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 6 

Asbtract 7 

In irrigated agricultural systems, a major source of uncertainty relates to water supply, as it 8 

significantly affects farm income. This paper investigates farmers’ utility changes associated with 9 

shifts in the probability density function of water supply leading to a higher water supply reliability 10 

(higher mean and lower variance in annual water allotments). A choice experiment relying on a mean-11 

variance approach is applied to the case study of an irrigation district of the Guadalquivir River Basin 12 

(southern Spain). To our knowledge, this is the first study using parameters of these probability 13 

density functions of water supply as choice experiment attributes to value water supply reliability. 14 

Results show that there are different types of farmers according to their willingness to pay (WTP) for 15 

improvements in water supply reliability, with some willing to pay nothing (47.8%) while others have 16 

a relatively low (28.0%) or high (24.2%) WTP. A range of factors influencing farmers’ preferences 17 

toward water supply reliability are revealed, with those related to risk exposure to water availability 18 

being of special importance. The results can be used to assist the design of more efficient policy 19 

instruments to improve water supply reliability in Mediterranean and semi-arid climate regions. 20 

Keywords: Choice experiment, irrigation water availability, mean-variance approach, preference 21 

heterogeneity.  22 
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1. Introduction 23 

Farmers worldwide are faced with a variety of risks that originate from various sources. 24 

Within these, production risks (mainly due to weather events affecting crop yields) and 25 

market risks (mainly due to changes in agricultural prices) are considered to be among the 26 

most important (OECD, 2011). Although price variability is found to be higher than yield 27 

variability in most countries, this is not the case in Mediterranean and semi-arid climate 28 

regions, which are subjected to significant variability of weather conditions (irregular 29 

precipitation and frequency of extreme events) (Antón and Kimura, 2011). This explains why 30 

Mediterranean agriculture is particularly vulnerable to the risk of drought, a source of 31 

uncertainty that is becoming increasingly relevant because of climate change is projected to 32 

involve an increase in the frequency and intensity of the drought events in these regions 33 

(IPCC, 2014; EC, 2017). All of these facts help to explain why irrigators in these regions are 34 

deeply concerned about uncertainty over water supply, which significantly affects economic 35 

decision-making in irrigated agriculture (Palinkas and Székely, 2008). In fact, in 36 

Mediterranean and semi-arid climate regions irrigation water availability is one of the main 37 

sources of uncertainty for irrigators, as they must take crop-mix selection and other farm 38 

management decisions without knowing for certain what their water allotments will be for the 39 

next season. 40 

According to the neoclassical production theory, under certainty conditions an efficient 41 

farmer uses inputs (e.g., irrigation water) up to a level at which the marginal revenue product 42 

equals marginal costs. But under uncertainty regarding input availability and risk aversion, 43 

optimal levels of input use and output produced are lower than those expected under certainty 44 

conditions, as shown by Beare et al. (1998) for the case of irrigation water. In addition, it is 45 

worth mentioning that uncertainty over water supply impacts on farmers’ choices of crop 46 

portfolio. Farmers may prefer crops whose production requires less agricultural capital 47 



3 

accumulation despite being less profitable (Lavee, 2010), and be dissuaded from making 48 

long-term investments that raise productivity (Marques et al., 2005). Thus, considering that 49 

most farmers are risk averse, under uncertainty regarding irrigation water availability, 50 

irrigators’ decision-making (i.e., optimal input level use from a private point of view) cannot 51 

be considered efficient from a social welfare perspective (agricultural production and wealth 52 

generation is lower than under more certain irrigation water availability). 53 

All these facts evidence that there is a responsibility for both farmers and governments to 54 

address the risk related to irrigation water availability (OECD, 2016; EC, 2017). While 55 

farmers should be expected to incorporate the risk of shortages of irrigation water into their 56 

own risk management strategies without any public incentive, there is a role for public policy 57 

to encourage farmers to adopt drought risk management instruments (e.g., designing security-58 

differentiated water rights or subsidizing agricultural insurances) and to support irrigators in 59 

case they suffer catastrophic losses (e.g., ad-hoc payments or fiscal measures), with the 60 

ultimate objective of increasing economic efficiency and social welfare, along with stabilizing 61 

irrigators’ incomes (Rigby et al., 2010). 62 

Furthermore, concerns over water supply reliability in agriculture are growing because of 63 

the expected impact of climate change. According to IPCC (2014), projections for 64 

Mediterranean and semi-arid climate regions continuously indicate a decrease in precipitation, 65 

run-off and water availability, while the progressive temperature rise will increase irrigation 66 

water needs due to higher evapotranspiration of crops, resulting in greater demand for 67 

irrigation water. Moreover, climate change predictions for these regions also point out that 68 

drought periods are expected to be more frequent and intense. All this will jeopardize 69 

irrigation water supply reliability, encouraging irrigators and policy-makers to develop more 70 

proactive adaptation measures (Varela-Ortega et al., 2016). 71 
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Traditionally, solutions for securing water supply have focused on the supply side, mainly 72 

through the construction of large-scale infrastructures such as reservoirs, aqueducts and 73 

pipelines to capture, store and transfer water resources to satisfy human needs (mainly for 74 

urban and agricultural uses). Thus, these supply-side policies aim at satisfying increasing 75 

water demands by means of increasing the resource availability. However, supply-side 76 

policies often do not represent a viable option anymore in Mediterranean and semi-arid 77 

climate regions. Existing water supply is frequently found to be unable to meet new demand 78 

within the basin, since the development of new sources of supply is limited by economic 79 

(disproportionately costly investment requirements) and environmental (maintenance of 80 

natural flows to conserve water related ecosystems) constraints. In these circumstances, 81 

basins are said to be ‘closed’ (Molle et al., 2010), and new demand has to be met by diverting 82 

water rights from primarily irrigators to other users. This considerably increases irrigators’ 83 

risk exposure with respect to water supply availability. Indeed, closure of river basins has 84 

become so common in water scarce regions that policy-makers and academics increasingly 85 

explore demand-side instruments. These instruments aim at managing the current available 86 

resources to optimize water use efficiency and reduce water users’ (including irrigators) 87 

exposure to water availability risk. They include modernization of irrigation systems (Berbel 88 

et al., 2015), spot water markets (Calatrava and Garrido, 2005b; Debaere et al., 2014), 89 

drought water banks (Montilla-López et al., 2018), option contracts (Rey et al., 2016) and 90 

drought insurance schemes (Pérez-Blanco and Gómez, 2014). 91 

In order to efficiently design demand-side management policies, information on users’ 92 

preferences for water supply reliability is required. Knowledge on users’ willingness to pay 93 

(WTP) for improvements in water supply reliability can also help policy-makers to assess the 94 

potential of demand-side instruments to achieve a more efficient resource allocation. Despite 95 

its increasing policy relevance, only few papers investigate irrigators’ WTP for improved 96 
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water supply reliability comprising, to the authors’ knowledge, Rigby et al. (2010), Mesa-97 

Jurado et al. (2012), Bell et al. (2014), and Alcón et al. (2014). Rigby et al. (2010) estimated 98 

the economic value of water to irrigation producers in the Segura Basin (Spain) using a choice 99 

experiment and explored if irrigators were willing to pay a premium for less uncertain water 100 

supplies. They found that farmers were strongly risk averse in their preferences and agreed to 101 

pay higher water fees for increasing the probability of additional water amounts. Mesa-Jurado 102 

et al. (2012) used the contingent valuation method to analyze olive grove irrigators in a river 103 

sub-basin in southern Spain, finding that 71% of irrigators were willing to pay for improved 104 

water supply reliability, and showing that greater improvement was associated with higher 105 

WTP. Bell et al. (2014) used a choice experiment to study Pakistani farmers’ WTP for 106 

improved water supply reliability, finding that irrigators were typically willing to pay more 107 

than the current average water fees for an improvement in reliability. They also found that 108 

farmers’ WTP relates to the current level of water supply reliability, with WTP being higher 109 

for farmers who already have a high level of reliability. Finally, Alcón et al. (2014) analyzed 110 

farmers’ WTP for improved water supply reliability under different policy options using 111 

choice experiments. These authors also found that farmers were willing to pay extra money 112 

for improvements in water supply reliability, and that their WTP varied depending on the 113 

policy instruments used to secure such improvements. 114 

All of these studies provide useful insights into the issue of water supply reliability, 115 

revealing interesting results related to farmers’ preferences to improve water supply for 116 

irrigation. However, to a large extent, the valuation scenarios described secured or riskless 117 

amounts of water supply as alternatives to the current situation which, in our opinion, lacks 118 

realism. In these papers, the amount of water available for irrigation was considered as a 119 

deterministic variable (secured and completely reliable water supply amounts), instead of as a 120 

stochastic one with its own probability density function, which is arguably much closer to real 121 
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decision-making with regard to improvements in water reliability. Taking this into account, 122 

the main objective of this paper is to provide first evidence on farmers’ preferences toward 123 

irrigation water supply reliability, defined as shifts in the probability density function of water 124 

supply. Specifically, this paper adds to existing literature by valuing changes in irrigators’ 125 

utility associated with changes in both mean and variance of water allotments. To our 126 

knowledge, this has not been done previously. 127 

Toward this end, this paper examines irrigators’ WTP for improvements in water supply 128 

reliability (joint increase in the mean of water allotments and decrease in their variance) and 129 

analyzes influencing factors (socio-demographic, structural and opinions/attitudes). We use 130 

the choice experiment method to analyze farmers’ preferences toward changes in water 131 

supply reliability and apply a latent class model (LCM) to study preference heterogeneity. 132 

Instead of considering the variable water supply reliability as deterministic, i.e., defined as 133 

different amounts of ‘guaranteed’ water leading to unrealistic valuation scenarios, we 134 

consider it as a stochastic variable having its own probability density function (PDF) and 135 

cumulative distribution function (CDF). Accordingly, the proposed approach aims at 136 

estimating WTP for changes in the PDF and the CDF of water supply, including the novelty 137 

of directly connecting the attributes of the choice experiment with parameters of PDFs. This 138 

theoretical approach was empirically implemented in an irrigation district located in the 139 

Guadalquivir River Basin (southern Spain), thus aiming to support policy-makers in the 140 

design of more efficient water management instruments that result in a reduction of local 141 

irrigators’ risk exposure regarding water availability (i.e., enhancing economic efficiency). 142 

2. Case study 143 

2.1. Water management in Spain: Water concessions and water allotments 144 

In Spain, the Water Act of 1985 declared all water resources to be public property 145 

administrated by public basin agencies. It was also established that any private use (e.g., 146 
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irrigation) would be authorized by the State through legal authorization or concession. These 147 

water rights are granted in Spain for a maximum amount of water to be used annually (water 148 

concession) during a fixed period of time (75 years, generally) and for uses specifically 149 

designated in the legal document fixing features of these rights. However, based on a 150 

`proportional rights’ system, Spanish public basin agencies have legal capacity to impose 151 

restrictions on the volume of water to be actually used each year (water allotments) depending 152 

on the resource availability (i.e., water stored in reservoirs). Indeed, in water scarce regions 153 

with closed basins, as in southern and eastern Spain, annual water allotments only reach water 154 

concessions under wet hydrologic conditions. Consequently, irrigators in these regions 155 

generally face a considerable level of uncertainty about the actual availability of irrigation 156 

water (Calatrava and Garrido, 2005a). 157 

For irrigation purposes, concessions are usually granted collectively to all irrigators 158 

operating within the same irrigation district, being the water annual allotments managed as a 159 

common property resource through water user associations called irrigators’ communities 160 

(comunidades de regantes or simply ICs). Under this institutional setting, a proportional 161 

appropriation rule is applied, since ICs deliver the water available among the irrigators on an 162 

area-based criterion; that is, farmers obtain the same amount of water per irrigated hectare that 163 

is fixed annually, although they can use the whole volume allotted with different intensities 164 

within their own farms. Thus, within the same irrigation district all irrigators usually share the 165 

same risk of water shortage. 166 

2.2. Case study: Santaella Irrigators’ Community in the Genil-Cabra irrigation district 167 

The Santaella IC in the Genil-Cabra irrigation district (from now on referred simply as 168 

Santaella IC), located in the Guadalquivir River Basin (GRB, southern Spain), has been 169 

selected as case study. This irrigation district has been primarily selected for the empirical 170 

analysis due to representativeness, since it is an irrigated system sharing most of its features 171 
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with many other irrigated districts within the GRB. Moreover, it is worth mentioning that this 172 

choice was also supported by empirical reasons, taking into account the availability of data 173 

(i.e., Lorite et al., 2007; Lorite et al., 2013). 174 

Santaella IC is a large irrigators’ community (15,500 hectares) using surface water 175 

resources delivered by the GRB agency. As many ICs within the basin, the Santaella IC was 176 

established at the end of the 20th Century, currently operating with modern and efficient 177 

irrigation technologies, with sprinkler and drip irrigation systems being most widely used 178 

(Gómez-Limón et al., 2013). The main crops are olives, sunflower, vegetables (mainly garlic 179 

and onion), wheat and cotton. The water fees paid by irrigators are calculated based on fixed 180 

costs, covering depreciation and maintenance of infrastructures and personnel, and variable 181 

costs, covering energy consumed for pumping, borne by the IC due to the provision of water 182 

services. These costs are charged to irrigators separately through a binomial bill including two 183 

components based on area (fixed costs imputation) and volumetric (variable costs imputation) 184 

criteria. Main descriptive characteristics of Santaella IC are shown in Table 1. 185 

Table 1 186 

Descriptive characteristics of Santaella IC. 187 

Characteristics Santaella IC 

Operations starting date 1989 

Irrigated area (ha) 15,500 

Number of owners of irrigated landa 1,563 

Average size of irrigated farm (ha)a 25.0 

Main crops Olives (45%), sunflower (14%), vegetables (12%), 

wheat (11%) and cotton (11%) 

Origin of water resources Surface (100%) 

Water concession (m3/ha/year) 5,000 

Average annual water allotment (m3/ha/year) 2,572 

Irrigation system Sprinkler (50%) and drip irrigation (50%) 

Area water price (€/ha/year) 147.50 

Volumetric water price (€/m3) 0.042 

Source: Data provided by the IC. 188 
a Owners of irrigated land in this IC have, on average, 9.9 hectares. However, due to land leasing and other 189 
management arrangements, irrigated farms (management unit) have, on average, 25.0 hectares. 190 
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As for most of the ICs in the GRB, the Santaella IC does not commonly receive the water 191 

allotments of the legal concession of 5,000 m3/ha/year for which it is entitled. In contrast, 192 

water allotments are generally lower, generating a considerable supply gap in most of the 193 

years, as can be observed in Fig. 1. In fact, the average water use in the past 20 irrigation 194 

seasons has been of 2,572 m3/ha/year (51.4% of water concession) with considerable variation 195 

demonstrating relatively low levels of water supply reliability. Fig. 2 displays the histogram 196 

of annual water allotments. To improve water supply availability and reliability, the board of 197 

the IC proposed the construction of three irrigation ponds to enlarge water storing capacity, 198 

which were projected to cost €27m (with 20%/80% private-public co-financing), resulting in 199 

an extra-cost per irrigator of around €38/ha/year. However, this project was discarded as a 200 

majority of the IC’s members rejected it, because they were not willing to bear the increase in 201 

farming costs required to finance it. 202 

 203 
Fig. 1. Water allotments and supply gaps in Santaella IC. 204 
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 205 

Fig. 2. Histogram of annual water allotments in Santaella IC. 206 

Water allotment can be considered as a stochastic variable with its own PDF and CDF. 207 

From the series of water allotments in Santaella IC in the period from 1996 to 2015, and using 208 

the software Easyfit 5.6 (Mathwave Technologies), we have fitted data to several possible 209 

distribution functions. The normal distribution function resulted as one of the most accurate 210 

distribution functions to represent variability in water supply, according to the Anderson-211 

Darling (A-D) statistical test (the null hypothesis of data following normal distributions was 212 

not rejected at 1% significance level). Fig. 3 shows the normal PDF and CDF for the data of 213 

water allotments in Santaella IC and exhibits the two parameters characterizing the PDF: 214 

location parameter μ, equal to the mean; and scale parameter σ2, equal to the variance. 215 
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 216 
μ=2,572 m3/ha/year     σ²=741,321 (m3/ha/year)2      217 

Fig. 3. Normal PDF and normal CDF in Santaella IC (current scenario). 218 
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normal distribution functions as proved with an A-D statistical test. For illustrative purposes, 233 

the resulting normal CDFs are shown in Fig. 4. 234 

 235 

Fig. 4. Normal CDFs in Santaella IC in current scenario and in the improved scenarios (I1, I2, I3). 236 

Table 2 shows μ and σ2 parameters of the normal distribution functions fitted for each 237 

scenario. Other useful descriptive statistics, such as 5th, 25th and 50th percentiles, are also 238 

provided. 239 

Table 2 240 

Estimated statistics of the probability density functions for the different water reliability scenarios in 241 

Santaella IC (m3/ha/year). 242 
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3.2. Mean-variance approach 244 

The mean-variance approach (Levy and Markowitz, 1979) was proposed for financial 245 

portfolio selection in order to help investors to maximize the financial asset’s return while 246 

minimizing its risk. In fact, this approach has been widely proved to be consistent with 247 

expected utility theory (Markowitz, 2014), thus providing a sound theoretical framework for 248 

analyzing the decision-making under risk beyond financial analysis, becoming one of the 249 

most widespread approaches in applied economics to model decision-making under risk 250 

(Hardaker et al., 2004). This framework generally assumes that individuals evaluate decisions 251 

based on the first two moments of the probability distribution function, the mean and the 252 

variance, being the former a direct and positive source of utility to the individuals, while the 253 

latter is a direct source of disutility. In particular in our study, a higher mean in water 254 

allotments produces an increase in irrigators’ utility, while a higher variance of water 255 

allotments generates disutility to irrigators because it implies an increase of uncertainty over 256 

water supply, considering that irrigators are risk averse (Nauges et al., 2016). 257 

The mean-variance analysis relies on two basic requirements for this approach to be 258 

precise when modeling decision-making: (i) the risky outcome (variable ‘water supply 259 

reliability’ in our case study) is normally distributed, and (ii) the decision-maker’s (irrigators 260 

in our case study) utility function is quadratic. The first assumption has been already verified 261 

in Section 2.2, but no evidence is available on whether the second one is actually met. 262 

However, as pointed out by Hardaker et al. (2004, p. 143), the mean-variance approach 263 

provides a sound theoretical framework for analyzing decision-making under risk, even if 264 

both requirements are not fully met. This justifies the analysis of irrigators’ preferences 265 

toward changes in variable ‘water supply reliability’ through changes in the parameters of the 266 

PDF of water supply (mean and variance). 267 
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The mean-variance approach has been scarcely incorporated in choice experiments with 268 

applications mainly in transport research related to estimating WTP for improvements in 269 

travel time reliability (Li et al., 2010). In agricultural and environmental domains, only few 270 

studies follow this methodological framework, despite the stochastic features of many of the 271 

attributes valued in application within these fields. An example that is worth mentioning is 272 

Gallardo et al. (2009), who used the mean-variance approach in a choice experiment to 273 

determine millers’ preferences for the level and variability of winter wheat attributes. As far 274 

as the authors are aware, there is no study to date on water supply reliability adopting the 275 

framework of the mean-variance approach. 276 

3.3. Choice experiment 277 

The choice experiment method is a stated preference valuation technique based on 278 

Lancasterian consumer theory of value (Lancaster, 1966), with the econometric basis of the 279 

approach relying on random utility theory (McFadden, 1974). Hensher et al. (2005) provide 280 

an extensive explanation of the method’s theory and practice. This method has been 281 

extensively used to analyze farmers’ preferences (see Villanueva et al., 2017, for a review), 282 

with some works focusing on water supply reliability (namely, Rigby et al., 2010; Alcón et 283 

al., 2014; Bell et al., 2014). 284 

The choice experiment implemented in the case study analyzed here considered three 285 

attributes. Table 3 shows the attributes and levels used for this empirical study.  286 
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Table 3 287 

Attributes and levels used in the choice experiment. 288 

Attribute Explanation  Levels 

μ  

parameter 

μ parameter of the normal PDF 

fitting the four scenarios 

considered of water supply 

reliability of the irrigation 

district (i.e., status quo and 

three scenarios of improvement) 

 𝜇𝑆𝑄 = 2,572; 𝜇𝐼1 = 3,179; 𝜇𝐼2 = 3,786; 𝜇𝐼3 = 4,393 

(m3/ha/year) 

(i.e., μ parameter of the normal PDF of the situation where the 

gap between the allotments and the concession is reduced by 

25%, 50%, and 75%, respectively, compared to the current 

gap) 

σ2  

parameter 

σ2 parameter of the normal PDF 

fitting the four scenarios 

considered of water supply 

reliability of the irrigation 

district (i.e., status quo and 

three scenarios of improvement) 

 𝜎2
𝑆𝑄 = 741,321; 𝜎2

𝐼1 = 417,316; 𝜎2
𝐼2 = 185,761; 𝜎2

𝐼3 =

46,225 ((m3/ha/year)2) 

(i.e., 𝜎2 parameter of the normal PDF of the situation where 

the gap between the allotments and the concession is reduced 

by 25%, 50%, and 75%, respectively, compared to the current 

gap) 

Monetary 

attribute 

(Cost) 

Yearly additional payment to 

improve water supply reliability 

paid by the farmer 

 2%, 5%, 10%, 20%, 30%, 50% (€/ha/year) of current total 

payment for irrigation water 

Source: Own elaboration. 289 

The two non-monetary attributes directly associated with water supply reliability are the 290 

parameters of the normal PDF (μ and σ2) of water supply reliability. Thus, the levels of these 291 

attributes represent possible changes in the PDF for water supply reliability in the irrigation 292 

district. For this purpose, attribute levels considered are linked to the changes referred to the 293 

abovementioned scenarios of improved water supply reliability, in addition to the PDF for 294 

water supply of the current situation. For the attribute related to μ (location parameter of the 295 

normal PDF of water supply reliability), the levels are 𝜇𝑆𝑄, 𝜇𝐼1, 𝜇𝐼2 and 𝜇𝐼3. The levels of the 296 

attribute σ2 (scale parameter of the normal PDF) are 𝜎2
𝑆𝑄, 𝜎2

𝐼1, 𝜎2
𝐼2 and 𝜎2

𝐼3. The values of 297 

these levels for the irrigation district analyzed are shown in Table 2 and Table 3. 298 

The monetary attribute consisted of a yearly additional payment to improve water supply 299 

reliability. The monetary attribute levels were defined in relative terms of current average 300 

expense for irrigation water (€255.5/ha/year), using the following six levels: 2%, 5%, 10%, 301 

20%, 30% and 50%. These levels correspond to the following absolute terms (after rounding): 302 

€5, €10, €25, €50, €75 and €125 per hectare and year. These levels where initially chosen 303 

considering both value estimates previously obtained in the literature and local stakeholders’ 304 
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opinion. Moreover, these levels were checked during the pre-test in order to confirm they 305 

cover the whole range of respondents’ WTP in the case study area. 306 

Because the parameterization of the normal PDF (mainly the attribute 𝜎2) is abstract and 307 

cannot be directly understood by farmers, the combinations of the levels of the attributes μ 308 

and 𝜎2 that characterize changes in the PDF of water supply were shown through three points 309 

of the CDF corresponding to 5th, 25th and 50th percentiles. Presented in this way, farmers 310 

were able to understand the different degree of water supply reliability reflected by each 311 

combination of attribute levels. For example, in an alternative including the combination of 312 

the levels 𝜇𝐼1 and 𝜎2
𝐼2 (Alternative A in the example of choice card presented in Fig. 5), 313 

farmers were shown the following information: in 1 year out of 20 years they would receive 314 

less than 2,500 m3/ha/year; in 5 years out of 20 years they would receive less than 2,900 315 

m3/ha/year; and in 10 years out of 20 years they would receive less than 3,200 m3/ha/year (all 316 

figures have been rounded to 100s). As for the scenarios, the information regarding 5th, 25th 317 

and 50th percentiles were elicited as a result of representing normal PDF in the Easyfit 5.6 318 

software using the different combinations of the levels of the two attributes. 319 

Water supply reliability: Out of 20 years… (in m3/ha/year) 

 

I would choose (please tick one): 

No change (SQ) Alternative A Alternative B 

Alternatives considered: No change=(𝜇𝑆𝑄, 𝜎2
𝑆𝑄); Alternative A=(𝜇𝐼1, 𝜎2

𝐼2); Alternative B=(𝜇𝐼2, 𝜎2
𝐼3). 320 

Fig. 5. Example of choice card. 321 
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2,6002,500
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3.4. Experimental design and data gathering 322 

As any other choice experiment application, the use of an experimental design is needed. It 323 

consists of combinations of attribute levels used to construct the alternatives included in the 324 

choice tasks. Within alternative options to generate experimental designs, efficient designs 325 

(i.e. those pursuing the minimum predicted standard errors of the parameter estimates) are 326 

widely used and highly recommended, especially due to the lower sample of combinations 327 

needed to elicit statistically robust results (Bliemer and Rose, 2011). Therefore, in the current 328 

research, a two-stage sequential efficient design was geared toward the minimization of the 329 

expected Db-error (Scarpa and Rose, 2008)2, with the final design including 24 choice tasks 330 

distributed to 4 blocks. Each farmer hence faced one block comprising 6 choice tasks. 331 

A representative sample (n=205) of irrigators operating in Santaella IC (N=1,563) was 332 

drawn. Individuals were randomly selected accounting for farm size quotas. Questionnaires 333 

were completed by face to face interviews, conducted from October 2016 to December 2016. 334 

Farm and farmer characteristics of the sample are reported in Tables A.1 and A.2 in Appendix 335 

A. 336 

The chi-square tests for equality of distributions do not reject the null hypothesis of 337 

equality of sample and population proportions regarding key socioeconomic and structural 338 

variables (age, gender, farms size and crop distribution), supporting the representativeness of 339 

the sample. 340 

Before administering the DCE questionnaire to each participant, the interviewer explained 341 

the objectives of the research and provided a careful explanation on the meaning of the 342 

                                                 

2 The optimization is computed by simulation on the basis of prior distributional assumptions of utility parameters. In the 

first stage, for the pre-test, an efficient design (Db-error=0.084) with priors assumed to follow triangular distributions with a 

wide spread was used. In the second stage, the estimates of a multinomial logit model (MNL) calculated from the 40 

interviews gathered during the pre-test were used to set priors –assumed to be normally distributed– in order to generate the 

Db optimal efficient design (Db-error=0.049). 
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attributes and their levels using illustrative materials (available to readers upon request). At 343 

the end of each survey, the interviewer assessed farmer’s comprehension of the DCE exercise 344 

implemented using a 5-point Likert scale variable. Of the 205 irrigators interviewed, four 345 

were assessed to have a low level of comprehension and five were considered to be protest 346 

responses. All these nine interviewees were omitted from the sample, hence reducing the total 347 

number of valid questionnaires used in the analysis to 196. 348 

3.5. Econometric specification 349 

A latent class model (LCM) was used to model farmers’ choices regarding irrigation water 350 

supply. The LCM model is suitable for investigating respondents’ preference heterogeneity if 351 

a considerable richness in the structure of preferences is present that supports the hypothesis 352 

that there are several discrete latent classes, which would otherwise be unobservable (Greene 353 

and Hensher, 2003). Unlike continuous mixed models (such as random parameter logit 354 

models), LCM allows the grouping of individuals in accordance to their preferences, which is 355 

very useful when preference heterogeneity is analyzed, especially for eliciting policy 356 

implications (Hess et al., 2011). 357 

In LCM it is assumed that individuals are implicitly sorted into a set of s classes, 358 

associated with a discrete parameter variation. The specific class of each individual is 359 

unknown to the analyst, thus the LCM approach is based on a class membership probability 360 

equation, which has a logit formulation (assuming that the error components are identically 361 

and independently distributed following a Gumbel distribution). Preference heterogeneity is 362 

captured by simultaneously assigning individuals to behavioral groups or latent classes while 363 

estimating a choice model. Formally, in the LCM, the utility (U) of alternative j  J to 364 

individual n (in a choice situation t) who belongs to class s, can be written as: 365 

𝑈𝑗𝑛𝑡|𝑠 = 𝛽𝑠𝑋𝑗𝑛𝑡 + 𝜀𝑗𝑛𝑡 (1) 
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where Xjnt is a vector of attributes associated with alternative j and individual n, βs is a class 366 

specific parameter vector associated with the vector of explanatory choice attributes Xjn and 367 

εjn is the unobserved heterogeneity (the scale parameter is normalized to 1 and omitted). 368 

Within the class, choice probabilities are assumed to be generated by the multinomial logit 369 

model. The probability (P) of an individual n, who makes a sequence of choices (y1, y2,… yT) 370 

among a particular set of alternatives J, to belong to s is given by the following common 371 

formulation: 372 

𝑃𝑛([y1, y2, … . yT]) = ∑ [
exp(𝛼𝑠𝑍𝑛)

∑ exp(𝛼𝑠𝑍𝑛)𝑆
𝑠=1

] [∏
exp(𝛽𝑠𝑋𝑗𝑛𝑡)

∑ exp(𝛽𝑠𝑋𝑗𝑛𝑡)𝐽
𝑗=1

𝑇

𝑡

]

𝑆

𝑠=1

 𝑠 = 1, … . , 𝑆 (2) 

where the first expression in brackets is the probability of observing the individual in class s 373 

according to a set of individual-specific characteristics (the Zn variables and their parameters 374 

αs), with the remaining coefficients explained above. An overview of the specification of the 375 

LCM can be found in Hess et al. (2011). 376 

In our empirical approach, the attributes μ and σ2 are treated as dummy variables, including 377 

two levels for each. For the first attribute, the dummy variable μ1 represents a moderate 378 

improvement in the mean water supplied (corresponding to an average of 3,179 m3/ha/year, 379 

i.e., the 𝜇𝐼1 level), while the dummy variable μ2 represents a significant improvement in the 380 

mean water supplied (corresponding to an average equal to or higher than 3,786 m3/ha/year, 381 

i.e., the 𝜇𝐼2 level). For the second attribute, σ2-1 and σ2-2 dummies represent a moderate and 382 

significant decrease in the variance of the water supplied, respectively. Moderate decrease in 383 

the variance (σ2-1) is considered to be at a lower magnitude than the difference 384 

(improvement) between the average 𝜎2
𝑆𝑄 level −741,321 (m3/ha/year)2− and the 𝜎2

𝐼1 level 385 

−417,316 (m3/ha/year)2− (i.e., with dummy variable taking value 0 if the alternative option 386 

represents no decrease compared to the 𝜎2
𝑆𝑄, and value 1 if this option represents a decrease 387 

in the variance lower than the difference between 𝜎2
𝑆𝑄 and 𝜎2

𝐼1). Significant decrease in the 388 
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variance (σ2-2) is considered to be at a higher magnitude than that improvement (i.e., with 389 

dummy variable taking value 0 if the alternative option represents no decrease compared to 390 

the 𝜎2
𝑆𝑄, and value 1 if this option represents a decrease in the variance higher than the 391 

difference between 𝜎2
𝑆𝑄 and 𝜎2

𝐼1)3. In the model estimation, we account for an individual-392 

specific status quo (for both the mean and the variance attributes) using the information 393 

collected through the questionnaire. The attribute Cost is treated as linear. 394 

Class membership was estimated based on farmers’ preferences and individual 395 

characteristics of farmers, with the latter including farmers’ knowledge, attitudes and 396 

opinions, etc. (see Tables A.1 and A.2 in Appendix A). The selection of the LCM was made 397 

based on model parsimony, significance levels of the parameters and interpretability with 398 

respect to policy relevance, with a 3-class solution yielding the best results according to these 399 

criteria. To select the characteristics to be included in this 3-class LCM as covariates, a two-400 

step procedure was followed. In a first step, the full array of variables controlled were tested 401 

by using them in single-covariate LCMs. In a second step, different combinations of the 402 

variables that had proved to be significant in the first step were explored by using multiple-403 

covariates LCMs, until the best solution in terms of fit and parsimony was reached. 404 

Marginal WTP was estimated by calculating the ratio of the coefficient of the non-405 

monetary attribute (μ or σ2) to the negative of the coefficient of the monetary attribute (Cost) 406 

(Hensher et al., 2005). Total WTP for scenarios of improvements in water supply reliability 407 

was estimated following Hanemann (1984). The alternative specific constant associated with 408 

the status quo alternative (ASCSQ) was included in the estimation of total WTP, as it captures 409 

the utility difference between not participating in the scheme and entering a contract at 410 

baseline attribute levels. The sign of the ASCSQ therefore depends on whether or not the 411 

                                                 

3 Other specifications such as the use of three dummy variables for each attribute, as well as linear coding, were also 

explored, providing worse results. These results are available upon request. 
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expected benefits of program participation (associated with improved water supply reliability) 412 

are –on average across the sample– outweighed by the costs associated with the lowest level 413 

of payment offered in the experiment. Also, the inclusion of the ASCSQ is recommended if it 414 

can plausibly carry a behavioral interpretation (Adamowicz et al., 1998). For estimates of 415 

both marginal and total WTP, we applied the parametric bootstrapping approach by Krinsky 416 

and Robb (1986). 417 

4. Results and discussion 418 

4.1. Latent class model 419 

The results of the LCM are presented in Table 4. The model shows a high goodness-of-fit 420 

(Pseudo R2=0.626), clearly distinguishing three different classes of irrigators. Two classes 421 

(Class 1 and Class 2) group respondents that are sensitive to improvements in water supply 422 

reliability. Class 1 has a membership probability of 28.0% and groups irrigators who are 423 

willing to pay for improved water supply reliability, especially for reductions in its variance. 424 

This is reflected by the significant parameters for Cost, ASCSQ (with the negative sign 425 

meaning that the farmer would be better-off in any alternative associated with improved water 426 

supply reliability compared to the status-quo alternative), and σ2-1, with the latter meaning 427 

that a moderate decrease in the variance is significantly valued by the irrigators. Class 2 has a 428 

membership probability of 24.2% and groups irrigators who are willing to pay for improved 429 

water supply reliability, either for decreased variance of and increased mean water supplied. 430 

This is evidenced by the significant parameters for Cost, ASCSQ (with the negative sign), σ2-1, 431 

μ1, and μ2, with the latter two coefficients referring to moderate and significant increases in 432 

the mean water supplied (equal to 3,179 m3/ha/year and equal to or higher than 3,786 433 

m3/ha/year, respectively –with the current mean being 2,572 m3/ha/year). Class 3 has a 434 

membership probability of 47.8%, mostly grouping irrigators who systematically chose the 435 

‘no change’ or status quo alternative (totaling 88 respondents or 44.9% of the sample used for 436 
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analysis). This is confirmed by the significant and positive parameter for the ASCSQ, while no 437 

attribute parameter is found to be significant. This suggests that this group of irrigators has 438 

zero WTP for improvements in water supply reliability, a fact discussed in more detail in the 439 

next sub-section. 440 

Interestingly, the parameter σ2-2 (significant decrease in the variance) is not significant for 441 

any of the classes, which can be interpreted in two ways: irrigators do not seem to perceive a 442 

need for a drastic reduction in the variance and/or they do not find such a reduction to be 443 

realistic given the prospects of higher variance as a result of climate change. 444 

With regard to individual-specific characteristics, seven covariates associated with farm 445 

and farmer characteristics and farmer opinions and perceptions were included in the LCM to 446 

better explain the probability of membership to these classes. As expected, larger differences 447 

are found between Class 2 (highly valuing improvements in water supply reliability) and 448 

Class 3 (negligibly valuing such improvements), with Class 1 representing an intermediate 449 

class. In particular, we find that Class 3 irrigators have larger irrigated area (SIZE10), a 450 

higher percentage of the total farm irrigated area used for olive groves (OLIAREA), make 451 

lower use of IC’s suggestions to decide how much and when to irrigate (IRRIGIC), are more 452 

frequently over 60 year-old (AGE60), and are less of the opinion that the level of water 453 

consumption for the main crop is above the average compared to other farmers 454 

(CONSUMHI).  455 
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Table 4 456 

Latent class model (LCM). 457 

 Class 1 Class 2 Class 3 

 Coef. SE Coef. SE Coef. SE 

Mean parameters 
         

μ1 (moderate increase in the mean) -0.312 
 

0.352 0.611 ** 0.302 0.108 
 

1.071 

μ2 (significant increase in the mean) 0.292 
 

0.368 0.823 ** 0.342 -2.454 
 

4.230 

σ2-1 (moderate decrease in the variance) 0.709 * 0.399 0.444 * 0.251 -3.247 
 

5.762 

σ2-2 (significant decrease in the variance) 0.173 
 

0.355 0.253 
 

0.269 1.564 
 

1.179 

Cost (Per €1/ha/year) -0.140 *** 0.018 -0.013 *** 0.003 -0.143 
 

0.113 

ASCSQ -2.472 *** 0.381 -2.944 *** 0.521 3.558 *** 1.362 

Covariates 
         

AGE60: Farmer's age: 60 years or above 

(1=Yes; 0=No) 
-0.004 

 
0.257 -0.543 ** 0.276 0.547 ** 0.213 

SIZE10: Irrigated farm area higher than 10 

hectares (1=Yes; 0=No) 
-0.300 

 
0.257 -0.144 

 
0.270 0.444 ** 0.215 

OLIAREA: Olive groves area over total farm 

irrigated area (%) 
-0.420  0.357 -0.060  0.376 0.480 * 0.289 

IRRIGIC: Procedure to decide how much and 

when to irrigate: As suggested by the IC staff 

(1=Yes; 0=No) 

0.262  0.305 0.361  0.321 -0.623 ** 0.280 

TAKEOVER: Farmer perceives that the farm 

will be taken over by relatives (1=Yes; 0=No) 
-0.557 ** 0.259 0.426  0.270 0.131  0.214 

CONSUMHI: Farmer perceives that the level 

of water consumption for his/her main crop is 

above the average with respect to other 

farmers for the same crop (1=Yes; 0=No) 

-0.166  0.389 0.857 ** 0.340 -0.692 * 0.355 

COMPEUSE: Farmer agrees with the 

statement ‘Water supply reliability is 

declining because of competitive uses’ 

(1=Yes; 0=No) 

0.510 ** 0.254 -0.528 ** 0.258 0.019  0.211 

Class-specific constant 0.115 
 

0.279 -0.077 
 

0.287 -0.038 
 

0.243 

Membership probability 28.0% 24.2% 47.8% 

Log-likelihood (LL) -575.4 

McFadden Pseudo R2 0.626 

AIC/N 1.036 

Observations (individuals) 1,176 (196) 

Source: Own elaboration. 458 
*, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively. 459 

Some of these variables are closely related to water dependency. For example, a higher 460 

share of olive groves in a farm indicates less dependency on water: olive groves are a 461 

permanent crop with low water needs (around 2,000 m3/ha/year) and high resilience to 462 
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drought (traditionally farmed under rainfed conditions) compared to other common crops 463 

grown in Santaella IC (e.g., vegetables and cotton: with average water needs of 4,250 464 

m3/ha/year and 3,300 m3/ha/year, respectively, these crops are impossible to be farmed 465 

without irrigation water). Thus, Class 3 may be interpreted to show a lower water dependency 466 

compared to Class 1 and Class 2, as farmers with a high class membership probability in 467 

Class 3 tend to have a greater share of olive groves and other crops with lower water needs. 468 

The results regarding CONSUMHI and IRRIGIC can arguably be interpreted in a similar 469 

fashion, reflecting different levels of dependency with respect to irrigation water use (i.e., risk 470 

exposure to water shortages). These results provide some validity by showing that lower 471 

levels of dependency (risk exposure) are associated with lower intensity of preferences toward 472 

improving water supply reliability. 473 

With regard to AGE60, our results are consistent with Mesa-Jurado et al. (2012) and Alcón 474 

et al. (2014), who showed that older irrigators tend to be less likely to pay for improvements 475 

in water supply reliability. As for SIZE10, Rigby et al. (2010) and Alcón et al. (2014) found 476 

that those irrigators managing the largest farms were willing to pay more for improved water 477 

supply reliability. In our study, a plausible interpretation is that Class 3 irrigators (who have 478 

larger irrigated area within the IC and have zero WTP) tend to focus on the total extra costs at 479 

farm scale for improved water supply reliability rather than the per-hectare cost. 480 

Class 1 and 2 are more similar, as there are no significant differences with regard to 481 

SIZE10, OLIAREA, and IRRIGIC. However, Class 2 irrigators’ age is most frequently below 482 

60 year-old (AGE60) and they perceive that the level of water consumption for the main crop 483 

is above the average compared to other farmers (CONSUMHI). Therefore, younger farmers 484 

and those farmers with higher water dependency are willing to pay more for improved water 485 

supply reliability. Moreover, Class 2 irrigators tend to disagree with the statement that water 486 

supply reliability is declining because of competitive uses for the water (COMPEUSE). As a 487 
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consequence, these irrigators may believe that a considerable potential for improvements in 488 

water supply reliability exists. This would explain their sensitivity toward both moderate (µ1) 489 

and significant improvements (µ2) in the mean water supply. 490 

Class 1 irrigators especially value a decrease in variance in water supply. This is aligned 491 

with a greater concern about increasing future competition for the resource (COMPEUSE). 492 

Additionally, Class 1 irrigators tend to believe that their farm will not continue to be owned 493 

and managed by any relative (TAKEOVER). Therefore, farmers may be less willing to invest 494 

in their farm to ensure a higher water supply reliability. 495 

4.2. WTP estimates 496 

Table 5 depicts marginal WTP estimates for the attribute levels μ1, μ2, σ2-1, σ2-2, and 497 

ASCSQ. For Class 1 irrigators, the only WTP estimates that are significantly different from 498 

zero are σ2-1 and ASCSQ. Irrigators of this class would be willing to pay €5.0/ha/year for 499 

moderate decreases in the variance of the water supply, and have a general willingness to pay 500 

of €17.8/ha/year for improving water supply reliability. Class 2 irrigators show significant 501 

WTP for μ1, μ2, σ2-1, and ASCSQ. Regarding the mean water supplied, they would be willing 502 

to pay €48.6/ha/year for moderate improvements (μ1), and €63.5/ha/year for significant 503 

improvements (μ2). They also show a notable WTP for moderate decreases in the variance of 504 

the water supplied (σ2-1), with an average value of €35.5/ha/year, and have a considerable 505 

general willingness toward improving water supply reliability (ASCSQ), with an average value 506 

of €244.0/ha/year. For the case of Class 3 irrigators, as expected, neither of the attribute levels 507 

show WTP estimates significantly different from zero, thus confirming that this class groups 508 

irrigators with no (or only very low) WTP for improving water supply reliability.  509 
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Table 5 510 

Mean marginal willingness to pay (WTP) for each class (in brackets, 95% confidence intervals) 511 

(€/ha/year)a. 512 

 
Class 1 Class 2 Class 3 Class weighted 

μ1 (moderate increase in the mean) 
-2.3 48.6** -4.2 11.8** 

(-7.7 – 2.5) (2.5 – 105.1) (-46.6 – 54.6) (0.5 – 25.8) 

μ2 (significant increase in the mean) 
1.9 63.5** -122.0 15.4** 

(-3.7 – 6.5) (14.9 – 109.7) (-317.2 – 202.2) (3.2 – 26.9) 

σ2-1 (moderate decrease in the variance) 
5.0* 35.5* -203.6 9.9* 

(-0.9 – 10.8) (-3.7 – 78.6) (-398.4 – 284.1) (0.0 – 20.4) 

σ2-2 (significant decrease in the variance) 
1.2 19.3 -28.6 6.0 

(-3.6 – 6.4) (-23.8 – 60.7) (-78.6 – 122.1) (-32.0 – 50.3) 

ASCSQ 
17.8*** 244.0*** -59.6 63.3*** 

(13.2 – 23.0) (130.5 – 425.8) (-235.8 – 321.8) (37.1 – 107.3) 

Source: Own elaboration. 513 
*, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively. 514 
a Estimates are obtained using the bootstrap method (with 2000 replications) proposed by Krinsky and Robb 515 
(1986). To estimate class weighted WTP, non-significant values were set to zero. 516 

It is not straightforward to compare these WTP estimates with previous estimates of WTP 517 

for improved water supply reliability as, unlike previous work, our study focuses on changes 518 

in the PDF of water supply. Because Mesa-Jurado et al. (2012) also focused on an irrigation 519 

district located in the same river basin, a comparison is nevertheless interesting. Mesa-Jurado 520 

et al. (2012) estimated a WTP of €0.39/ha/year to ensure a fixed amount of water of 1,000 521 

m3/ha in 5 out 10 years, finding a share of 23% of genuine zero bidders. Their estimates of 522 

WTP are well below the class weighted WTP estimates, which are €11.8/ha/year and 523 

€15.4/ha/year for the moderate and significant improvements considered in our study (as 524 

shown in Table 5), corresponding to a mean water supply of 3,179 m3/ha/year and 3,786 525 

m3/ha/year respectively. Differences in the level of improvement and the case study area with 526 

very different cropping systems and water needs are very likely to contribute to differences in 527 

WTP estimates. With regard to the share of genuine zero bidders, although we report a higher 528 

share of this type of respondents, the results are on par with the information collected from 529 

the interviews and the board of the IC about the percentage of IC’s irrigators who rejected the 530 
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construction of the ponds proposed to improve water supply reliability. Apart from the 531 

different context, the lower level of mean water supply under valuation in Mesa-Jurado et al. 532 

(2012)’s work may partly explain such a difference. 533 

Table 6 shows estimates of total WTP of the three classes, as well as the class weighted 534 

mean, for three scenarios of improvement of water supply reliability (different from the 535 

simulated scenarios I1, I2, and I3 used to generate the PDFs of water supply reliability): SC1, 536 

implying improvement to the attribute level σ2-1; SC2, implying improvements to the attribute 537 

levels μ1 and σ2-1; and SC3, implying improvements to the attribute levels μ2 and σ2-1. All 538 

the estimates of total WTP for Class 1 and Class 2 are statistically significant at the 1% level, 539 

as well as for the class weighted mean, while Class 3’s estimates are not significantly 540 

different from zero. The class weighted total WTP for shifting from the current situation to 541 

the scenarios of improved water supply reliability is €71.6/ha/year for SC1, €82.8/ha/year for 542 

SC2, and €87.5/ha/year for SC3. The total mean WTP of irrigators in Class 1 are between 543 

€19.8/ha/year and €24.0/ha/year, whereas Class 2 irrigators show a much higher total WTP, 544 

ranging from €270.6/ha/year for SC1 to €333.9/ha/year for SC3. If we compare these results 545 

with the total current irrigation water expenses (€255.5/ha/year), it can be inferred that Class 546 

1’s and Class 2’s irrigators are willing to increase their current fees by 7.7-9.4% and 105.9-547 

130.7%, respectively, for improvements in water supply reliability. These results again serve 548 

to illustrate the differences in irrigators’ preferences for improving water supply reliability.  549 
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Table 6 550 

Mean total willingness to pay (WTP) for each class for scenarios of improvement of the water supply 551 

reliability (in brackets, confidence intervals at 5% level) (€/ha/year)a. 552 

 
Class 1 Class 2 Class 3 Class weighted 

SC1: μSQ (no change in the mean);  

σ2-1 (moderate decrease in variance) 

22.0*** 270.6*** -40.6 71.6*** 

(17.3 – 27.9) (157.3 – 457.3) (-534.3 – 388.4) (44.2 – 116.3) 

SC2: μ1 (moderate increase in the mean);  

σ2-1 (moderate decrease in the variance) 

19.8*** 319.2*** -36.3 82.8*** 

(14.2 – 26.1) (198.4 – 518.8) (-510.0 – 360.6) (53.3 – 131.8) 

SC3: μ2 (significant increase in the mean);  

σ2-1 (moderate decrease in the variance) 

24.0*** 333.9*** -39.2 87.5*** 

(18.8 – 29.7) (218.6 – 519.5) (-670.5 – 565.9) (59.5 – 132.2) 

Source: Own elaboration. 553 
*** denotes significance at the 1% level. 554 
a Estimates are obtained using the bootstrap method (with 2000 replications) proposed by Krinsky and Robb 555 
(1986). To estimate class weighted WTP, non-significant values were set to zero. 556 

Overall, the results indicate that the majority of irrigators enjoy increases in their 557 

individual utility by shifting from the current situation to the different scenarios of 558 

improvement of water supply reliability. Due to this higher experienced individual utility, 559 

they are willing to pay additional fees for alternatives that imply increases in the mean of the 560 

PDF of water supply and reductions of the variance of the PDF. 561 

These results reveal great differences in preferences among irrigators for improving water 562 

supply reliability. Some respondents are willing to pay nothing (Class 3), others have low 563 

WTP (Class 1), and the rest has high WTP (Class 2). It can be presumed that not only 564 

irrigators with zero WTP (Class 3), but also many of Class 1’s irrigators rejected the 565 

construction of the abovementioned ponds because of the low magnitude of their mean WTP 566 

that is smaller than the estimated annual cost of this structural investment (€38/ha/year). This 567 

heterogeneity of irrigators’ preferences toward water supply reliability is of great interest to 568 

policy-makers for the design of demand-side water supply instruments (water markets, water 569 

banks, security-differentiated water rights, insurance schemes, etc.). 570 

In particular, the results suggest that there is potential for the redesign of the water right 571 

system, moving from the current ‘proportional rights’ into ‘priority rights’, where allotments 572 
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are allocated to certain user groups (i.e., those who need a high reliability or ‘senior’ rights 573 

holders) at the expense of others (i.e., those who do not need a high reliability or ‘junior’ 574 

rights holders), as already implemented in some states of Australia and Western USA. As 575 

evidenced in Freebairn and Quiggin (2006) and in Lefebvre et al. (2012), proportional rights 576 

are inefficient because they do not account for differences in the opportunity cost of water 577 

between different users. Because of this, these authors propose entitlements with different 578 

levels of reliability as a more suitable policy option. Thus, considering the heterogeneity of 579 

irrigators’ WTP for improving water supply reliability, the implementation of priority rights 580 

would provide substantial gains in terms of a more efficient risk management associated with 581 

the use of irrigation water. 582 

5. Conclusions 583 

Information on irrigators’ preferences with regard to water supply reliability is very useful 584 

to design policy instruments aiming at improving the efficiency of irrigation water use under 585 

uncertainty conditions. This fact justifies why the present research examines irrigators’ WTP 586 

for improvements in water supply reliability. Compared to previous investigations into this 587 

topic that treated irrigation water supply as a deterministic variable, this study characterizes it 588 

as a stochastic variable, with its own distributional function. Thus, we add to that literature by 589 

providing more reliable estimates of irrigators’ WTP for improvements in water reliability 590 

based on changes in the probability density function of water supply using the mean-variance 591 

approach and the choice experiment. 592 

The results show that the majority of irrigators obtain utility gains by shifting from the 593 

current situation to different scenarios of improvement of water supply reliability 594 

characterized by changes in the probability density function. Three different types of irrigators 595 

are distinguished according to their WTP: i) those who are not willing to pay (Class 3); ii) 596 

those with low WTP (Class 1) (e.g., €24.0/ha/year on average for shifting to a scenario of 597 
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significant improvement); and iii) and those with high WTP (Class 2) (e.g., €333.9/ha/year on 598 

average for shifting to a scenario of significant improvement). Class 1’s and Class 3’s 599 

irrigators exhibit a mean WTP for water supply reliability that is lower than the annual cost of 600 

a structural measure (three irrigation ponds) that had been proposed to improve current 601 

situation in the case study area. This may well explain why the implementation of this 602 

measure was ultimately rejected. Therefore, the different preferences of the three classes of 603 

irrigators toward improving water supply reliability suggest that more targeted demand-side 604 

instruments are needed for improving water management under supply uncertainty conditions. 605 

In this sense, the redesign of the water rights system is suggested, moving from the current 606 

proportional rights into priority rights, allowing irrigators willing to pay for improving water 607 

supply reliability to enhance their current ‘ordinary’ rights into the new created ‘senior’ ones 608 

by charging them an extra annual fee. 609 

In addition, significant differences between classes are analyzed to identify factors 610 

influencing irrigators’ preferences toward water supply reliability. The results suggest that 611 

farm characteristics related to irrigation water dependency (i.e., water availability risk 612 

exposure) significantly determine WTP for improving water supply reliability, showing a 613 

positive relationship (i.e., the higher the level of dependency risk exposure, the higher 614 

WTP). Moreover, the results show that sociodemographic variables, farm characteristics, and 615 

farmer’s opinions and attitudes also influence WTP for such improvements. 616 

The results also hint at future research in several ways. For example, the analysis of 617 

irrigators’ preferences for worsened (instead of improved) water supply reliability would shed 618 

light on the whole preference structure with regard to water supply reliability. Similarly, 619 

further research on the role of farmers’ risk attitudes may be particularly relevant for 620 

explaining irrigators’ decision-making in increased water scarcity conditions caused by the 621 

climate change. Also, investigations of preferences for improved water supply reliability 622 
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should be complemented by studying the extent to which these preferences are sensitive to the 623 

instrument used to deal with uncertain water supply. This would provide further valuable 624 

information for the development of demand-side water management instruments in 625 

Mediterranean and semi-arid climate regions. 626 
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