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Abstract—We present a novel unsupervised deep learning
approach that utilizes the encoder-decoder architecture for de-
tecting anomalies in sequential sensor data collected during
industrial manufacturing. Our approach is designed not only
to detect whether there exists an anomaly at a given time step,
but also to predict what will happen next in the (sequential)
process. We demonstrate our approach on a dataset collected
from a real-world Additive Manufacturing (AM) testbed. The
dataset contains infrared (IR) images collected under both
normal conditions and synthetic anomalies. We show that the
encoder-decoder model is able to identify the injected anomalies
in a modern AM manufacturing process in an unsupervised
fashion. In addition, it also gives hints about the temperature
non-uniformity of the testbed during manufacturing, which is
what we are not aware of before doing the experiment.

Index Terms—additive manufacturing, anomaly detection,
fault detection

I. INTRODUCTION

Anomaly detection is an important technique that serves as
the basis of applications across a diverse variety of domains,
such as fault detection, intrusion and fraud detection [18], and
process control. The goal of anomaly detection is to identify
patterns in data that do not conform to a well-defined notion
of normal behavior [2]. Early detection of anomalies and
faults allows us planning preventive maintenance for model
manufacturing, and thus it is crucial for process control.

The availability of massive amount of data due to the intro-
duction of pervasive sensing techniques has brought plenty of
opportunities for data-driven anomaly detection applications;
however, an unresolved challenge is how to make use of these
data for anomaly detection, especially when there is no label
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information that can be used to differentiate between normal
and anomalous working conditions.

A. Learning-Based Anomaly Detection

Depending on the availability of labeled anomalous data,
learning-based anomaly detection approaches can generally
be categorized into supervised and unsupervised methods.
Supervised methods utilize label information for both normal
and anomalous data to train classification models. The trained
classification models from supervised learning can not only
tell the existence of faults but also indicate the likelihood of
an input belonging to a particular type of fault.

A review of the literature reveals that data-driven ap-
proaches relying on supervised learning have demonstrated
promising results in various applications, e.g. Fault Detection
and Diagnosis (FDD) in air conditioning systems [9], [13],
[14].

To train a well-performing model using supervised learning,
a good amount of labeled data from both normal and anoma-
lous conditions are needed, which is not always easy to obtain
in practice.

In addition, supervised models typically lack the ability to
identify an unseen example that does not belong to any of
the classes that appear in the training set. In the context of
anomaly detection, models trained with supervised learning are
likely to give incorrect predictions on out-of-distribution data
instances. This is a limitation of supervised methods because it
is almost impossible to obtain every possible type of anomaly
that could happen on a system. To address this problem,
Jin et al. recently proposed a FDD method that uses Monte-
Carlo dropout [9] to estimate the prediction uncertainty of deep
neural networks. The method was applied to the identification
of incipient faults that are not represented in the training data
that only consists of labeled data of normal and severe faults.

In scenarios where labeled anomalous data are scarce or
unavailable, unsupervised and semi-supervised anomaly detec-
tion approaches are usually applied, because only normal data
are required to train a detection model. The two approaches
differ in their assumptions about the labels of training data. In
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semi-supervised learning, it is assumed that the training set is
comprised of only data instances from the normal class1, while
in an unsupervised setting, it is often implicitly assumed that
few anomalous instances can exist in the training data [2]. We
note that the approach we introduce in this paper can apply to
both settings. We choose to use the term “unsupervised learn-
ing” throughout this paper to refer to both situations where
normal data account for the majority or the entirety of the
training data. Although unsupervised approaches usually lack
the discriminative ability to assign labels to anomalous data,
it is still considered an appealing complement to supervised
approaches in many real-world applications.

Recently, neural network approaches, especially deep neural
networks, have attracted much attention from the machine
learning community, due to their ability to process natural
data in their raw form and learn internal representations that
can be used for detecting or classifying patterns [11]. Yet,
as the authors of the recent review paper [11] also pointed
out, supervised learning accounted for the majority of the
recent success of deep learning, while unsupervised learning
is expected to be far more important in the longer term. This
paper aims at taking advantage of the recent development of
deep learning and provide a methodology for developing unsu-
pervised anomaly detection algorithms for handling sequential
sensing data in industrial applications.

B. Our Contributions

In particular, we investigate the applicability of an encoder-
decoder approach on sequential image sensing data collected
in a real industrial setting. The contributions of this paper are
two-fold:
• We propose using an encoder-decoder architecture for

detecting anomalies in sequential image sensing data
collected from AM process. The learning process is
unsupervised, meaning that no anomalous data are needed
a priori to train the detection model.

• We design a Convolutional Neural Network (CNN)-based
encoder-decoder network to monitor the manufacturing
process of the Laser Additive Manufacturing Pilot System
(LAMPS) testbed, a platform that uses Selective Laser
Sintering (SLS) technology for AM. In our experiment,
the network can not only detect the artificially injected
laser anomalies with high accuracy, but also can in-
dicate regions of the manufacturing testbed where the
temperature is higher than usual. Our results demonstrate
the effectiveness of the proposed algorithm in detecting
anomalous phenomena.

C. Paper Organization

The remainder of this paper is organized as follows.
In Sec. II, we will give the background about LAMPS,
the encoder-decoder architecture and deep-learning-based
anomaly detection approaches. We will define the anomaly

1Note that semi-supervised anomaly detection differs from the traditional
notion of “semi-supervised learning” in machine learning, where both label
and unlabeled data are used simultaneously for training.

(a) LAMPS architecture (b) Boresight image example

Fig. 1: (a) LAMPS testbed [17]. (b) An example image
captured by the boresighted temperature sensor.

detection problem for sequential data in Sec. III. We will
describe our anomaly detection methodology for sequential
image data in Sec IV. In Sec. V, we will describe in details
our anomaly detection algorithm when applied to a real-world
AM dataset with injected faults. Experimental results will be
demonstrated and evaluated in Sec. VI. We will discuss future
work and conclude the paper in Sec. VII.

II. BACKGROUND

A. Laser Additive Manufacturing Pilot System (LAMPS)

AM technologies have transformed the manufacturing land-
scape. [6] In contrast to traditional manufacturing technolo-
gies, AM technology is capable of printing 3D parts with
highly complex geometries in a single process step. Due to its
versatility, AM technology are used in a wide variety of appli-
cations such as medical devices and aircraft manufacturing [1].
One of the prominent AM technologies is Selective Laser
Sintering (SLS) that uses a laser to form solid parts out of
powdered material. Building parts with consistent high-quality
is a key challenge for the SLS process today [6]. Therefore,
having an algorithm that can monitor the SLS printing process
and can indicate potential anomalies will significantly improve
SLS process control. This, in turn, will lead to improved part
quality and ensure repeatability.

We now briefly introduce the SLS printing process and the
testbed we used for data collection and testing purposes. SLS
utilizes a laser to fuse powder geometries layer-by-layer and
hereby generates a solid 3D structure. At the beginning of each
layer, a roller spreads a new powder layer across the powder
bed. Once the powder has been spread, the laser melts the
cross-section of the desired part according to the digital 3D
model. After the laser has finished scanning for the current
layer, a new powder layer is spread and the scanning process
is repeated. Over time the melted powder locations on each
layer will cool down and will solidify to one.

LAMPS is a SLS testbed that was designed and built for
process control research. LAMPS is capable of building 3D
parts out of high-performance plastics (melting temperatures
as high as 350 °C) and is equipped with a variety of sensors,
such as IR and visual cameras, that provide in-situ measure-
ment access. Fig. 1a shows the general architecture of the
LAMPS testbed.



In the context of this paper, we focus on the high-speed
mid-wave infrared (IR) camera which is bore-sighted with
the laser optics to record the laser focus and its immediate
surrounding. The camera has a resolution of 64 × 64 pixels
and has a maximum recording frame rate of 2.24 kHz. Fig. 1b
shows an exemplary IR image of the bore-sighted camera. The
recorded IR information is translated to gray-scale (single-
channel) temperature images, where the intensity value of each
pixel represents the measured temperature value at that pixel.

B. Encoder-decoder architecture

The encoder-decoder architecture has proven to be a useful
approach for learning (deep) representations, and is widely
used in various application domains of deep learning, in-
cluding machine translation [3], and image denoising [23].
An encoder-decoder model generally consists of three parts:
the encoder, the latent space representation, and the decoder.
The purpose of the encoder network Enc is to transform the
input data into a latent space representation z that is often a
vector; the decoder network Dec then produces the output by
decoding z. During training, the encoder and the decoder are
trained together to minimize the empirical risk.

Proper design of the latent space representation z is crucial
to the successful application of the encoder-decoder approach.
Let us take the basic autoencoder model as an example. An
autoencoder is a neural network model that is trained to
reconstruct its input. In other words, an autoencoder is trained
to learn an identity function for the data distribution. By con-
straining z to be a low dimensional vector, the training process
encourages the model to learn the most useful information for
reconstructing the input.

C. Unsupervised anomaly detection with deep learning

Supervised deep learning has been extensively studied in
various applications domains.

In fault/anomaly detection tasks, we often do not have
access to the entire spectrum of off-nominal data, as well as
the labels that come along with it. As a result, unsupervised
approaches that do not require labeled anomaly data are more
suitable in such scenarios.

In this paper, we aim to explore unsupervised anomaly
detection using a deep learning approach. Specifically, we
will adopt the encoder-decoder scheme described earlier in
Sec. II-C.

The general idea behind unsupervised anomaly detection
approaches is to find an approximate model that can capture
the normal behavior of complex systems. The approximate
model can then be used to flag anomalies if the deviation of
the predicted behaviors of the trained model from the actual
observation exceeds some certain threshold. Examples that
share this general idea include One-class Support Vector Ma-
chine (OC-SVM) [5], [8], [20], Principal Component Analysis
(PCA) [12] and autoencoders [19].

The encoder-decoder schemes for anomaly detection that
appeared in literature in general fall into three categories,

which differ in their prediction outputs: 1) autoencoder mod-
els [15], 2) prediction models, and 3) composite models [22]
that performs both reconstruction and regression. We denote
our observation at time instant τ by Sτ . The observations
we observe in time then forms as a sequence {Sτ}. Let g
be a function that maps an input sequence of length p to an
output sequence of length q. These encoder-decoder schemes
are therefore summarized below:

(Sτ−p+1
, . . . , Sτ0)

g−→


(Sτ−p+1

, . . . , Sτ0), reconstruction model,
(Sτ1 , . . . , Sτq ), regression model,
(Sτ−p+1

, . . . , Sτq ), composite model.
(1)

As previously described, reconstruction models (a.k.a. au-
toencoders) aim to find a compact representation for input
data distribution. Depending on the format of the input data,
different neural network architectures or their combinations
are used to design encoders and decoders. Autoencoders are
first trained on data that are normal or almost fault-free. The
reconstruction errors given by autoencoder models are often
used as anomaly scores to indicate potential anomalies. This
approach is seen in previous literature for anomaly detection
in multivariate timeseries [15].

Similarly, we can also use the encoder-decoder architecture
for prediction tasks. In the case of time series data, a neural
network prediction model can be trained to predict the future
from past observations. Taking the past p observations as input
(Sτ−p+1

, . . . , Sτ0), the model is trained to predict the next q
observations (Sτ1 , . . . , Sτq ). During training, the encoder will
look for information needed for the decoder to predict the
future, and encode the information as latent space representa-
tions. In this case, the prediction errors are used to indicate
potential anomalies.

The authors of [22] argue that a composite model, by
performing the reconstruction and the regression tasks simul-
taneously, can overcome the drawbacks of each one when
performed alone, and thus achieving better performance at
learning useful representations in the data. Previous literature
reports on schemes for detecting anomalies in videos [16] and
multivariate time series. In our case study to be later discussed,
we designed our encoder-decoder model as a composite model
to leverage the advantages of both reconstruction and regres-
sion models.

III. THE ANOMALY DETECTION PROBLEM

Assume that we are given a series of observation data,
Sτ0 , Sτ1 , . . . , Sτi , . . ., where each Sτi ∈ S (S being the input
domain) denotes the representation of the ith data point in the
sequential data. In the anomaly detection setting, we assume
that all data points from the training set are in the normal
state.

Let F be a model class, where each f ∈ F : S → R≥0
denotes a score/fitness function that characterizes how close a
data point is to an abnormal state, i.e., larger f implies higher
chance of a data point being abnormal.



For a given threshold value ε > 0, we define the detection
precision of f as

prec(f, ε) = ES [1 {S is abnormal} | f(S) > ε]

where the expectation is taken over the distribution of the test
data, and the recall of f as

recall(f, ε) = ES [1 {f(S) > ε} | S is abnormal]

Our goal is to learn a score function fscore ∈ F and a
corresponding threshold ε, such that (fscore, ε) achieves the best
detection accuracy and recall of anomalies on the (unseen) test
data.

IV. METHODOLOGY

We utilize the encoder-decoder architecture described in
Sec. II-C to design a neural network that can be used to
detect possible anomalies in AM process. Since we are dealing
with image data in LAMPS application, we choose to use
CNNs [10] as the main building blocks for our encoder-
decoder model. Our approach uses the composite prediction
model described earlier in Sec. II-C – the designed model will
not only attempt to reproduce the input but also predict what
will happen next.

A. CNN-based encoder-decoder model

In our unsupervised learning setting, we only have access
to data points collected under normal condition. The learning
goal is to use a neural network to model the normal behaviors
of the system under study. Outliers to the learned distribution
will be identified as potential anomalies.

Let us suppose that each observation Sτ in the sequential
data is a single-channel 2D image of dimension m × n,
i.e. Sτ ∈ Rm×n. To capture the temporal correlations among
the observations, a sliding window approach can be used to
divide the original image sequence into snippets, where each
snippet Zk ∈ Rm×n×(p+q) comprise of p + q consecutive
frames, and k is the index of the snippet.

When a regression or composite prediction scheme is used
to train an encoder-decoder model, the frames in a snippet
constitute the input and the output. For training a regression
model, the first p frames in a snippet Xk ∈ Rm×n×p constitute
the model input, and the rest q frames are the output to be
predicted. In the case of a composite model, the input is still
the Xk, and the output is the entire p+ q frames. If we view
the frames in a snippet as channels in an image, the learning
problem can be cast as an image-to-image translation task. To
be more specific, we will train the encoder-decoder network
M to learn a mapping g : Rm×n×p → Rm×n×(p+q) that
transforms a p-channel image input Xk to an output Ẑk with
(p+ q) channels. The prediction output Ẑk can be seen as the
combination two parts, X̂k and Ŷk. X̂k is the reconstruction
of the p input frames, and Ŷk is a prediction of the q frames
following the input frames.

When training the encoder-decoder model, we aim to min-
imize the errors on both the reconstruction part and the
regression part. Since the model input and output are both

images, the following pixel-wise Mean Square Error (MSE)
can be used as the error metric on frame Sτ .

`mse(Sτ , Ŝτ ) = ‖Sτ − Ŝτ‖F , (2)

where ‖·‖F is the Frobenius norm of a matrix.
Let us suppose the frames in snippet k are taken at time

instants τ0k , τ
1
k , . . . , τ

p+q−1
k . By choosing (2) as the error met-

ric, we can define the reconstruction error erec
k and regression

error ereg
k on snippet k as follows

erec
k

.
=

∑
0≤i<p

`mse(Sτ ik , Ŝτ ik), (3)

ereg
k

.
=

∑
0≤i<p+q

`mse(Sτ ik , Ŝτ ik). (4)

The loss function L to minimize during model training can
then be defined as as the weighted sum of reconstruction error
erec
k and regression error ereg

k on all training samples k ∈ K.

L =
∑
k

erec
k + λereg

k (5)

where λ is a weighting factor that adjusts the relative im-
portance between the reconstruction error and the regression
error.

B. Using the trained model for anomaly detection

Assuming the trained encoder-decoder model has learned a
good representation of the normal behavior of the system, the
differences between the predicted images and their correspond-
ing ground truth can be used to indicate possible anomalies.
By comparing the images, we are essentially getting a large
number of pixel-wise errors, and thus a method is needed
to process this information in order to detect and locate the
anomalies.

One simple idea is to use the original loss function (5) that
we used for training the network. These loss values can be
derived directly from the prediction results, and can be used as
good indicators for evaluating the network’s prediction quality;
however, this approach also suffers from two drawbacks. First,
if the anomaly is only localized to a small area, it is likely
that the prediction errors are only significant in a small part
of the image. When we calculate the pixel-wise MSE over the
entire image, useful indications of anomalies may be buried in
noise and averaged out. In addition, even if a significant loss is
observed on an image, this approach only indicates a potential
anomaly on the image level, but it does not give further hint
about the occurrence of this anomaly. It is unknown whether
the anomaly is local to only a small area or affects the entire
image.

To address the above mentioned challenge when using for
evaluating image-to-image differences, we propose a “spatial
scoping” approach: we aim to find a a × b window from the
m × n error matrix Eτ = Sτ − Ŝτ that has the maximum
Frobenius norm. The new error metric `ss is thus defined as:

`ss(Sτ , Ŝτ ) = max
0≤i≤m−a
0≤j≤m−b

‖Ei:i+a,j:j+bτ ‖F , (6)



Fig. 2: An top-down illustration of the benchmark dataset. (Left) On the top we show examples of boresight images when the
laser head it at column start, line start, line middle and line end, respectively; on the bottom we illustrate the trace of scanning
laser; (Middle) the nominal and off-nominal scan lines pattern; (Rigth) Examples of preprocessed data (boresight images)

where the superscript in Ei:i+a,j:j+bτ indicates the position of
the window in the original error matrix Eτ .

Next we define two anomaly scores, the reconstruction
anomaly score f rec

score(τ) and the regression anomaly score
f reg

score(τ), as the metrics for evaluating the “degree of anomaly”
of an observation Sτ . Note that there is more than one snippet
that encompasses Sτ because we used a sliding window
approach to generate the snippets. To get a single anomaly
score taking into account the prediction errors from all relevant
snippets, we define the anomaly score as the average prediction
errors from all these snippets.

Suppose K rec
τ is the index set of snippets whose reconstruc-

tion window covers Sτ , and K rec
τ is the index set of snippets

whose reconstruction or regression window covers Sτ . The
reconstruction and regression anomaly scores on Sτ can be
defined by as follows

f rec
score(τ) =

1

|K rec
τ |

∑
k∈Krec

τ

erec
k , reconstruction (7a)

f reg
score(τ) =

1

|K reg
τ |

∑
k∈Kreg

τ

ereg
k , regression (7b)

where |K rec
τ | and |K reg

τ | are the cardinalities of sets K rec
τ and

K reg
τ respectively. A notable difference between K rec

τ and K reg
τ

is their sizes. In the reconstruction case, all snippets whose
regression windows (of length p) cover Sτ are included in
K rec
τ . As a result, |K rec

τ | = p, except at the start or end of
sequence {Sτ} because at the boundaries there are be fewer
snippets covering an observation. In the regression case, as
long as an anomaly is seen in either the reconstruction window
(of length p) or the regression window (of length q), the
anomaly would (probably) be caught in the regression error.

Therefore, |K reg
τ | = p+q except at the start or end of sequence

{Sτ}.
The anomaly scores introduced above can be used to

evaluate how likely an observation Sτ will correspond to an
anomalous state of the system under study. Later in Sec. V and
Sec. VI, we will present a case study on LAMPS to illustrate
our proposed approach.

V. ALGORITHMIC DETAILS FOR LAMPS

A. Benchmark dataset with synthetic faults

Fig. 2 shows the laser trajectory in LAMPS machine. It
is clear that the laser follows a periodical motion pattern in
our experiment. The laser firstly moves rightward till the right
boundary of the column and then move leftward to the left
boundary. During each period of motion, the laser power will
move forward 1 unit in the line axis. There is no laser power
in the leftward process which is depicted with dashed lines
in Fig. 2. We therefore only took the rightward process into
consideration in this experiment.

For testing our anomaly detection algorithm, we created an
“off-nominal” build with the LAMPS machine. During this
build, the laser power was altered at specific time instances
from its nominal power. We will detail the layout of the build
below.

The off-nominal build consisted of three columns being built
over the course of 250 layers. Each column had the same off-
nominal pattern applied in order to create a large dataset. For
each layer, the laser scanned the rectangles (the horizontal
section of the columns) with straight scan lines that were
horizontally aligned. Off-nominal conditions were applied to
every fourth layer by scanning specific scan lines with off-
nominal laser power instead of nominal laser power. The off-
nominal conditions were only applied every fourth layer to



Fig. 3: Network Structure

ensure that there would be no temperature influences between
off-nominal layers.

The horizontal cross-section of each column is of a rectangle
shape. Fig. 2 illustrates the off-nominal scan line pattern for
one of the three rectangles. Each rectangle consists of 215
horizontal scan lines and the bore-sight camera is able to
approximately take 40 frames for each scan line. The off-
nominal laser power magnitude stayed the same within every
off-nominal layer, but was continuously changed throughout
the build. For more comprehensive testing, the anomalies
injected have different lasting areas, from 1 line to 4 lines.

B. CNN-based encoder-decoder network design

To create training data for the encoder-decoder model, we
divide the dataset into snippets with each consisting p + q
frames. As illustrated in Fig. 2, each snippet is oriented
in the vertical direction and spans p + q scan lines. The
frames within a scan line are ordered by the time sequence
the images were taken. Let us denote by Si,j the jth frame
taken in the ith scan line; here the indices for column num-
ber and layer number are omitted for brevity. The encoder-
decoder model is trained to transform each input data point
Xk = (Si,j , Si−1,j , . . . , Si−p+1,j) ∈ Rm×n×p into a predicted
output Ẑk = (Ŝi,j , Ŝi−1,j , . . . , Ŝi−p+1,j) ∈ Rm×n×(p+q).

We choose a VGG-based [21] structure. The convolution
kernel size is chosen to be 3× 3 and the pooling kernel size
is chosen to be 2 × 2 to build a deeper network instead of
using a large kernel size. As shown in Fig. 3, in our network
there are four stacked down-sampling layer groups and four
stacked up-sampling layer groups to sample the data and
reconstruct the data respectively. Each down-sampling group
has one or two Convolution layers (depending on the network
depth) and a “Maxpooling” layer and correspondingly each up-
sampling layer has the same number of “Convolution” layers
and a “Up-sampling” layer. Functionally, when the data is
input into the neural network, each down-sampling layer group
will down-sample the spatial dimensions (width, height) and
double the depth of the data while each up-sampling layer
will up-sample the spatial dimensions and halve the depth.
Between the up-sampling groups and down-sampling groups,
we set two fully connected layers, from which the latent

(a) Reconstruction (b) Regression (c) Temperature

Fig. 4: Top-down views

TABLE I: Experiment results on different layers

Layers Off-nominal laser power
(% of max value)

Absolute power deviation
(% of max value) Precision Recall

A1 58 13 0.93 0.95
A2 56 11 0.90 0.99
A3 54 9 0.88 0.87
A4 50 5 0.81 0.65
A5 48 3 0.75 0.61

space representations can be extracted. In addition, in order
to prevent the network from over-fitting, we add a “Dropout”
layer to each group. To make training more efficient, we add
a “BatchNormalization” [7] layer to each group between the
“Maxpooling” layer and the “Dropout” layer.

VI. EXPERIMENTAL EVALUATION

A. Data preparation and preprocessing

We choose five nominal layers as our training set and five
off-nominal layers with different size of anomalies as our test
set; see Table I for details about the off-nominal layers.

In our data preprocessing step, the data was normalized
by changing the range (the difference between max and min
values) of the data to one. We down-sampled the original
64 × 64 image data to a resolution of 32 × 32, to reduce
the complexity of our network. We chose p = q = 3 in our
experiment for creating the snippets as described in Sec. V-B.

To improve the robustness of our model against small
perturbation in input data, we augmented our dataset by
adding a small Gaussian noise (with zero mean and a standard
deviation of 0.01°C) to the training data. In addition, we
know from physics that the thermodynamics of the powder
bed is largely governed by the gradient of the temperature
distribution; therefore, we can generate additional synthetic
data by adding a constant temperature bias b (in our ex-
periment b ∈ [−1.8°C,+1.8°C]) to the original data. This
helps regularize our network to better capture the underlying
thermodynamics.

B. Network implementation and hyperparameter tuning

We used Keras [4] as the framework for implementing the
encoder-decoder model. λ was set to 1 so that the reconstruc-
tion and regression errors were equally weighted. The model
was trained for 500 epochs.



(a) (b)

Fig. 5: (a) The line-wise reconstruction and regression anomaly scores, averaged on each scan line, and (b) the de-trended and
normalized line-wise reconstruction and regression anomaly scores, as well as the detected anomalies. In (a), the raw MSE
error metric (2) is used to calculate the errors and the anomaly scores; in (b) the spatial scoping error metric (6) is used. To give
the readers a clearer understanding, we use dark pink shades in (b) to indicate the locations of injected anomalies. A lighter
pink color is used to indicate lines adjacent to the injected anomalies if one (or more) window that is used for calculating the
anomaly score at this line overlaps with the injected anomalies. In our setting, the affected region has a width of p+ q−1 = 5
on each side of an anomaly. In the plots, the first (and last) three lines are grayed out to ignore boundary effects.

Fig. 6: The ROC curves of our learning-based model (darker
colors) vs. the non-learning model (lighter colors) on the five
test layers A1-A5 with injected anomalies.

In our unsupervised setting, we did not have labeled anoma-
lous data for using the conventional cross-validation technique
to tune the hyper-parameters as in supervised learning. To
create a validation set that contains both normal and anoma-
lous data points, we used a simple method to create some
synthetic anomalies. 20% of the training data was first picked
out as the validation data. We tuned the hyper-parameters
(e.g., dropout rates and the number of convolution kernels)
until the validation loss on normal data had converged.

C. Result analysis and evaluation

To assess the performance of our model, we tested our
model using layers that have different degrees of anomaly. We
plotted the distributions of the reconstruction anomaly score
in Fig. 4a and the regression anomaly score in Fig. 4b from
a top-down view, with the raw MSE (2) used as the error
metric. It can be clearly seen that some of the regions with
a high anomaly score are located along certain scan lines. To
better visualize and quantify the variation of anomaly scores
across different scan lines, we display in Fig. 5a the average
anomaly score along each scan line. From the plot, we can
see that scan lines with high anomaly scores appear either as
“sharp peaks”, or as “big bumps”, which may indicate different
causes of anomalous conditions, and should thereby be treated
and analyzed separately.

Sharp peaks To isolate these sharp peaks in Fig. 5a, a
detrend technique can be applied to filter out the slowly
varying component; here we use a simple detrend technique by
subtracting the signal using a window size of 20. In addition,
we also apply the spatial scoping technique (6) as the error
metric for calculating the anomaly score. The resulting signal
is displayed in Fig. 5b, where we can see a clear correlation
between the large peaks and the injected anomalies. A simple
thresholding method is used to do anomaly detection. We
test our model on the entire training sets and choose the
maximum line-wise regression score as the threshold, so no
false positives can be detected on all these normal layers. Most
injected anomalies can now be correctly detected. We also
observe that the first anomaly is difficult to detect. Due to the



fact that the deviated laser power merely lasts for 1 line, the
temperature there has not yet been significantly changed since
the energy accumulated is not sufficient to cause temperature
variation in case of limited lasting time and these anomalies
may sometimes be buried in the noise. Table I shows the
performance of our detection model on the five off-nominal
layers. The detection model performs better on layers with
higher laser power deviation; the precision and recall rates
both exceed 90% in layers A1 and A2. In layers A4 and A5,
the precision and recall rates drop significantly, which is due
to the reduced temperature disturbance due to smaller laser
power deviation. It can also be seen in Fig. 6, the Area Under
the Curve (AUC) rate exceeds 0.97 in layer A1 and layer A2
but drops to only 0.776 in layer A5.

For comparison, we also implemented a simple non-learning
method that simply used raw temperature measurement for
detecting anomalies. The anomaly score for each image Sτ is
defined as its root-mean-square intensity (temperature) value
over the image, i.e.

f temp
score(τ) = ‖Sτ‖F . (8)

As an example, we visualize the distribution of the anomaly
scores on Layer A2 from the non-learning method in Fig. 4c.
The ROC curves obtained from applying this non-learning
method on these anomalous layers are displayed in Fig. 6. It
can be seen that our encoder-decoder approach gives a much
superior performance to the non-learning method.

Big bumps Having found the cause of sharp peaks, we would
like to identify the cause of large bumps in the anomaly scores.
By comparing the three top-down views in Fig. 4, we observe
an obvious correlation among these large bump regions. We
conjecture that the elevated anomaly scores are due to the high
temperature (generally 2°C higher than surroundings) and the
steep temperature gradient in these parts of the powder bed.

VII. CONCLUSION

In this paper, we proposed an unsupervised deep learning
approach for detecting potential anomalies in an AM system.
As future work, we plan to apply the proposed technique to
other industrial applications. We also plan to conduct a more
in-depth theoretical analysis of the proposed technique.
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