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Abstract
We present a novel approach for resolving modes
of rupture directivity in large populations of
earthquakes. A seismic spectral decomposition
technique is used to first produce relative mea-
surements of radiated energy for earthquakes in
a spatially-compact cluster. The azimuthal dis-
tribution of energy for each earthquake is then
assumed to result from one of several distinct
modes of rupture propagation. Rather than fit-
ting a kinematic rupture model to determine the
most likely mode of rupture propagation, we in-
stead treat the modes as latent variables and learn
them with a Gaussian mixture model. The mix-
ture model simultaneously determines the num-
ber of events that best identify with each mode.
The technique is demonstrated on four datasets
in California with several thousand earthquakes.
We show that the datasets naturally decompose
into distinct rupture propagation modes that cor-
respond to different rupture directions, and the
fault plane is unambiguously identified for all
cases. We find that these small earthquakes ex-
hibit unilateral ruptures 53-74% of the time on
average. The results provide important observa-
tional constraints on the physics of earthquakes
and faults.

1. Introduction
The kinematics of the earthquake source process has a first-
order effect on seismic ground motions. In particular, it
is well-known that for moving sources, rupture directivity
induces azimuthally dependent changes in the frequency
content of seismic waves (Haskell, 1964). Often earth-
quake ruptures are simplified as falling into one of two end-
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member modes: bilateral (symmetric) ruptures and fully
unilateral ruptures. These rupture modes produce distinct
signatures in the seismic radiation. Some studies discuss a
continuum of scenarios in between these modes for which
there is some degree of asymmetry in the distribution of
seismic moment (e.g. Boatwright, 1984).

Theoretical studies of earthquake physics have suggested
various links between rupture propagation and properties
of fault zones. For example, large earthquakes that saturate
the seismogenic zone are often viewed as being constrained
geometrically to have elongated ruptures (McGuire et al.,
2002). The bimaterial hypothesis (Weertman, 1980; An-
drews & Ben-Zion, 1997) predicts that for faults with a
velocity contrast across them, a rupture direction that is
aligned with the direction of slip in the more compliant
medium will be favored due to a dynamic reduction of
normal stress at the crack tip. Other models may antici-
pate earthquakes to rupture with unilateral directivity as a
frictional phenomenon, such as when the nucleation size
is much smaller than the size of a seismogenic patch (e.g.
Michel et al., 2017; Lin & Lapusta, 2018). It is desirable to
better understand whether any of these models are relevant
to earthquakes in nature, and whether there are resolvable
differences in the properties of faults that can lead to differ-
ent physics. Providing observational constraints on some of
these physical models would require assembling directivity
measurements for large numbers of earthquakes in order to
perform a statistical analysis.

The extent of rupture directivity is readily determined for
M ≥ 6 earthquakes with various seismological methods
(e.g. McGuire et al., 2001; Ye et al., 2016; Van Houtte
& Denolle, 2018). These events are recorded typically by
many stations and are sufficiently large that a slip model
can be obtained using seismic waveforms recorded at tele-
seismic distances. However, the number of these large
events on any single fault is too few to determine the sta-
tistical properties of rupture directivity patterns. Small
earthquakes on the other hand are plentiful on individual
faults due to the well-known power law magnitude distri-
bution. There have been various approaches to estimating
rupture directivity in small earthquakes, such as the use of
higher-order moment tensors (McGuire, 2004), fitting di-
rectivity functions (Boatwright, 2007; Tan & Helmberger,
2010; Wang & Rubin, 2011; Kane et al., 2013; Abercrom-
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Figure 1: Earthquake source spectra are calculated for many events and stations in a compact cluster. Then, relative energy
values are calculated for all stations and events. The set of energy values for all earthquakes is decomposed into K distinct
rupture propagation modes. The decomposition simultaneously determines the fraction of events that belong to each mode.

bie et al., 2017), measuring spectral splitting (Ross & Ben-
Zion, 2016; Calderoni et al., 2015), measuring variations in
apparent duration among repeating earthquake sequences
(Lengliné & Got, 2011), and azimuthal analyses of ground
motion (Kurzon et al., 2014). For most of these approaches,
empirical Green’s functions are needed to correct the data
for propagation and site effects (e.g. Mueller, 1985; Hough
& Dreger, 1995; Prieto et al., 2004), and then some kind of
geophysical inverse problem is solved to obtain measure-
ments about directivity.

In this paper, we present a data-driven approach to learn-
ing modes of directivity in earthquake populations that can
scale to large datasets (Fig. 1). We demonstrate that for
a population of earthquakes, the azimuthal distribution of
radiated energy naturally decomposes into distinct modes
of rupture propagation without assuming a fault plane ge-
ometry or solving a geophysical inverse problem. The
modes generally represent unilateral ruptures in different
directions as well as bilateral ruptures. This decomposition
simultaneously determines the fraction of events in each
mode. We demonstrate the method on four datasets from
California with thousands of events each, and clearly iden-
tify the fault plane and rupture directivity modes for all four
cases. We show that the earthquakes in these clusters have
predominantly unilateral ruptures, with bilateral ruptures
being relatively infrequent.

2. Methods
Our approach to resolving directivity modes is based on the
idea that an individual earthquake within a population can
be represented as a random sample from one of a hand-
ful of end-member rupture scenarios. For strike-slip faults,
the number of observable cases might be three: a bilateral
rupture with symmetric rupture propagation, and two uni-
lateral rupture modes that propagate in opposite directions
along a fault. Alternatively, one might want to only con-
sider unilateral directivity modes, with bilateral ruptures
corresponding to a superposition of unilateral modes. The
problem can then be formulated as one of recovering the
distinct rupture modes that exist in the data. Our approach
can be summarized with the following steps:

1. A cluster of earthquakes is identified for detailed anal-
ysis

2. The seismograms from these earthquakes are used
with a seismic spectral decomposition algorithm to
obtain apparent source spectra for as many events and
stations as possible (Fig. 1, step 1).

3. The radiated energy at each station is determined by
integrating the square of the velocity spectrum (Fig.
1, step 2).

4. We apply an algorithm for filling in missing data val-
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ues by learning a low-rank approximation to the entire
dataset.

5. Directivity modes are learned with a Gaussian mixture
model. (Fig. 1, step 3)

6. Each mode can be visually interpreted as an azimuthal
directivity function for a rupture mode that exists re-
peatedly in the data. The modes are obtained without
solving a geophysical inverse problem.

We now discuss each of these steps in detail.

2.1. Data Pre-processing and Quality Control

The first step of the procedure involves selecting a clus-
ter of earthquakes for analysis of rupture propagation. In
this study, we use spatially-compact clusters for which
the source-receiver azimuths are roughly the same for all
events. We restrict the minimum source-receiver distance
to 20 km to help ensure this approximation is valid. For
each event, we obtain all available automated and manual
P-wave picks, and for each associated waveform, we use
these picks to define a 1.5 s signal window starting 0.1s
before the listed P-wave arrival, and a background noise
window of equal length immediately preceding it. We use a
multitaper algorithm (Prieto et al., 2009; Krischer, 2016) to
compute seismic amplitude spectra on all available vertical-
component channels with sampling rates ≥100 Hz. We
convert each spectrum to units of displacement and inter-
polate where necessary to a uniform frequency spacing of
2/3 Hz with minimum and maximum values of 0 Hz and
50 Hz (the Nyquist frequency for 100 Hz sampling).

For the purposes of quality control, we further consider
only spectra with signal-to-noise ratio (SNR) greater than
5 within three frequency bands spanning the 3 Hz to 30 Hz
range. Clipped waveforms are commonly observed on
short-period and broadband stations for moderate earth-
quakes, and to mitigate this we further exclude spectra
flagged by an automated clipped detection algorithm based
on the fourth moment of the time domain waveform ampli-
tudes observed in the signal window (Trugman & Shearer,
2017). The remaining displacement spectra after these
waveform pre-processing steps and quality control steps
are the inputs for the spectral decomposition method de-
scribed below.

2.2. Spectral Decomposition

Spectral decomposition is a technique designed to separate
the observed displacement spectra d(f) of earthquakes i
recorded and a set of seismic stations j into source, path,
and site terms. As described in detail by Trugman &
Shearer (2017), for densely-recorded datasets, each earth-
quake will be recorded by many stations, each approximate

source-station path will be sampled many times, and each
station will record many earthquakes. If these conditions
hold, then by working in the log frequency domain, relative
source terms si, path terms pk(i,j), and site terms stj can
be estimated at each frequency point as part of an overde-
termined inverse problem defined by the linear equation:

dij(f) = si(f) + pij(f) + stj(f) + εij(f). (1)

Following Shearer et al. (2006) and Trugman & Shearer
(2017), we assume azimuthally isotropic path terms p that
depend only on the source-receiver travel-time. We limit
our analysis to stations with epicentral distances less than
100 km, and to ensure that the basic assumptions of spec-
tral decomposition hold, we require each station used in
the analysis to have recorded at least 20 earthquakes. We
estimate the source, path, and site terms defined by equa-
tion (1) using an iterative, robust least-squares inversion
that uses Huber-norm weighting to suppress the influence
of outliers on the final solution (Shearer et al., 2006).

Our primary observational constraints come not from the
source spectra s(f) themselves, but instead the apparent
source spectra sa(f) observed at each station and how they
vary as a function of azimuth:

saij(f) = dij(f)− pij(f)− stj(f). (2)

The apparent source spectrum sa(f) is thus a path- and
site-corrected form of the observed displacement spectrum,
while the source spectrum s(f) itself is the azimuthal aver-
age of apparent source spectrum across all stations (to good
approximation). Rupture directivity can cause significant
azimuthal variations in apparent spectra, with higher ampli-
tudes along azimuths aligned with rupture direction. One
general limitation of the spectral decomposition method is
that the estimated terms only resolve relative differences
between each source, each path, and each site, as one can
add an arbitrary function to all source terms and subtract
the same function from all site or path terms without ef-
fecting the misfit. While this presents a challenge for esti-
mating earthquake source parameters like corner frequency
and stress drop (Shearer et al., 2019), it does not affect the
results presented in this study, which are based upon on
the relative variations in spectral energy as a function of
azimuth, and not the absolute energy values.

2.3. Building the Data Matrix

By this point, we have obtained apparent source spectra for
many events at many stations. From here, we proceed to
calculate apparent radiated energy values for the spectra.
For an apparent source displacement spectrum, sa(f), the
apparent radiated energy (up a multiplicative constant) can
be calculated as,



Directivity Modes of Earthquake Populations with Unsupervised Learning

ER = 4π2

∫ fmax

fmin

f2|sa(f)|2 df. (3)

The optimal values of fmin and fmax generally depend on
the instrument response, sampling rate, and the magnitude
range of the events for which the directivity analysis will be
performed. They further depend on the signal to noise ratio
of the spectra. Our spectra generally have low SNR below
3 Hz and above 30 Hz, so we set fmin and fmax equal to
these values.

Next, we normalize theER values separately for each event
by dividing by the median value calculated over all of the
stations. This results in a set of values that indicate whether
ER at a given station is greater than or less the median. In
doing so, we require a minimum of 10 stations for which
ER values are available, or else the event is skipped alto-
gether. We then remove all stations from the dataset which
have fewer than 20 spectra over all the events. Then, we
identify outlier values by calculating the median absolute
deviation (in log units) and looking to see whether there are
any values for a single event that are more than 5 deviations
away from the median. If so, these values are removed from
the dataset. If the outlier removal process results in fewer
than 10 values for a single event, the event is skipped.

Applying the steps described in this section results in a set
of relative ER values for many events and stations. How-
ever, of the complete set of stations available, few if any
events will have ER values at all of them. This is espe-
cially true for the smallest events in the dataset, which are
much more frequent than the larger ones. However, to fit a
latent variable model to the data, there cannot be any miss-
ing values, and therefore they must be filled.

In applied mathematics there is an extensive literature on
data imputation algorithms for filling missing data. The
simplest form of these algorithms fills missing values with
the mean or median for each variable. Other algorithms
are more sophisticated, trying to learn a lower dimensional
representation of the data from the observations that can
be used to reconstruct the missing values. Algorithms of
this type have seen some use in geophysics, for example
to fill gaps in GPS data prior to performing principal com-
ponent analysis or independent component analysis (e.g.
Kositsky & Avouac, 2010). In this study, we chose an im-
putation algorithm that learns a low-rank approximation to
the existing data, which can then be used to fill in missing
values. This technique is based on thresholding a singular
value decomposition of the data (Hastie et al., 2014). Some
examples of applying this technique are shown in Figure
2, where real values are shown alongside imputed values.
Filled values have a tendency to be generally close to zero
(the mean) unless there is significant evidence in the data
otherwise.

Figure 2: Examples of relative logER distributions for five
earthquakes. The data are shown before (red circles) and
after (black circles) applying the imputation algorithm.

2.4. Gaussian mixture models

Gaussian mixture models (GMM) are a type of latent vari-
able model that assumes a generative process can be repre-
sented as a superposition of two or more Gaussian distribu-
tions. Each Gaussian represents a distinct mode of occur-
rence, and there is a probabilitywi that a realization x ∈ Rd

will be drawn from mode i. Specifically, the model can be
written as,

p(x) =

K∑
k=1

wkN (x|µk,Σk) (4)

K∑
k=1

wk = 1 (5)

where K is the number of components in the GMM
and N (x|µk,Σk) is the multivariate Gaussian distribution.
Since µk and Σk are not directly observed, they are la-
tent variables; however they can be recovered by fitting a
GMM to some data. The most common approach to esti-
mating the parameters of a GMM is with the Expectation-
Maximization algorithm (Dempster et al., 1977), which
is the method we use in this paper. We also tested the
method of moments algorithm (Anandkumar et al., 2014)
that matches the empirical moments to the theoretical ones
through a tensor decomposition algorithm. We found that
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the EM algorithm was more effective at separating the
modes for the datasets considered in this study.

Our measured logER values for each earthquake corre-
spond to the x in the GMM, and we therefore wish to obtain
the µk and Σk for the K modes in the data. For this pa-
per, we will work with strike-slip faults and consider both
K = 2 and K = 3 cases. The K = 2 scenario would
ideally recover two unilateral directivity modes, while the
K = 3 scenario would correspond to a bilateral rupture
mode and two opposite unilateral modes. We will further
assume that the covariances are spherical, i.e. Σk = σ2

kI .
With this formulation, each µk is a vector with dimension-
ality equal to the number of stations used in the analysis,
and the measured logER of an individual earthquake are
modeled as a random sample from the GMM.

2.5. Uncertainty Analysis

To estimate the uncertainty in the model parameters, we
use a bootstrapping approach. We resample the events with
replacement 1000 times and re-fit the model each time.
Since the order of the elements of w is randomly deter-
mined when the model is fit, we obtain all permutations of
the columns of µ and calculate the `1 norm of the difference
between the best fitting µbest and each of the permutations.
The permutation with the smallest `1 value is taken as the
w for that particular resampling. Then we calculate a 95%
confidence interval (CI) for each of the wk.

3. Related Work
In this study, our goal is to estimate the fraction of events
for each rupture directivity mode. We are interested in
working with hundreds to thousands of earthquakes at a
time to ensure that the statistics are robust. To date, there
are several studies that have examined directivity on such a
scale.

Wang & Rubin (2011) calculated spectral ratios using em-
pirical Green’s functions and fit three different models (bi-
lateral and two unilateral) to each event separately to de-
termine the most likely rupture mode. They perform this
analysis in the creeping section of the San Andreas fault
and test the method on more than 900 earthquakes. They
concluded that roughly 40% had bilateral ruptures, and of
the unilateral ruptures, most had southeast directivity.

Kane et al. (2013) used a spectral decomposition technique
to obtain apparent source spectra for thousands of events at
the Parkfield section of the San Andreas fault. They fit a
unilateral directivity model to the apparent spectra for each
event individually, and concluded that there was slightly
more events with southeast ruptures than northwest rup-
tures. They did not consider bilateral ruptures.

Building on the results of Calderoni et al. (2015) and Pa-
cor et al. (2016) for the L’Aquila, Italy earthquake se-
quence, Calderoni et al. (2017) used azimuthal variations
in S-wave spectra to demonstrate that along-strike direc-
tivity is a common feature of normal faulting earthquakes
in the central Appennines. Earthquakes from the Umbria
Marche, L’Aquila, and 2016-2017 central Italy sequences
exhibit temporally persistent and spatially coherent direc-
tivity patterns, which suggests that in-situ fault and geo-
logic properties play an important role in the preferred rup-
ture direction.

A different approach was developed by Lengliné & Got
(2011), who exploited repeating earthquake sequences in
Parkfield to simultaneously invert for relative perturbations
to apparent duration for all earthquake pairs and stations.
They used P-wave signals for their analysis, and their kine-
matic directivity model only allowed for unilateral rup-
tures. Lengliné & Got (2011) concluded that the major-
ity of earthquakes analyzed exhibited southeast rupture sig-
nals.

A time-domain method based on ground-motion prediction
equations was developed by Kurzon et al. (2014). They
proposed an empirical directivity index based on observed
azimuthal variations in ground motion amplitude. They ap-
plied the method to two clusters of earthquakes in the cen-
tral San Jacinto fault zone.

4. Experiments
Now, we demonstrate the method on four different datasets
from California. These datasets use P-wave seismograms
only and were chosen for several reasons. First, each
dataset is a spatially-compact cluster with thousands of
events. Second, two of them have been used in previous
studies to analyze directivity and can serve as a point of
reference.

4.1. Cahuilla swarm

The first dataset contains seismograms for 11,631 events
that occurred as part of the Cahuilla earthquake swarm
in Southern California during 2016-2019 (Hauksson et al.
(2019); Fig. 3). The largest of these events is M4.4,
while most events are considerably smaller. These events
were studied in detail by Hauksson et al. (2019), who ob-
served that the events have right-lateral strike-slip focal
mechanisms with generally little variation in strike. The
waveform and meta data are all publicly available from the
Southern California Earthquake Data Center.

The results of applying the method to the Cahuilla swarm
data are shown in Figure 4 and Table 1. In total, there are
829 earthquakes and 86 stations used for the final decom-
position. First, we show the results for K = 2. In this plot,
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Figure 3: Map of the Cahuilla swarm and surrounding re-
gion. Earthquakes are shown as red dots. Seismic stations
used in this study are indicated by blue triangles.

Mode w (K = 2) w (K = 3)
NW 0.55 [0.49, 0.51] 0.40 [0.30, 0.43]
SE 0.45 [0.41, 0.60] 0.34 [0.30, 0.45]
Bilateral 0.26 [0.21, 0.33]

Table 1: Modal results for the Cahuilla swarm.

each mode is assigned a different color. The elements of µk

represent the average value of logER at a given station for
mode k. Since there are two modes, each station has two
different colored circles present. Value larger than zero in-
dicate that logER at that station are amplified relative to
the median (for that mode). µ1 and µ2 have peaks along
the strike of the fault but in opposite directions. There is
more than a factor of 15 difference in theER between these
opposing directions. Thus, the method has been able to
identify the fault plane, and these modes represent unilat-
eral directivity. For these two modes in the Cahuilla swarm
(Table 1), w1 = 0.55 and w2 = 0.45. Since w1 ≥ w2

in 95% of the bootstrap samples, ruptures are statistically
more likely to have NW directivity.

For the K = 3 decomposition (Fig. 5), two of the modes
look very similar to the K = 2 results. The third mode
exhibits more complex behavior, with four peaks and four
troughs. These peaks are essentially at conjugate orienta-
tions and suggest that there may be cross-faulting mixed in.
Events have bilateral ruptures between 21-33% of the time

Figure 4: Two-mode decomposition for the Cahuilla
swarm. The modes correspond directly to the wk deter-
mined by fitting the GMM (Table 1).

(Table 1). Thus it is the least likely of the three modes to
occur.

4.2. San Andreas (Creeping section)

Mode w (K = 2) w (K = 3)
NW 0.50 [0.46, 0.56] 0.30 [0.26, 0.38]
SE 0.50 [0.44, 0.54] 0.24 [0.20, 0.40]
Bilateral 0.46 [0.26, 0.49]

Table 2: Modal results for the Creeping section of San An-
dreas.

The second dataset analyzed in this paper is for the creep-
ing section of the San Andreas fault. This area has a
very active seismicity cluster that has produced 4118 events
from 2002-2019 (Fig. 6). All of the data are publicly avail-
able from the Northern California Earthquake Data Cen-
ter. This cluster was studied by Wang & Rubin (2011) and
serves as an additional baseline for our work.

The K = 2 results for the creeping section of the San An-
dreas fault are shown in Figure 7 and Table 2. A total of
969 earthquakes and 90 stations were used to fit the model.
As with the previous dataset, the fault plane is clearly iden-
tified for this segment, with prominent peaks in the NW
azimuths for one mode and the SE azimuths for the other
mode. The modes are evenly distributed on average and the
confidence intervals further show that there is no evidence
of a statistically preferred direction.
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Figure 5: Three-mode decomposition for the Cahuilla
swarm. The modes correspond directly to the wk deter-
mined by fitting the GMM (Table 1).

For the K = 3 decomposition, there are two unilateral
modes (NW and SE) and one bilateral mode (Fig. 8) the
bilateral mode is the most frequent (w = 0.46), and after
factoring in the uncertainty, ruptures are unilateral 51-74%
of the time. Wang & Rubin (2011) found that about 40%
of the earthquakes on this segment had bilateral ruptures,
which is similar to our observations. They also found that
of the unilateral ruptures, SE ruptures were more common;
however we find no evidence of this that is statistically sig-
nificant.

4.3. San Andreas (Parkfield)

The third dataset is for the Parkfield section of the San An-
dreas fault in central California (Fig. 9). We selected all
14,562 events in the NCEDC catalog that have occurred
since 2002. This region was used for several directivity
studies in the past (Kane et al., 2013; Lengliné & Got,
2011) and serves as a point of comparison for our results.
The earthquakes at Parkfield have very homogeneous focal
mechanisms (Thurber et al., 2006) which help to simplify
the demonstrations of our approach.

Mode w (K = 2) w (K = 3)
NW 0.63 [0.56, 0.68] 0.21 [0.17, 0.42]
SE 0.37 [0.32, 0.44] 0.32 [0.28, 0.38]
Bilateral 0.47 [0.26, 0.51]

Table 3: Modal results for the Parkfield cluster.

Figure 6: Map of the creeping section of the San Andreas
fault. Earthquakes are shown as red dots. Seismic stations
used in this study are indicated by blue triangles.

Our results for the Parkfield data (K = 2) are shown in
Figure 10 and Table 3. The model was fit to 618 events at
76 stations. The strike and fault plane are clearly identified,
with prominent peaks in in the modes along the NW and SE
azimuths. For the NW mode, w = 0.63 with a one-tailed
confidence interval of 0.56 at the 95% level, which indi-
cates that NW ruptures are statistically more frequent than
SE ruptures. This finding contrasts the results of Lengliné
& Got (2011), who concluded that most of the events had
SE rupture directivity signals.

In Figure 11, the results for the K = 3 decomposition are
shown. For this case, the NW and SE modes do not decom-
pose as cleanly as in the K = 2 case. This mixing makes it
more difficult to confidently interpret the results, compared
with the K = 2 results. We find that the mode that appears
the most bilateral occurs 26-51% of the time.

4.4. Hayward fault

Mode w 95% CI
NW 0.38 [0.33, 0.67] 0.37 [0.16, 0.47]
SE 0.62 [0.33, 0.67] 0.28 [0.17, 0.60]
Bilateral 0.35 [0.06, 0.48]

Table 4: Modal results for the Hayward fault.

The final dataset analyzed in this paper is for the Hayward
fault. The seismicity here occurs over a long stretch of the
fault, and so we chose a compact cluster to work with to
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Figure 7: Two-mode decomposition for the San Andreas
fault (creeping section). The modes correspond directly to
the wk determined by fitting the GMM (Table 2).

ensure that the azimuths were similar to all events. There
were 4118 events from 2002-2019 over the whole area and
we used these to determine the source spectra (Fig. 12). All
of the data are publicly available from the Northern Cali-
fornia Earthquake Data Center. The Hayward fault has a
velocity contrast in the range 3-8% (Allam et al., 2014).

After all of the pre-processing, the Hayward dataset has
170 earthquakes at 82 stations. We show the results for
K = 2 in Figure 13 and Table 4. As with the previous study
areas, here the data separate clearly into two modes with di-
rectivity behavior in NW and SE directions, which aligns
with the strike of the fault. The w values for the modes
vary significantly for the best-fitting values, but interest-
ingly, have exactly the same confidence intervals. Thus,
they are statistically indistinguishable, albeit with large un-
certainties.

When applying a K = 3 model to the data (Fig. 14, the
modes are distinct and form smoothly varying patterns as a
function of azimuth. The three modes also have sizable un-
certainties as estimated by the bootstrapping, but we can
say that unilateral modes occur between 52-94% of the
time; thus they are the most frequent mode of rupture.

Figure 8: Three-mode decomposition for the San Andreas
fault (creeping section). The modes correspond directly to
the wk determined by fitting the GMM (Table 2).

5. Discussion
5.1. The importance of studying directivity modes

Directivity modes characterize the first-order kinematics of
rupture propagation during earthquakes. It is important to
understand these modes and their statistical tendencies be-
cause they can provide valuable observational constraints
on the physics of earthquakes. One of the important find-
ings of this study is that for the four examined fault seg-
ments, unilateral ruptures are more frequent than bilateral
ruptures. Specifically, the best-fitting rates vary from 53-
74% over the four regions tested, and the uncertainty es-
timates show that this principal conclusion is robust. We
find evidence of a statistically preferred rupture direction
in two regions: the Cahuilla swarm and Parkfield. For the
other regions, the uncertainties on the wi values are larger
than the differences between them. This does not mean a
preferred direction does not exist; rather the question could
potentially be addressed better in the future by incorporat-
ing more events, which may tighten the confidence inter-
vals. In all cases, however, there is no evidence of a single
unilateral rupture direction being overwhelmingly likely.

Another noteworthy finding is that for these fault segments,
there is a clear preference for ruptures to propagate hori-
zontally more often than vertically. As discussed below,
along-dip ruptures will generally be included in the bilat-
eral mode because there is little sensitivity to them. This
means that our conclusions about the predominance of uni-
lateral ruptures not only applies with respect to bilateral
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Figure 9: Map of the Parkfield section of the San Andreas
fault. Earthquakes are shown as red dots. Seismic stations
used in this study are indicated by blue triangles.

cases, but also along-dip cases. Such a finding was made
by McGuire et al. (2002), who observed that most of these
were unilateral ruptures. For earthquakes large enough to
rupture the full seismogenic zone, along-strike ruptures are
expected purely from a geometrical perspective, although
this says nothing about whether they should be unilateral
or bilateral. However for small earthquakes, our observa-
tions may be unexpected. They further suggest that there
are attributes of the faults that are breaking the symmetry
and leading to horizontal ruptures being so prevalent.

An additional reason that these findings are important is
because observational studies of earthquake source proper-
ties commonly assume that rupture areas are circular (e.g.
Calderoni et al., 2012; Abercrombie, 2015; Ross & Ben-
Zion, 2016). However, the geometry of the rupture area has
an important influence on quantities like stress drop and ra-
diated energy (Kaneko & Shearer, 2015). Our results sug-
gest that for the examined datasets, unilateral ruptures are
more frequent than bilateral ruptures, and this may indicate
that some of the large scatter commonly observed in source
properties may result from assuming the wrong rupture ge-
ometry.

One physical explanation for the systematic tendencies for
unilateral directivity in earthquakes is from rate- and state-
dependent friction. When the nucleation size h is much
smaller than the potential seismogenic region, this results
in ruptures that tend to propagate unilaterally (e.g. Michel
et al., 2017; Lin & Lapusta, 2018). However the expected
rates of unilateral ruptures for this type of physical model

Figure 10: Two-mode decomposition for the San Andreas
fault (Parkfield section). The modes correspond directly to
the wk determined by fitting the GMM (Table 3).

have not been analyzed rigorously. Future work in this area
could be helpful to compare with observations.

Directivity modes are also important from a hazard per-
spective because the rupture propagation pattern has a sig-
nificant effect on the strong ground motion. While earth-
quake stress drop is widely accepted to influence ground
motion amplitudes in certain contexts (e.g. Trugman &
Shearer, 2018; Oth et al., 2017; Baltay et al., 2017), di-
rectivity has received less attention to date but is readily
acknowledged to be one of the few additional source pa-
rameters that does have a major impact (Bozorgnia et al.,
2014; Douglas & Edwards, 2016). Therefore being able to
provide some expectations on the possible range of modal
probabilities can better inform hazard estimates.

5.2. Data-driven approaches to studying directivity

There are a variety of advantages to studying directivity
with a data-driven approach, as opposed to using tech-
niques that fit kinematic rupture models. The first is that a
single model can be fit to the data for all earthquakes simul-
taneously. This allows for weaker signals to be extracted
from the data because the information that is common to
all events can be averaged, which acts to suppress noise.
Traditional approaches generally fit a model separately to
each event, and then if performed for enough events, then
the results can be averaged for some statistical estimate.
However this type of approach is limited by the capabili-
ties of fitting a model to individual events.
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Figure 11: Three-mode decomposition for the San Andreas
fault (Parkfield section). The modes correspond directly to
the wk determined by fitting the GMM (Table 3).

Another reason is that there are generally fewer assump-
tions necessary with a data-driven approach, compared
with traditional model fitting. For example, we do not need
to assume that our physical model is correct, or that we un-
derstand the statistical properties of the noise. However,
as in most analyses of earthquake directivity, we assume
that azimuthal variations in seismic spectra are caused pri-
marily by source effects, rather than 3D variations in path
effects. While this is likely a valid approximation to first
order, in reality the observed spectra will contain hints of
both effects.

5.3. Assumptions and interpretability of results

In this study, there are several key assumptions that under-
lie the analysis. The first, and arguably the most important,
is that we assumed the number of distinct modes of rup-
ture propagation a priori. By making an assumption that a
certain number of modes exist in the data, we are able to
search for and identify their centroids µk and variances. If
these assumptions are violated, for example in the case that
there are more than three distinct modes, then the resulting
µk vectors will be complicated and uninterpretable. In all
four datasets that we tested here, the µk are generally sim-
ple, smoothly varying functions of azimuth, which suggests
that the assumptions are justified. However when applying
the data to other datasets, such as clusters with more than
one dominant fault strike, more care will be needed to de-
termine the optimal number of modes in the data. There are
various strategies for determining this objectively, includ-

Figure 12: Map of the Hayward fault and surrounding re-
gion. Earthquakes are shown as red dots. Seismic stations
used in this study are indicated by blue triangles.

ing the use of information criteria or silhouette analysis.
We applied a silhouette analysis to the data and in all re-
gions, the metric favored K = 2. However, as we have
shown, K = 3 models provide additional insights into the
directivity physics and we believe that examining both sce-
narios together provides a more informed result.

If the recovered modes reflect approximately end-member
rupture scenarios, one way of assessing the degree of uni-
lateral directivity for a given event (e.g. Boatwright, 2007)
is by calculating the probability that an event belongs to the
best-matching mode. This could be useful for identifying
the events with the strongest directivity signals in an ob-
jective manner. However, it should be mentioned that this
strategy will only determine whether an event best matches
the centroid of the mode; if an event has even stronger di-
rectivity signals than the centroid, the probability will be
diminished in proportion to the deviation from the centroid.
This simply means that events with the highest probability
values will not be the events with the strongest directivity.

Another important aspect of the results is that the modal
shapes which we have identified as bilateral are a bit more
complicated in practice. In particular, if a rupture is purely
along-dip, then without stations right on top of the rupture,
it is very difficult to observe any directivity patterns. These
ruptures will appear as generally symmetric directivity pat-
terns and will likely be aggregated into the bilateral mode.
Thus, the bilateral mode (particularly the wk value associ-
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Figure 13: Two-mode decomposition for the Hayward
fault. The modes correspond directly to the wk determined
by fitting the GMM (Table 4).

ated with it) should be interpreted as an upper bound for
the likelihood of bilateral ruptures. It should be understood
that this results from a lack of sensitivity to along-dip rup-
tures. Some studies have included other information, such
as depth phases (e.g. He & Ni, 2017), to help constrain
these cases, but in general it is a challenge common to all
directivity analyses.

The results in the paper do not depend on the particular
model used (e.g. GMM). We tested several other latent
variable models including BIRCH and spectral clustering,
and when setting the number of clusters to K = 2, 3, re-
cover modes that look very similar.

6. Conclusions
We developed a new approach to resolving modes of di-
rectivity in large earthquake populations. We formulate the
problem as one of recoveringK latent variable modes from
the azimuthal energy distributions of many earthquakes,
where each mode is a distinct state of rupture propaga-
tion. A gaussian mixture model is used to determine these
modes, which allows for simultaneous estimation of the
fraction of events that best align with each mode of rupture
propagation. In the process, we have not needed to fit a
kinematic directivity model to the data; the decomposition
is possible because the data exhibit this type of structure
naturally. We applied the method to four large earthquake
clusters, and performed an assessment of the uncertainties
for each mode of rupture, for each dataset. Our results in-

Figure 14: Three-mode decomposition for the Hayward
fault. The modes correspond directly to the wk determined
by fitting the GMM (Table 4).

dicate that unilateral ruptures are more likely to occur than
bilateral ruptures for the examined datasets, even after in-
corporating the uncertainties.
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