to the posterior distribution’s MAP estimate, (2) the reward model’s
posterior concentrates to the true underlying utilities, and (3) the events in (1) and (2) occur at a
sufficiently-fast rate.

We hypothesize that existing results on asymptotic consistency of Bayesian linear regression [19] and
Gaussian process regression [34] could be leveraged toward extending notions of consistency and
regret toward these credit assignment models. Unlike with classification-based credit assignment, it
may be necessary to consider the residuals between preference labels and utilities. The concept of
approximate linearity [41] has facilitated bridging the gap between the preference and absolute-reward
domains in the bandit setting, and could potentially also apply here. In practice, we expect that
DPS would perform well with any asymptotically consistent model for rewards that sufficiently
captures the users’ preference behavior.

A3 Additional experimental details

As described in Section 6, experiments were conducted with the RiverSwim and random MDP
environments. We use an episode horizon time of 50 in both cases. Figures 2 and 3 display
performance in both environments for four values of the hyperparameter c (c ∈ {0.1, 0.5, 1, 1000}),
which governs the degree of preference noise. Experiments were run on an Ubuntu 16.04.3 machine
with 16 GB of RAM and an 8-core Intel i7 processor.

We detail the ranges of hyperparameter values tested, as well as those displayed on the plots, for
the different algorithms. For DPS, hyperparameters were tuned manually. For Gaussian process
regression credit assignment, we used RBF kernels for the Gaussian process model, considering
kernel variances from 0.001 to 0.5, kernel lengthscales from 0 to 0.1, and noise variances from 0.001
to 0.1. The plots depict values of (0.03, 0, 0.05), respectively, for these parameter values in the
RiverSwim case, while depicting (1, 0, 0.03) in the random MDP case.

For Bayesian linear regression, we considered ranges of hyperparameter values between 0.1 and 3 for
both hyperparameters (σ and λ). The RiverSwim plots display hyperparameter values of 0.5 and 0.1
for σ and λ, respectively, while for the random MDP environment, both are set to 0.1. For Bayesian
logistic regression, we set the prior mean to zero for all states and actions. All prior covariance
matrices considered were of the form bI ∈ RSA×SA, where I is the identity matrix, and tested values
of b ranged from 0.1 to 30; the plots all show results for a prior covariance matrix of 20I.
The EMPC algorithm [50] has two hyperparameter values, α and η. We optimize both of these
jointly via a grid search over values of (0.1, 0.2, . . . , 0.9), with 100 runs of each pair of values. The
best-performing hyperparameter values (i.e. those achieving the highest total reward) are displayed
in Table 1; these are the hyperparameter values depicted in Figures 2 and 3.

Noise: 0.1 0.5 1 1000
RiverSwim 0.1/0.5 0.1/0.7 0.2/0.2 0.1/0.6
Random MDP 0.3/0.8 0.9/0.7 0.4/0.2 0.7/0.4

Table 1: Each table element shows best-performing α/η values for the corresponding simulation
domain and noise parameter.
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(a) c = 0.1 (b) c = 0.5

(c) c = 1 (d) c = 1,000

Figure 2: Empirical performance of DPS in the RiverSwim environment for varying values of the
noise hyperparameter c. For trajectories τi and τj , P (τi > τj) = {1 + exp[−c(r(τi)− r(τj))]}−1,
where r(τi) and r(τj) are the total rewards accrued by the two trajectories. Posterior sampling RL
(PSRL) [29] is an upper bound that receives numerical rewards; Gaussian process regression (GPR),
Bayesian linear regression, and Bayesian logistic regression are all instances of DPS. EPMC is
a baseline from [50] as discussed in Section 6. Normalization is with respect to the total reward
achieved by the optimal policy. Plots display the mean +/- one std over 100 runs of each algorithm
tested. Overall, we see that DPS performs well and is robust to the choice of credit assignment
model.

34



(a) c = 0.1 (b) c = 0.5

(c) c = 1 (d) c = 1,000

Figure 3: Empirical performance of DPS in the random MDP environment for varying values of the
noise hyperparameter c. For trajectories τi and τj , P (τi > τj) = {1 + exp[−c(r(τi)− r(τj))]}−1,
where r(τi) and r(τj) are the total rewards accrued by the two trajectories. Posterior sampling RL
(PSRL) [29] is an upper bound that receives numerical rewards; Gaussian process regression (GPR),
Bayesian linear regression, and Bayesian logistic regression are all instances of DPS. EPMC is
a baseline from [50] as discussed in Section 6. Normalization is with respect to the total reward
achieved by the optimal policy. Plots display the mean +/- one std over 100 runs of each algorithm
tested. Overall, we see that DPS performs well and is robust to the choice of credit assignment
model.
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