
Learning Causal State Representations of Partially
Observable Environments

Amy Zhang1,2,3, Zachary C. Lipton4, Luis Pineda3, Kamyar Azizzadenesheli5,
Anima Anandkumar6, Laurent Itti7, Joelle Pineau1,2,3, and Tommaso

Furlanello7,8

1McGill University
2Mila

3Facebook AI Research
4Carnegie Mellon University

5University of California Irvine
6California Institute of Technology
7University of Southern California

8Glia Intelligence

Abstract

Intelligent agents can cope with sensory-rich environments by learning task-agnostic
state abstractions. In this paper, we propose mechanisms to approximate causal states,
which optimally compress the joint history of actions and observations in partially-
observable Markov decision processes. Our proposed algorithm extracts causal state
representations from RNNs that are trained to predict subsequent observations given the
history. We demonstrate that these learned task-agnostic state abstractions can be used
to efficiently learn policies for reinforcement learning problems with rich observation
spaces. We evaluate agents using multiple partially observable navigation tasks with
both discrete (GridWorld) and continuous (VizDoom, ALE) observation processes that
cannot be solved by traditional memory-limited methods. Our experiments demonstrate
systematic improvement of the DQN and tabular models using approximate causal
state representations with respect to recurrent-DQN baselines trained with raw inputs.

1 Introduction
Decision-making and control often require that an agent interact with partially-observed
environments whose causal mechanisms are unknown. To enable efficient planning, one
might hope to construct latent representations of histories of (action, observation) tuples. At
present, this practice is dominated by two points of view: (i) a standard approach to partially
observable Markov decision processes (POMDPs), where one starts from a generative model
of the latent transitions and emission dynamics, using observations to infer beliefs over the
unobserved states [1, 5]; and (ii) predictive state representations (PSRs), where one starts
from the history of the process and constructs states through modeling of the trajectories of
observations [27, 33]. Both directions have drawbacks: the belief state approach requires
access to a model that is equivalent to the real generator, while PSRs are constrained by
their high-dimensional nature that often makes planning unfeasible.

Corresponding authors: amyzhang@fb.com, tommaso@gliai.ai

1

ar
X

iv
:1

90
6.

10
43

7v
1

 [
cs

.L
G

]
 2

5
Ju

n
20

19

We propose a principled approach for learning state representations, that generalizes
PSRs to non-linear predictive models and allows for a formal comparison between generator-
and history-based state abstractions. We exploit the idea of causal states [10, 31, 32, 8], i.e.,
the coarsest partition of histories into classes that are maximally predictive of the future.
By learning this mapping from histories to clusters, causal states constitute a discrete causal
graph of the observation process.

Our method exploits the existence of minimal discrete representations to derive approx-
imately optimal representations from recurrent neural networks (RNN) trained to model
the environment. At the core lies the idea of discretizing the high-dimensional continuous
states generated by RNNs into a finite set of clusters. When the clusters are used as input
for predictive models, they achieve the same predictive power as the original RNN. Even if
this representation is not minimal, each cluster is guaranteed to each map to a single causal
state [31].

We use this approach to extend, theoretically contextualize, and integrate two recent
algorithms [25, 7] that learn tabular RL policies from discrete representations extracted with
neural networks. We evaluate our algorithm for approximate causal states reconstruction on a
modification of the original VizDoom environment used in [25] as well as multiple GridWorld
navigation tasks with partially observable states. Our DQN models and their tabularized
counterparts systematically outperform (by both return and stability) their recurrent-DQN
baselines.

2 State Representation for Decision Processes
Consider the nonlinear stochastic process emerging from the interaction between an agent’s
policy which chooses discrete actions At taking values at from the alphabet A—and the
environmental response Ot+1 taking values ot+1 from the alphabet O. Let Yt = (Ot+1, At)
be the joint observation-action variable with realizations yt = (ot+1, at) with yt ∈ O×A,1

respectively. The future dynamics P(
−→
Y) = P(

−−→
O,A) depend jointly on the stationary policy

P(
−→
A |
←−
Y) that maps the joint histories

←−
Y into future actions

−→
A and the environment channel,

P(
−→
O |
−→
A,
←−
Y) that maps the joint histories

←−
Y and future actions

−→
A into future observations

−→
O . An agent’s preferences over the future dynamics

−→
Y are defined via its reward function

R :
←−−−
O,A 7→ R. The optimal policy of the agent π∗(←−o, a) maximizes the expected reward

E[R(P(
−→
Y |P(

−→
A |
←−
Y) = π∗))]. We restrict our attention to environment channels and agent

policies that generate a stochastic process P(
−→
Y |
←−
Y) that is ergodic stationary, i.e. processes for

which the probability of every bi-sequence (at, ot+1, .., at+L, ot+1+L) of finite length L ∈ Z+

is time-invariant, which can be reliably estimated from empirical data.
The formalism of POMDPs supposes a hidden Markov process P (

−→
S |St, At), with realiza-

tions st ∈ S where S is discrete, and observations emitted through the action-conditional
probability P (Ot+1|St, At) [23]. This causal relationship between the observed process and
the hidden states implies that the mutual information I[Ot+1;St, At] between the generator
state St and current action At (jointly) and the next observation Ot+1 is at least as great as
that achieved by any competing representation of the history Ψt. This next-step sufficiency is
extended to the infinite due to the recursive nature of generator and belief state computations
I[
−→
O ;St, At] ≥ I[

−→
O ; Ψt, At] ≥ I[

−→
O ;
←−
Y ,At].

1For a fixed random variable Yt, we indicate its non-inclusive past with
←−
Y = ...Y−3, Y−2, Y−1 and its

inclusive future with
−→
Y = Y0, Y1, Y2..., dropping the subscript t from the notation for convenience when the

context is clear. The set of all bi-infinite sequences
←→
Y with alphabet Y is indicated as

−→
Y. By

←−
YL and

−→
YL,

we indicate the finite sequences Y−L, .., Y0 and Y1, .., YL

2

2.1 Belief and Predictive State Representations

A typical approach to planning in POMDPs assumes the agent has access to P (
−→
S |St, At)

and P (Ot+1|St, At) and uses it to construct the belief states bt = P (St|←−y) from the finite
realizations ←−y . Belief states are computed recursively using Bayes formula from an initial
belief b0 = P (S0) and give rise to the belief process P (

−→
B |
←−
B,
−→
Y). The belief process is a

sufficient statistic of the generator state when I[−→o ; st, at] = I[−→o ; bt, at], and is said to be
asymptotically synchronized when lim

L→∞
H[St|

←−
Y L] = H[St|bt] = 0, where H is the conditional-

entropy function. When I[Ot+1;St, At] > I[Ot+1;
←−
Y ,At], the generator states contain more

information about the future observable than the complete history of observations
←−
Y ,

implying absence of asymptotical synchronization [9] and that belief states are only sufficient
statistics of the history

←−
Y such that I[

−→
O ;St, At] > I[

−→
O ; bt, At] = I[

−→
O ;
←−
Y ,At].

The PSR approach relaxes the assumption of having any knowledge about the underlying
generator and constructs the representation using the outputs of the predictive model
ML = {P(

−→
OL|
←−
Y ,
−→
AL = q1), ..,P(

−→
OL|
←−
Y ,
−→
AL = qn)} of the next L observations, conditioned

on the next L actions
−→
AL (the test) sampled from the set of feasible L-length action sequences

QL = {q1, .., qn}. By
−→
M, we indicate the collections of predictive models for all L ∈ Z+.

Each model ML is a sufficient statistic of the L-length future observations
−→
OL, and the

complete collection
−→
M is a sufficient statistic of the infinite future observations

−→
O , i.e.

I[
−→
O ;
−→
M, At] = I[

−→
O ;
←−
Y ,At]. Typically, PSRs are constructed for decision processes using a

linear model that enables approximate solutions by assuming that the infinite-dimensional
system dynamics matrix has finite rank [33].

2.2 Causal States Representations
We propose to use the causal states representation that expands PSRs to the general case of
non-linear predictive models and allows the definition of a formal equivalence between the
eventual generator states and the causal states reconstructed from history. As in the PSR
framework, causal states depend on a predictive model of the observation process.

Definition 1 [10, 31] The causal states of a stochastic process are partitions σ ∈ S of the
space of feasible pasts

←−
Y induced by the causal equivalence ∼ε:
←−y ∼ε ←−y

′
⇐⇒ P(

−→
Y |
←−
Y =←−y) = P(

−→
Y |
←−
Y =←−y

′
). (1)

Which implies:
P(
−→
Y |St = σi) = P(

−→
Y |
←−
Y =←−y) ∀ ←−y ∈ σi, (2)

where St is the variable denoting causal state at time t, overwriting the definition in Sec. 2
of the unknown ground truth state. Since all histories belonging to the same equivalence
class predict the same (conditional) future, the corresponding causal state can be used to
fully summarize the information content of those histories. It can be demonstrated [31] that
the partition induced by ∼ε is the coarsest possible and generates the minimal sufficient
representation across the model class. Sampling of new symbols in the sequence induces the
creation of new histories and consequently new causal states. Because of this mapping from
histories to states, the resulting hidden Markov model is unifilar.

Definition 2 [31] A unifilar hidden Markov model is a HMM whose state transition
probability P(St+1|St) is deterministic if conditioned on the output symbol, i.e H[St+1|Yt+1, St] =
0.

With explicit reference to the joint input-output history, the state transition dynamics are
governed by input-conditional transition matrices To|a ∈ T with elements:

T o|aij = P(St+1 = σj , Ot+1 = o|St = σi, At = a). (3)

3

Since the causal states are defined over histories of joint symbols, the causal state model is
unifilar with respect to the joint variable At, Ot+1, i.e. the transitions between states are deter-
ministic once the next action and observable have been sampled or H[St+1|At, Ot+1, St] = 0.
The unifilar property implies that the recurrent dynamics of the causal states are fully
specified by the state-action-conditional symbol emission probability P(Yt+1|St, At) and
the action-symbol-conditional causal state emission probability P(St+1|Yt+1, At, St). As a
consequence, knowledge of the current causal states St and of the future action-observation
sequence

−−→
O,A induces a deterministic sequence of future causal states

−→
S , H(

−→
S |
−−→
O,A, St) = 0.

2.3 Stochastic Processes with Finite Causal States
When the joint process admits a finite causal state representation it is called a finitary
stochastic process which have multiple theoretical implications. In discrete stochastic
processes with finite actions, finite-symbol alphabets, and finite memory of length k the
causal states are always finite, with a worst case scenario in which each sub-sequence of
length k belongs to a distinct causal state forming a k-length Markov model [31]. When the
causal states are finite, they are also unique up to isomorphisms [31] and always generate a
stationary stochastic process. If the underlying generator is non-unifilar, the causal states
have the same information content of the potentially non-synchronizing belief states of
the generator, and the belief states defined over the causal states always asymptotically
synchronize to the actual causal states [9].

We focus on partially observable environments with discrete causal states and either
continuous or discrete observations. For continuous observations it is not possible to derive
generic conditions that imply discrete or finite causal states. Therefore, the existence of
discrete latent states has to be directly assumed or derived from alternative assumptions
like the existence of finite latent discrete variables underlying each continuous observation.
When a memory-less map from continuous observation to latent discrete variables exists, the
causal states of the revealed continuous variable process coincide with those defined over the
underlying discrete variables.

3 Methods
In the previous sections, we introduced a class of stochastic processes with discrete or contin-
uous outputs that are optimally compressed by a finite-state hidden-Markov representation,
called the causal state model of the process.

We now propose a new approach to approximately reconstruct these causal
states from empirical data.

3.1 Empirical Estimation of Causal States
Existing methods either directly partition past sequences of length L into a finite number
of causal states via conditional hypothesis tests [32] or use Bayesian inference over a set of
existing candidate states [36]. Either method can be adapted to model a joint-process and
consequently obtain the next-step conditional output by marginalizing out the action At, but
do not extend to the real-valued measurement case described without strong assumptions on
the shape of the conditional density function.

In this work, we exploit the definition that minimal-sufficient statistics can be computed
from any other non-minimal sufficient statistic. We obtain the (approximately) minimal
representations of the underlying process

←−→
S,A by discretizing a sufficient model of the

measurement process
←−→
O,A. This approach exploits learning a hierarchy of optimal predictive

models with progressively stricter bounds on their representations’ dimensionality. We start
with infinite dimensional continuous representations learned with a deep neural network, and
then partition the continuous representations into a finite set of clusters.

4

3.2 Learning Sufficient Statistics of History with Recurrent Net-
works

Recurrent neural networks (RNNs) are unifilar hidden Markov models with continuous states,
where the transitions and state output probabilities are parameterized by differentiable
functions. We use them to obtain recursively-computable high-dimensional sufficient statistics
of the action-measurement joint process. This representation is learned via a recurrent encoder
f :
←−−−
O,A 7→ Ŝ, and a next step prediction network η : Ŝ×A 7→ Ô. The overall neural-network

architecture resembles world models [14], except we auto-encode the observation ot only with
image inputs, and only use it for next step prediction in the other cases. Furthermore, we
use an explicit embedding layers for at that is concatenated with the output of the recurrent
encoder before predicting ot+1.

We note that when η(ŝt, at) is maximally predictive of the subsequent observations
(the future

−→
O), ŝt constitutes a sufficient statistic of the latent states

−→
S . In practice, we

estimate the continuous representations using the empirical realizations ←→o, a 2 to learn a
neural network Ψ(←−o, a, at) = (ηwη ◦ fwf)(←−o, a, at) that approximates end to end the maps f
and η by minimizing the temporal loss through the following optimization problems:

min
wf ,wη

T∑
t

Lr
(
P(Ot+1|←−o, a, at),Ψ(←−o, a, at)

)
(4)

After solving Eqs. 4 we can use the neural networks parameterized by the optimal
parameters w∗η, w∗f to derive sufficient continuous representations to create discrete states
that are refinement of the causal states.

3.3 Discretization of the RNN Hidden States

Figure 1: Graphical model generating the joint
action-measurement stochastic process. Black-
arrows indicate causal relationships between ran-
dom variables and red-arrows indicate the pre-
dictive relationship between the combinations of
action at, internal state s̄ (ŝ) and the next mea-
surement ot+1. Circular boxes indicate continuous
variables.

Together with the unifilar and Markovian
nature of transitions in RNNs, the sufficiency
of ŝt implies that there exists a function
Ds : Rk 7→ S that allows us to describe the
causal states s as a partition of the learned
latent state ŝ [31, 9].

We set up a second optimization prob-
lem using the trained neural network and
the empirical realizations of the process ←→o
to estimate the discretizer d̄s : Ŝ 7→ S̄
with |S̄| = |S| and the new prediction net-
work η̄ : S̄ × A 7→ O that maps the esti-
mated discrete states into the next observ-
able. We match the predictive behavior be-
tween the old network Ψ and the new net-
works Λ(←−o, a, at) = (η̄wη̄ ◦ d̄swd̄ ◦ fw∗f)(←−o, a, at)
that use discretized states s̄ and correspond-
ing prediction function η̄ by minimizing the knowledge distillation [19] loss:

min
wη̄,wd̄

T∑
t

Ld
(
Ψ(←−o, a, at),Λ(←−o, a, at)

)
. (5)

Minimizing Eq. 5 guarantees a sufficient discrete representation. To summarize, we first
minimize Lr to obtain a neural model able to generate continuous sufficient statistics of
the future observables of the process and subsequently minimize Ld to obtain a sufficient

2With a small abuse of notation, we use the same convention of
←→
Y , where we shift measurements by one

time step such that the joint process
←−→
O,A has elements (Ot+1, At).

5

representation of the dynamical system that is a refinement of the original causal states.
Fig. 1 shows the stochastic process representing the environment and our learned states Ŝ
and S̄ and their interactions.

3.4 Implementation Details
For the GridWorlds and Toy-Processes experiments, the base world model architecture is
composed of a three-layer perceptron (MLP) encoding the observation ot and a single layer
linear embedding for the action at−1. The outputs of the respective layers are concatenated
and fed to a Gated Recurrent Unit (GRU) [6], and the output of the recurrent network ŝt is
concatenated with the embedding of at and fed to a second MLP that outputs predictions for
ot+1. All the embeddings have 64 neurons except in layout 4 where we use 256 dimensional
embeddings. The discretization network is composed of a Quantized-Bottleneck-Network [25]
with ternary tangent neurons that auto-encodes the continuous representation ŝt generating
the discrete variables s̄t, and a MLP decoder that uses the estimated discrete states for
predicting the next observation ot+1.

Both networks are trained with the RMSprop algorithm using cross-entropy loss for
discrete observations and reconstruction loss for the continuous setting. The world-models is
trained through supervised learning of the temporal loss, while the discretization network is
trained via knowledge distillation using the soft outputs of the GRU decoder as targets. We
ran downstream evaluation of our learned representation with value iteration and compare
with baselines. To approximate the value function we use a 2-layer fully-connected DQN
architecture separated by ReLU with a 64-dimensional hidden layer. The R-DQN baselines
uses the same architectures but they are trained end-end via reward maximization. We also
present earlier results where the discretization step is implemented with K-mean clustering
and for policies learned with traditional tabular Q-learning.

For the VizDoom and ALE experiments we built upon the base VaST architecture [7]
that uses binary Bernoulli variables and Gumbel Softmax [22] for their discrete bottle-neck.
The original architecture for MDPs is composed by a variational encoder that embeds the
observation ot into k binary variables which are combined with action at to predict the next
latent discrete state. We extend it with a recurrent encoder that gives access to the agent
to the history of observations ←−o . Since we build over the original implementation we use
prioritized sweeping with tabular Q-learning for the downstream policy. The world models
is initialized from 10k random rollouts and is trained using the reconstruction loss.

4 Experiments
We employ three partially observable environments to learn approximate causal states
through self-supervised learning and use these representations as input for reinforcement
learning tasks defined over the domains.

4.1 Gridworlds
We create partially observable gridworld environments where the task is for the agent to
first obtain the key, then pass through the door to obtain the final reward. The final state is
unseen (i.e. the agent cannot pass through the door to reach it) if the agent does not have
the key. The agent only knows it has the key if it remembers entering the state with the key,
so without infinite memory this task is partially observable. At each time step the agent
receives -0.1 reward, 0.5 reward for picking up the key, and a final reward of 1 for passing
through the door.

We conduct experiments with three layouts with an increasing number of states (see
figures in the supplementary materials). The first layout is a 1-dimensional corridor while
the other three are two-dimensional mazes. The minimal memory requirement for solving
the environment is given by the shortest path from the key to the final destination.

6

Table 1: Results for Gridworlds. Reward obtained with tabular Q-learning, DQN, and DRQN
with γ = 0.99. Models trained on 1000 episodes and evaluated on 100. Numbers are mean,
standard deviation across 10 random seeds. First section is our method using k-mean clustering
for discretization, second is baselines on current observation, history of observations, and S. Final
section is using ground truth states.

Layout 1 Layout 1 Layout 1 Layout 2 Layout 2 Layout 2
Method low-disc low-cont ego-cont low-disc low-cont ego-cont

Tab., S̄ 0.43, 0. 0.42, 0. 0.437, 0. 0.01, 0. 0.09, 0. 0.036, 0.
DQN, S̄ 0.50, 0.015 0.42, 0.10 0.49, 0.032 -0.17, 0.76 0.026, 0.26 0.12, 0.064
DQN, Ŝ 0.5, 0. 0.5, 0. 0.49, 0.029 0.30, 0. 0.30, 0. 0.30, 0.01

DQN, Y -9.46, 0.20 -8.55, 0.79 -8.64, 1.01 -9.48, 0.14 -8.59, 0.78 -9.83, 0.25
DQN,

←−
Y -0.91, 3.0 0.49, 0.03 -0.34, 2.31 0.23, 0.16 0.084, 0.18 -0.07, 0.24

DRQN, Y -9.75, 0.22 -6.95, 3.66 -9.27, 0.68 -5.63, 3.74 -3.72, 4.31 -9.97, 0.06
Tab., Y -9.40, 0. - - -9.11, 0. - -

Tab., Sgt 0.45, 0. 0.42, 0. 0.43, 0. 0.23, 0. 0.23, 0. 0.23, 0.
DQN, Sgt 0.44, 0.019 0.44, 0.027 0.44, 0.023 0.30, 0.01 -0.76, 3.07 0.23, 0.10

Figure 2: Training curves for DQN policies—discretization with gradient descent and
bottleneck networks (left) Layout 1 using discrete inputs.(center) Layout 2 using discrete
inputs. (right) Layout 3 using discrete inputs. Averages over 10 runs with different random
seeds with two standard deviations shaded. Y-axis is mean reward per step. Green is the
World model, Blue is causal states, red is DRQN.

We use three types of observation processes for the agent that give different priors to
the agent’s behavior but share the same underlying causal states. low-discrete is the
discrete observation of the agent’s absolute position in the grid. low-cont is the continuous
observation (x, y) of the agent’s absolute position in the grid. ego-cont is ego-centric
continuous observation (up, down, left, right) of the distance from walls in the 4 cardinal
directions.

dqnDQN on Ŝ is able to achieve optimal policy across all 10 random seeds with very
low or zero standard deviation, showing the stability of our learned Ŝ. We expect Ŝ to
perform as well as or better than S̄, as S̄ is distilled from Ŝ and therefore contains the same
information. Using only current observation learns using a recurrent DQN (DRQN) [16].

4.2 Doom
We modify the t-maze VizDoom [24] environment of [7] to make it partially observable. We
randomize the goal location between the two ending corners and signal its location with a
stochastic signal in the observation space. The agent must remember where the goal is in
order to navigate to it. We convey the signal to the agent through a fourth channel (after
RGB) that intermittently contains information about where the goal is. The frequency at
which the information is displayed is a tunable factor f = 5 for these experiments. Example
trajectories to different goals that the learned agent takes are shown in Fig. 3 on the left.

Results Fig. 3 (right) shows the speedup in learning from explicitly learning to cluster

7

Figure 3: (left) Example trajectories in VizDoom. First goal (above), second goal (below).
(right) Doom T-Maze POMDP: Averaged over 10 runs with different random seeds with one
standard deviation shaded. Y-axis is mean reward per step. Blue is causal states, red is
DRQN.

sequences of observations into causal states. Additional results with varying frequencies in
Supplementary Material.

4.3 Atari Pong

Figure 4: Averaged over 10 runs with differ-
ent random seeds with one standard deviation
shaded.

We evaluate our model on the Atari Learn-
ing Environment’s Pong [3], an environment
where causal states are less intuitive. Our
algorithm learns a set of discrete causal
states suitable for learning successful poli-
cies (Fig. 4) We use the same preprocess-
ing of observations in [29] except that the
agent receives a single frame as observation
at each time step. The environment is now
partially observable as the agent must learn
to retain information about velocity of the
paddles and ball from the hidden state of
the RNN. We see a decrease in performance
with DRQN, due to instability in training.

4.4 Toy Stochastic-Processes
We apply our method to input-output stochastic processes that can be modeled as HMMs
with memory length k and alphabet size |Y|. We complicate the continuous observation
process by mapping the environment’s outputs into a) multivariate gaussians and b) images
sampled from the MNIST dataset. The goal is to maximize the occurrence of ot = 1,
0 ≤ t <∞. The environment returns a reward of 1 at time step t if ot = 1, and 0 otherwise.
Each episode lasts 100 time steps. Results in the appendix.

5 Related Literature
The relationship between PSR and causal states has been previously suggested in the
computation mechanics literature [31, 32, 2]. [20] also derive parallels between PSR, POMDP,
and automata through the construction of equivalence classes that groups states with common
action conditional future observations. Causal states, and the related information-theoretic
notion of complexity, minimality, and sufficiency are used to derive task-agnostic policies
with an intrinsic exploration-exploitation trade off in [34, 35].

In [4] the authors learn PSRs in Reproducing Kernel Hilbert Space extending the approach
to continuous, potentially infinite, action-observation processes. More similar to our latent

8

discrete states with continuous observable, [12] model spatio-temporal processes as being
generated by a finite set of discrete causal states in the form of light-cones.

Other methods for learning deep representations for reinforcement learning POMDPs
have been recently proposed, starting with adding recurrency to DQN [16] to integrate the
history in the estimation of the Q-value as opposed to using only the current observation.
However, this method stops short of ensuring sufficiency for next step prediction as it learns
a task specific representation. [21, 38] use deep variational methods to learn a probability
distribution over states, i.e. belief states, and use the belief states for policy optimization
with actor-critic [21] and planning [38]. [13] also use neural methods to learn belief states
with next-step prediction [17, 18] learn PSRs with RNNs and spectral methods and use policy
gradient with an alternating optimization method for the policy and the state representation
to handle continuous action spaces. However, none of these explore the connection to causal
states and compression via a discrete representation. [7] do learn discrete representations but
not in partially observable environments and with no link to PSRs. Instead, they propose
the discrete representation solely for using tabular Q-learning with prioritized sweeping.

The idea of extracting the implicit knowledge of a neural network [37, 11, 28, 15] is not
novel and is rooted in early attempts to merge traditional rule-based methods with machine
learning. The most recent examples [41, 39, 40] are focused on the ability of character level
RNNs to implicitly learn grammars. The only application of these ideas to RL in partially
observable environments that we are aware of is in [25] where deep recurrent policies [16]
are quantized into Moore machines. The main difference between our approaches is that we
reduce models of the environment, not of the policy, to ε-machines which are edge-emitting
Mealy machines. The connection between ε-machines and causal states is further discussed
in Supplementary Materials. Because the optimal policy will in general use a subset of the
possible input sequences, the minimal sufficient representation of a policy is typically smaller
than the causal states of the complete environment.

6 Conclusions
In this paper, we proposed a self-supervised method of learning a minimal sufficient statistic
S̄ for next step prediction and articulated its connection to the causal states of a controlled
process. Our experiments demonstrate the practical utility of this representation, both
with value iteration for control and exhaustive planning, in solving stochastic and infinite-
memory POMDP environments as well as k-order MDP environments with high dimensional
observations, matching the performance achieved with ground truth states.

We encountered multiple problems while training recurrent DQN models end to end,
even when we know from our causal states results that the same architecture is able
to learn sufficient representations for the task. We plan on extending the Distributed
Experience Replay algorithm [26] with extra asynchronous workers dedicated respectively to
the construction of continuous and discrete world models.

Acknowledgements
Part of this work was supported by the National Science Foundation (grant number CCF-
1317433), C-BRIC (one of six centers in JUMP, a Semiconductor Research Corporation (SRC)
program sponsored by DARPA), and the Intel Corporation. A. Anandkumar is supported in
part by Bren endowed chair, Darpa PAI, Raytheon, and Microsoft, Google and Adobe faculty
fellowships. K. Azizzadenesheli is supported in part by NSF Career Award CCF-1254106
and AFOSR YIP FA9550-15-1-0221, work done while he was visiting Caltech. The authors
affirm that the views expressed herein are solely their own, and do not represent the views
of the United States government or any agency thereof.

9

References
[1] Karl J Aastrom. Optimal control of markov processes with incomplete state information.

Journal of Mathematical Analysis and Applications, 10(1):174–205, 1965.

[2] Nix Barnett and James P Crutchfield. Computational mechanics of input–output
processes: Structured transformations and the eps-transducer. Journal of Statistical
Physics, 161(2):404–451, 2015.

[3] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning envi-
ronment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 47:253–279, jun 2013.

[4] Byron Boots, Geoffrey Gordon, and Arthur Gretton. Hilbert space embeddings of
predictive state representations. arXiv preprint arXiv:1309.6819, 2013.

[5] Anthony R Cassandra, Leslie Pack Kaelbling, and Michael L Littman. Acting optimally
in partially observable stochastic domains. In AAAI, volume 94, pages 1023–1028, 1994.

[6] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical
evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555, 2014.

[7] Dane S. Corneil, Wulfram Gerstner, and Johanni Brea. Efficient model-based deep
reinforcement learning with variational state tabulation. In Proceedings of the 35th Inter-
national Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018, pages 1057–1066, 2018.

[8] James P Crutchfield. The origins of computational mechanics: A brief intellectual
history and several clarifications. arXiv preprint arXiv:1710.06832, 2017.

[9] James P Crutchfield, Christopher J Ellison, Ryan G James, and John R Mahoney. Syn-
chronization and control in intrinsic and designed computation: An information-theoretic
analysis of competing models of stochastic computation. Chaos: An Interdisciplinary
Journal of Nonlinear Science, 20(3):037105, 2010.

[10] James P Crutchfield and Karl Young. Inferring statistical complexity. Physical Review
Letters, 63(2):105, 1989.

[11] LiMin Fu. Rule generation from neural networks. IEEE Transactions on Systems, Man,
and Cybernetics, 24(8):1114–1124, 1994.

[12] Georg Goerg and Cosma Shalizi. Mixed licors: A nonparametric algorithm for predictive
state reconstruction. In Artificial Intelligence and Statistics, pages 289–297, 2013.

[13] Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, Bilal Piot, Bernardo A. Pires,
Toby Pohlen, and Rémi Munos. Neural predictive belief representations. CoRR,
abs/1811.06407, 2018.

[14] David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122,
2018.

[15] Tameru Hailesilassie. Rule extraction algorithm for deep neural networks: A review.
arXiv preprint arXiv:1610.05267, 2016.

[16] Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for partially observable
mdps. 2015.

[17] Ahmed Hefny, Carlton Downey, and Geoffrey J Gordon. Supervised learning for
dynamical system learning. In Advances in neural information processing systems, pages
1963–1971, 2015.

10

[18] Ahmed Hefny, Zita Marinho, Wen Sun, Siddhartha Srinivasa, and Geoffrey Gordon.
Recurrent predictive state policy networks. arXiv preprint arXiv:1803.01489, 2018.

[19] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531, 2015.

[20] Christopher Hundt, Joelle Pineau, and Doina Precup. Representing systems with hidden
state. 2006.

[21] Maximilian Igl, Luisa Zintgraf, Tuan Anh Le, Frank Wood, and Shimon Whiteson. Deep
variational reinforcement learning for pomdps. arXiv preprint arXiv:1806.02426, 2018.

[22] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-
softmax. CoRR, abs/1611.01144, 2016.

[23] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and
acting in partially observable stochastic domains. Artif. Intell., 101(1-2):99–134, May
1998.

[24] Michał Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech
Jaśkowski. ViZDoom: A Doom-based AI research platform for visual reinforcement
learning. In IEEE Conference on Computational Intelligence and Games, pages 341–348,
Santorini, Greece, Sep 2016. IEEE. The best paper award.

[25] Anurag Koul, Sam Greydanus, and Alan Fern. Learning finite state representations of
recurrent policy networks. arXiv preprint arXiv:1811.12530, 2018.

[26] Thanard Kurutach, Aviv Tamar, Ge Yang, Stuart Russell, and Pieter Abbeel. Learning
plannable representations with causal infogan. arXiv preprint arXiv:1807.09341, 2018.

[27] Michael L Littman and Richard S Sutton. Predictive representations of state. In
Advances in neural information processing systems, pages 1555–1561, 2002.

[28] Hongjun Lu, Rudy Setiono, and Huan Liu. Effective data mining using neural networks.
IEEE transactions on knowledge and data engineering, 8(6):957–961, 1996.

[29] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning.
In NIPS Deep Learning Workshop. 2013.

[30] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning,
2013.

[31] Cosma Rohilla Shalizi and James P Crutchfield. Computational mechanics: Pattern
and prediction, structure and simplicity. Journal of statistical physics, 104(3-4):817–879,
2001.

[32] Cosma Rohilla Shalizi and Kristina Lisa Shalizi. Blind construction of optimal nonlinear
recursive predictors for discrete sequences. In Proceedings of the 20th conference on
Uncertainty in artificial intelligence, pages 504–511. AUAI Press, 2004.

[33] Satinder Singh, Michael R James, and Matthew R Rudary. Predictive state represen-
tations: A new theory for modeling dynamical systems. In Proceedings of the 20th
conference on Uncertainty in artificial intelligence, pages 512–519. AUAI Press, 2004.

[34] Susanne Still. Information-theoretic approach to interactive learning. EPL (Europhysics
Letters), 85(2):28005, 2009.

11

[35] Susanne Still and Doina Precup. An information-theoretic approach to curiosity-driven
reinforcement learning. Theory in Biosciences, 131(3):139–148, 2012.

[36] Christopher C Strelioff and James P Crutchfield. Bayesian structural inference for
hidden processes. Physical Review E, 89(4):042119, 2014.

[37] Geoffrey G Towell and Jude W Shavlik. Extracting refined rules from knowledge-based
neural networks. Machine learning, 13(1):71–101, 1993.

[38] Sebastian Tschiatschek, Kai Arulkumaran, Jan Stühmer, and Katja Hofmann. Varia-
tional inference for data-efficient model learning in pomdps. CoRR, abs/1805.09281,
2018.

[39] Qinglong Wang, Kaixuan Zhang, II Ororbia, G Alexander, Xinyu Xing, Xue Liu, and
C Lee Giles. An empirical evaluation of recurrent neural network rule extraction. arXiv
preprint arXiv:1709.10380, 2017.

[40] Qinglong Wang, Kaixuan Zhang, II Ororbia, G Alexander, Xinyu Xing, Xue Liu, and
C Lee Giles. A comparison of rule extraction for different recurrent neural network
models and grammatical complexity. arXiv preprint arXiv:1801.05420, 2018.

[41] Gail Weiss, Yoav Goldberg, and Eran Yahav. Extracting automata from recurrent
neural networks using queries and counterexamples. arXiv preprint arXiv:1711.09576,
2017.

[42] Amy Zhang, Adam Lerer, Sainbayar Sukhbaatar, Rob Fergus, and Arthur Szlam. Com-
posable planning with attributes. In Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15,
2018, volume 80, pages 5837–5846. JMLR.org, 2018.

12

Figure 5: LOW-CONT: Training curves for DQN policies - discretization with gradient
descent and bottleneck networks. (left) Layout 1 using x-y coordinates. (center) Layout 2
using x-y coordinates. (right) Layout 3 using x-y coordinates. Averaged over 10 runs with
different random seeds with two standard deviations shaded. Y-axis is mean reward per step.
Green is the World model, Blue is causal states, red is DRQN.

Figure 6: EGO-CONT: Training curves for DQN policies - discretization with gradient
descent and bottleneck networks. (left) Layout 1 using egocentric distance from walls in each
cardinal direction. (center) Layout 2 using egocentric distance from walls in each cardinal
direction. (right) Layout 3 using egocentric distance from walls in each cardinal direction.
Averaged over 10 runs with different random seeds with two standard deviations shaded.
Y-axis is mean reward per step. Green is the World model, Blue is causal states, red is
DRQN.

A Causal States and ε-machines
In the computational mechanics literature, causal state models are usually called ε-machines
and are formally defined as:

Definition 3 The ε-machine of a stochastic process
←→
Y is given by the tuple ε = 〈S,Y, T 〉

where S is the discrete alphabet of causal states, Y the discrete alphabet of observation and
T is a set of observation conditional state-to-state transition matrices. [10, 31]

To summarize, the ε-machine of a stochastic process is the minimal unifilar hidden Markov
model able to generate its empirical realizations. The hidden states of an ε-machine are
called the causal states of the process, and correspond to partitions of the process history.

B Additional Visualizations for GridWorlds experiments
In Figures 5 and 6, we present additional DQN results for Layout 1, 2 and 3 using continuous
inputs. The models in Figure 5 use continuous x,y coordinates as input while those in Figure
6 use the egocentric distance from walls in each cardinal direction. Figures 7 and 8 depict
the configuration of the four layouts. Figure 9 and 10 contain the learning curve for layout 1
and 2 for all input modalities using k-mean clustering for discretization.

13

Figure 7: Visual representation of the layouts 1 and 2 used in the gridworld experiments. In
Blue the starting location, in Red the key location in Yellow the final goal. Brown represents
wall and in Grey are walkable cells

Figure 8: Visual representation of the layouts 3 and 4 used in the gridworld experiments. In
Blue the starting location, in Red the key location in Yellow the final goal. Brown represents
wall and in Grey are walkable cells

Figure 9: DQN training curves across 10 runs with different random seeds for all input types
in Tab. 1 for Layout 1 - Causal States Ŝ estimated using K-mean clustering. Two levels of
shading represent 1 and 2 standard deviations from the mean.

Figure 10: DQN training curves across 10 runs with different random seeds for all input
types in Tab. 1 for Layout 2 - Causal States Ŝ estimated using K-mean clustering. Two
levels of shading represent 1 and 2 standard deviations from the mean.

14

Table 2: Results for the Toy Processes. Reward obtained with DQN initialized with 10
random seeds. Numbers in each cell correspond to mean and standard deviations. All models
are trained on 500 episodes and evaluated on 100. Results within a std of the best are bolded.

Discrete Gaussian MNIST
Method |Y |, k = 2 |Y |, k = 4 |Y |, k = 2 |Y |, k = 4 |Y |, k = 2 |Y |, k = 4

DQN on Y 50.1, 1.01 25.1, 1.12 50.6, 1.26 25.0, 1.35 50.1, 1.80 25.0, 1.27
DQN on

←−
Y 73.7, 0.73 55.5, 1.62 73.3, 1.20 54.9, 1.71 72.3, 1.33 54.2, 1.39

DQN on Ŝ 72.7, 1.04 54.6, 1.61 73.6, 0.82 55.3, 1.91 72.8, 1.23 50.8, 1.80
DQN on S̄ 72.6, 4.10 49.2, 3.29 73.7, 2.18 52.7, 3.07 72.6, 2.50 43.2, 3.02

C Additional Experiments

C.1 Toy Processes
We apply our method to input-output stochastic processes that can be modeled as HMMs
with memory length k and alphabet size |Y|. We construct the process such that the
probability of the next output ot+1 depends only on the value of ot−k by sampling from the
multinomial distribution: P(Ot+1 = o′|Ot−k = o′) = p and P(Ot+1 = o′|Ot−k 6= o′) = 1− p

|O|
for all o′ ∈ O.

We introduce a binary action space A = {0, 1} where

p(Ot+1 = i|At = 0) =

{
p if ot−k = i,
1−p
|O| otherwise.

,

p(Ot+1 = i|At = 1) =

{
p if ot−k = i− 1,
1−p
|O| otherwise.

.

The goal is to maximize the occurrence of ot = 1, 0 ≤ t <∞. The environment returns a
reward of 1 at time step t if ot = 1, and 0 otherwise. Each episode lasts 100 time steps.
We again train on sequence data {o1, a0, o2, a1, ..., oT+1, aT } generated with a random policy
and pass the actions into the RNN with a linear layer and concatenate with the observation
embedding.

The multivariate Gaussians measurements are constructed by taking a vector composed
by k blocks of size |O|, the ith block has mean µi = 4 if Ot = yi or µi = 0 if Ot 6= oi. For
MNIST we use a process alphabet of up to size |O| = 10, and associate each symbol O to an
image category, the measurement xt are generated by first sampling the realization ot from
the process sampling a random image from the corresponding MNIST category.

For the case of rendering high-dimensional measurements with images, we use the full
image dataset for sampling Xt and use train and val sets for training and test for evaluation,
showing generalization ability in image classification through this method, with no explicit
training on class label.

Results: We compare the learned representations with end-to-end DQN [30] trained on
length k sequences of actions-outputs observations

←−
Yt , single observation Yt, the continuous

sufficient statistics Ŝ, and the causal states refinements S̄. The difficulty level of these
environments can be extended by increasing the class size |Y | and the memory k. Table
2 reports the results for |Y | = k = 1, 2, 4. As can be appreciated from the first row, it is
impossible to obtain more than random reward of 50 (25) without using memory, and the
task can be successfully solved by stacking k frames as input as indicated by the second row,
making the task fully-observable. The third and fourth row show the matching performance
of our task-agnostic representation for the continuous ŝ and the discrete s̄, respectively. We
found for the Gaussian and MNIST results that vector quantization worked better than
k-means, so the results are reported with VQ.

15

C.2 Doom at Additional Frequencies
We tune frequency f for the Doom environment and show results in Fig. 11. DRQN learns
slightly on f = 2 and noticeably drops with longer frequencies, whereas our method (Causal
States) exhibits consistently good performance at all frequencies.

Figure 11: Performance of Causal States and DRQN on frequencies f ∈ {2, 7, 10}.

C.3 Planning
With a minimal sufficient unifilar model we can perform efficient planning by representing it
as a labeled directed graph G = (S, T (o|a)

ij), with causal states as nodes and action-observation
conditional transitions as edges. Because of the unifilar property, once an agent has perfect
knowledge of the current causal states, the information in the future action-observation
process are sufficient to uniquely determine the future causal states. This property can
be exploited by multi-step planning algorithms which need not keeping track of potential
stochastic transitions between the underlying states, enabling a variety of methods that are
otherwise amenable only to MDPs like Dijkstra’s algorithm. We plan over our learned discrete
representation by building a graph G := (V,E) where V := {S̄}, E := {(s̄i, s̄j); si, sj ∈ S̄},
and p(sj |si, a) > 0 for a ∈ A. We obtain the optimal policy for Layout 1 and 2 obtaining
respectively 0.5 and 0.3 reward we derive G and save high reward states seen during the
rollouts as goal states. Then one can map the initial and final observations to a node in the
graph and run Dijkstra’s algorithm to find the shortest path as proposed in [42]. Unlike
value iteration, this requires no learning and no re-sampling of the environment by making
use of the graph edges, where Q-learning only uses the nodes.

16

	1 Introduction
	2 State Representation for Decision Processes
	2.1 Belief and Predictive State Representations
	2.2 Causal States Representations
	2.3 Stochastic Processes with Finite Causal States

	3 Methods
	3.1 Empirical Estimation of Causal States
	3.2 Learning Sufficient Statistics of History with Recurrent Networks
	3.3 Discretization of the RNN Hidden States
	3.4 Implementation Details

	4 Experiments
	4.1 Gridworlds
	4.2 Doom
	4.3 Atari Pong
	4.4 Toy Stochastic-Processes

	5 Related Literature
	6 Conclusions
	A Causal States and -machines
	B Additional Visualizations for GridWorlds experiments
	C Additional Experiments
	C.1 Toy Processes
	C.2 Doom at Additional Frequencies
	C.3 Planning

