Penn

Libraries) . University of Pennsylvania
O UNIMERSITY 0f PENNSYLVANIA 4 ScholarlyCommons
Real-Time and Embedded Systems Lab (mLAB) School of Engineering and Applied Science
9-22-2019

Tech Report: TUNERCAR: A Superoptimization

Toolchain for Autonomous Racing

Matthew O'Kelly

University of Pennsylvania, mokelly@seas.upenn.edu

Hongrui Zheng
University of Pennsylvania, billyzheng bz@gmail.com

Achin Jain

University of Pennsylvania, achinj@seas.upenn.edu

Joseph Auckley

University of Pennsylvania, jauckley@seas.upenn.edu

Kim Luong

University of Pennsylvania, kimluong@seas.upenn.edu

See next page for additional authors

Follow this and additional works at: https://repositoryupenn.edu/mlab_papers

b Part of the Computer Engineering Commons, and the Electrical and Computer Engineering

Commons

Recommended Citation

Matthew O'Kelly, Hongrui Zheng, Achin Jain, Joseph Auckley, Kim Luong, and Rahul Mangharam, "Tech Report: TUNERCAR: A
Superoptimization Toolchain for Autonomous Racing’, . September 2019.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/mlab_papers/122

For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/?utm_source=repository.upenn.edu%2Fmlab_papers%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/mlab_papers?utm_source=repository.upenn.edu%2Fmlab_papers%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/seas?utm_source=repository.upenn.edu%2Fmlab_papers%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/mlab_papers?utm_source=repository.upenn.edu%2Fmlab_papers%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=repository.upenn.edu%2Fmlab_papers%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=repository.upenn.edu%2Fmlab_papers%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=repository.upenn.edu%2Fmlab_papers%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/mlab_papers/122
mailto:repository@pobox.upenn.edu

Tech Report: TUNERCAR: A Superoptimization Toolchain for
Autonomous Racing

Disciplines
Computer Engineering | Electrical and Computer Engineering

Author(s)
Matthew O'Kelly, Hongrui Zheng, Achin Jain, Joseph Auckley, Kim Luong, and Rahul Mangharam

This technical report is available at ScholarlyCommons: https://repositoryupenn.edu/mlab_papers/122

https://repository.upenn.edu/mlab_papers/122?utm_source=repository.upenn.edu%2Fmlab_papers%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages

Tech Report: TUNERCAR: A Superoptimization Toolchain for
Autonomous Racing

Matthew O’Kelly!, Hongrui Zheng!, Joseph Auckley!, Achin Jain!, Kim Luong!'?, and Rahul Mangharam®

Abstract— The objective of this effort is to develop an optimal
autonomous racer with safe and reusable core autonomy compo-
nents that are agnostic to vehicle planning and control software.
TUNERCAR is a toolchain that jointly optimizes racing strategy,
planning methods, control algorithms and vehicle parameters
for an autonomous racecar. In this paper, we detail the target
hardware, software, simulators, and systems infrastructure for
this toolchain. Our methodology employs a massively parallel
implementation of CMA-ES which enables simulations to pro-
ceed 6 times faster than real-world rollouts. Besides a massive
speed up, we show our approach can reduce the lap times in
autonomous racing, given a fixed computational budget. We
demonstrate improvements over naive random search of 2.0
seconds per lap, improvements over expert solutions of (.81
seconds per lap, and beat a human driver by 6.52 seconds.
For all tested tracks, our method provides the lowest lap-
time, and relative lap-time improvements between 6 and 12
percent. We further compare the performance of our method
against hand tuned solutions submitted by over 30 international
teams, comprised of graduate students working in the field of
autonomous vehicles. Finally, we discuss the effectiveness of
utilizing an online planning mechanism to reduce the reality
gap between our simulation and actual tests. By driving at
the limits of vehicle performance, we are able to efficiently
accelerate the development of safe autonomous vehicles.

I. INTRODUCTION

Since its inception, racing has been a key driver of
new technology in the automotive industry. Some domains,
such as powertrain engineering, are obvious beneficiaries
of racing development. However, the goals of racing — fast
and aggressive driving — are seemingly orthogonal to the
safety oriented specifications of the autonomous vehicle
industry. Nevertheless, scenarios faced by race car drivers
(and autonomous racers) force the development of technology
which must operate in both nominal conditions and more
importantly at the limits of vehicle performance.

The objective of developing an optimal autonomous racer
is motivated by the desire to create safe and reusable core
autonomy components — namely vehicle agnostic planning
and control software. Racing, in this context, is a mechanism
to create a competitive environment where the quality of
the chosen vehicle configuration has a clear and continuous
measure: lap time. While nominal conditions may be handled
with even poorly integrated components (e.g. a pure pursuit
controller which works even when accidentally used on the
wrong robot [1]), racing conditions severely punish sub-

L Authors are with the Real-Time and Embedded Systems Laboratory,
University of Pennsylvania, Philadelphia, USA

2 Authors are with the GRASP Laboratory, University of Pennsylvania,
Philadelphia, USA

optimal tuning in vehicle dynamics, racing strategy (path
and speed selection) and tracking controller parameters.

This paper introduces the notion that component reuse and
adaptation is analogous to creating a new kind of compiler that
targets computational, physical, and external environmental
details of a robot’s operational domain. In general, the goal of
a compiler is to validate and then transform a source program
in one language to another (usually lower-level e.g. assembly)
which is suitable for the target domain [2]. Modern optimizing
compilers [3] also seek to improve the performance of the
transformed program. To concretize the analogy, we define
the source program as a parameterized description of the
vehicle dynamics, tracking controllers, and local planning
method which we wish to transform to perform safely and
efficiently in the operational environment represented by a
map, physical laws, and sensing capabilities.

We propose a solution to the cyber-physical compilation
problem utilizing the concept of superoptimization (c.f. [4],
[5], [6], [7]), a technique that searches the space of equivalent
and correct programs for the most performant instance rather
than applying a sequence of optimization passes which
attack specific performance bottlenecks. Despite the success
of superoptimization approaches in limited domains [8],
[9], viewing the autonomous vehicle as the compilation
target creates entirely new issues due to the cyber-physical
nature of the platform. First, no simulator or model can
perfectly emulate the target thus creating a noisy performance
measure and potentially falsifying correctness claims. Second,
ameliorating this reality gap by executing proposed program
transformations on the vehicle is dangerous, slow, and
expensive. The vehicle may get damaged due to aggressive
testing, tests cannot proceed faster than real time, and
evaluations cannot be easily parallelized. In response to these
challenges, our solution provides a validated, deterministic,
and massively parallel simulation environment as well as a
method of adapting derived strategies to reality via an efficient
online optimization component.

There are three primary contributions of this work. First,
we provide a compilation toolchain (Fig. [I) for superopti-
mization of autonomous racers, TUNERCAR. This toolchain
includes target hardware, modular software, and a calibrated
simulator. Second, we describe a methodology for funing a
high-dimensional set of hyperparameters spanning control,
planning, dynamics, and strategy; it is a general approach
for adapting and optimizing heterogeneous components to
new robots and domains. Lastly, we validate our solution on
an AV software stack and 1/10th-scale open-source vehicle
developed for this project [f1tenth.org].

f1tenth.org

Break once population converges to a single solution

System Identification Multi-Parameter Optimization Race Strategy Optimization Vehicle Controller Evaluation Validation

AV track testing

CMA-ES
» Generate path population
« Sample trajectory, car and
controller parameters
* Run parallel instances
 Eliminate crash cases

AV Physical Parameters
* Moment of inertia
» Center of gravity
» Acceleration/deceleration
» Cornering stiffness coefficient
+ Friction coefficient

« Find optimal velocity profile

« Vary driver params: waypoint
lookahead distance, tracking
lookahead distance scalar, and
speed gain

Convex Solver F1/10 Simulator

« Evaluate lap time for each
instance

« Track waypoints w/ controller

« Vary car & controller params

« Eliminate crash cases

i

Successful runs

o~

v

Fig. 1: TunerCar Toolchain

In what follows, we demonstrate TUNERCAR, a superopti-
mization toolchain, which achieves a 2 second improvement
in race lap time relative to other approaches tested with a
fixed computation budget and beats crowd-sourced expert
solutions by up to 12%. Section [II| describes the problem
setup and optimization pipeline. Section[IT] places our solution
in context with previous approaches. Section [[V] describes the
modular autonomy stack, simulator, and hardware utilized for
large-scale experiments detailed and analyzed in Section [V]
Section [V1] details future work and conclusions.

II. METHODOLOGY
A. Problem Statement

Given an environment (here, a racetrack encoded as a
map), an objective function (here, lap-time and implicitly
both safety and correctness), and a parameterized model of
the agent dynamics, strategy, and controller, we wish to find
an assignment of parameters which minimize the objective
function.

The search space, parameterized by ©® € R", is the
concatenation of three components: agent dynamics, strategy
and controllers. The objective function, f(©) : R™ — R, is
computed by simulating the system, producing a trajectory
¢¢(t). Note that in this work we utilize a simulator where the
resulting scalar measure is deterministic given an assignment
of parameters 6 € O; however, no other assumptions such as
the existence of a gradient are made.

B. Search Space

As shown in Fig. [T} the compilation framework searches
across vehicle parameters, splits the optimization in two stages
and the validation in simulation, and eventually with track
testing. The physical parameters, ©, are defined as mass m,
center of gravity longitudinal position [, friction coefficient
s, center of gravity height hg, cornering stiffness front
Ca,;, and cornering stiffness rear C,, . We limit the range
of these parameters such that they are physically achievable
without major modifications, nominal values and their ranges

are based on system identification performed on the actual
vehicle, Appendix [A]

For the PHILADELPHIA map, © € R'39. The strategy
parameters, O, are vectors, defined as the nominal path (z, y)
and the velocity profile (v, v,); the size varies depending
on the track; on PHILADELPHIA, ©, € R%0 The path and
velocity profile combined, represent the largest portion of the
search. In order to improve the convergence of our proposed
optimization method, we note that a deterministic assignment
of the optimal velocity profile is possible given a path z,,
reducing the size of the search space by a factor of two.
This optimal velocity profile can be determined efficiently in
polynomial time by setting up a convex optimization problem
for minimizing the lap time. Due to space constraints, full
details of the minimum time path traversal formulation can
be found in Appendix [A] Appendix [B] and [10].

Finally, the driver parameters ©, represent aspects of the
control algorithms used, there are three components: the
waypoint lookahead distance d,,;, tracking lookahead distance
scaler dy;, and the speed gain v,.

C. Evaluation Criteria

Solutions are determined to be feasible if the trajectory does
not intersect with the boundaries of the track (accounting for
the car’s height and width); infeasible solutions are rejected
and replaced at the sampling stage described in the next
subsection. Equipped with a set of waypoints with velocities,
car parameters and controller parameters for each solution,
we then calculate the lap time using our simulator detailed
in Section [[V] The simulator updates the sampled parameters
in the agent dynamics model, strategy, and controllers and
attempts to traverse the track. The simulated lap time is
used as the objective function which sorts the population of
samples into quantiles.

D. Optimization

The search proposed is both high-dimensional and chal-
lenging. Specifically it is non-convex, non-smooth and non-
analytic, we attempt to solve the optimization problem
with a gradient-free black-box optimization technique. A

potential pitfall of this approach is the existence of many
local minima which could limit the exploration of the space.
One method, CMA-ES, [11] as described in Algorithm [1|is
known to perform well in such regimes, because it explicitly
balances exploration with hill-climbing. Specifically, CMA-
ES increases the covariance matrix of the parameters when
the top performers of the population are far from the rest of
the population, and decreases it as the population converges
together. This gradient-like process is key to avoiding many
local minima in this high-dimensional space. Lastly, this type
of optimization also allows us to massively parallelize the
evaluation of solutions, which is the most computationally
expensive aspect of this pipeline.

Algorithm 1 Covariance Matrix Adaptation Evolution Strat-
egy (CMA-ES)

1: Input: Population size A, parent number p
Randomly initialize population: 0 for k = 1,..., A
while termination criterion not met do
Calculate population means (0)(9) of the parameters
Evaluate current population #(9) using f(6)
Sort 6 from smallest to largest objective, f(6)
Isolate top p individuals: 6y, for k =1,..,
Estimate the covariance matrix C'(9t1) of the top
individuals using (§)(¥)
9: Calculate the means ()91 of @, for k =1,..,
10: Sample a new population of A individuals using
(6)(9+1) and Clo+D)
11: end while

We first randomly initialize a population of feasible solu-
tions from uniform distributions. Once the population has been
evaluated, the top p solutions are isolated. In Section [V| we
detail the results of a grid search to identify high-performing,
generalizable settings for p and the population size. The top
quantile of solutions are used to fit a multivariate Gaussian
distribution from which the next generation of samples are
drawn. This process repeats until a convergence condition
is reached. Following [11] our convergence condition is met
when the norm of the covariance matrix is below ¢ = 0.1.
This condition is determined empirically in Section [V]

III. RELATED WORK

This paper presents a general approach to heterogenous
component integration and optimization suitable for robotic
systems that interact with a physical environment. A complete
discussion of superoptimization and compiler literature has
been omitted; however, specific approaches such as program
sketching, population-based training, and program synthesis
are of interest to the robotics community. The approach
presented in Section [lI| utilizes a black-box optimization
(c.f. [12]). We note that most literature in superoptimization
employs similar search algorithms. In contrast, a narrower
view of this work requires a comparison of numerous attempts
to optimize specific vehicle components within the race
car engineering community. Amongst the domain specific
knowledge presented, we utilize a convex formulation of the

minimum-time path traversal problem [10] in order to increase
the empirical convergence rate of the CMA-ES method further
differentiating our toolchain.

Sketching [6] utilizes fragments of programs which capture
macroscopic details about the structure of the solution in
order to synthesize the low-level details. In contrast, program
synthesis [13] attempts to construct a correct program from
scratch using only formal specifications. Neither approach
inherently considers optimality, only correctness. Examples of
sketching [14] and program synthesis [15] techniques applied
to robotics generally fail to address the gap between models
of robotic systems and realizable interactions between the
program and the world. Even still, a variety of computational
complexity and undecidability results [16] remain a barrier to
applying these methods to realistic systems. Another closely
related approach, population-based training (PBT) [17] has
recently been utilized to search for efficient neural network
designs; however, earlier work [18] focused only on physical
robot design, a subset of the problem addressed in this
paper. Likewise, [19] directly addresses the synthesis of a
controller and planner interface leaving the vehicle static
and but does not address the real-world applicability of the
approach, specifically with respect to the (lack-of) realism in
the simulator and vehicle dynamics.

Just as in the more general literature, race car optimization
has historically been divided into two main categories: vehicle
parameter optimization and racing trajectory optimization.
The former uses a fixed track and fixed trajectory while
varying the car parameters while the latter uses a fixed track
and a fixed car while varying the trajectories. In [20] 500 pairs
of roll stiffness and weight distribution values are evaluated
using pareto minimum analysis to optimize for the fastest
lap time. More recently, [21], [22], [23], feature expanded
design spaces, parallel computation, and utilize simple genetic
algorithms.

In raceline optimization several approaches for convexify-
ing the problem have been proposed: [24] explored an iterative
two-step algorithm that separates the longitudinal and lateral
control components. Alternatively, [10] proposes a method
which, given a path solves for both lateral and longitudinal
forces and then transforms the solution into a velocity profile.
In this paper, we apply this procedure to determine optimal
raceline by searching over different trajectories. In another
related work [25], the autonomous racecar performance in
optimized in two steps. First system identification is done
offline and then the lap time is minimized using a model
predictive controller. The drawback of the approach lies
in the finite horizon of the MPC. Thus the raceline is
not truely optimal. Talvala et al. [26] developed a robust
lookahead controller for lane keeping that when coupled
with longitudinal control provides stability to an autonomous
racing controller.

IV. SIMULATOR AND HARDWARE

TUNERCAR includes a complete set of system components
which are utilized to demonstrate the approach. Importantly,
the target hardware, an open-source 1/10th scale autonomous

LiDAR scanner
Nvidia Jetson TX2
GPGPU Compute Platform

F1/10 Sensor and
Power board

Electronic Speed
Controller

Sensor chassis

Single 5000mAH
LiPo battery

Ackermann steering

Fig. 2: Target 1/10th scale vehicle

Ventilator

CMA-ES

Tasks

PULL PULL PULL

Worker Worker Worker

Agent/Environment Simulator Agent/Environment Simulator

PUSH PUSH PUSH

Agent/Environment Simulator

Results
PULL

Fig. 3: MapReduce pattern of software stack.

vehicle created by the authors, is mapped to a validated,
deterministic simulator capable of modeling both the dynam-
ics and sensors included on the vehicle. The simulator also
includes a wrapper which enables a distributed approach to
optimization of the source program with low communication
overhead. In addition, the toolchain provides performance
oriented, abstracted implementations and interfaces (sketches)
for the core algorithms of the source program.

A. Hardware

The F1/10 vehicle, shown in Fig. [2] is designed around
a ready-to-run RC car chassis [27]. A power board (used
to manage the onboard compute and sensors) as well as
mounting plate design are provided; all aspects (hardware,
mechanical design, software) of these additional parts are
open source. All computation occurs on the onboard NVIDIA
TX2, a modern embedded system on a chip (SoC) which
contains a conventional multicore ARM CPU in addition
to a power-efficient GPU [28]. The main sensor is a planar
laser scanner (or LIDAR) which can capture range mea-
surements. The LIDAR enables the vehicle to implement
reactive obstacle avoidance strategies, estimate odometry,
create maps, and localize. Due to the operating environment
(typically corridors with few features), we supplement the
LIDAR measurements with odometry information from the
electronic speed controller [29]. An optional RGB-D camera
provides additional sensing modalities, but is not used in
these experiments.

B. Simulator

The simulator uses a lightweight 2D physics engine written
in C++ which implements the single track vehicle model
described in [30]. Parameter identification was performed to
derive vehicle parameters: mass, center of mass moment of
inertia, friction coefficient, cornering stiffness, and maximum
acceleration/deceleration rates, Appendix [A] The moment of
inertia was estimated using the bifilar (two-wire) pendulum
method (e.g. [31]). Tire parameters were found using the
PAC2002 Magic-Formula model [32] and the cornering
stiffness coefficient was back-calculated using [33]. A force
scale was used to measure the kinetic friction coefficient p
between the rubber tires and linoleum floor as the vehicle
was dragged laterally at a constant velocity. In addition to
modeling vehicle dynamics, the simulator detects collisions
between the vehicle and obstacles in the environment in
linear-time using a pre-computed lookup table of range
measurements [34]. This method is also used to simulate
the vehicle’s LIDAR.

The simulator differs significantly from existing ROS-
based tools. In order to create deterministic rollouts the C++
executable is wrapped in the OpenAl Gym [35] environment
which explicitly steps time when all inputs have been
computed. A further benefit of this approach is the ability
to take advantage of faster than real-time execution; on
commodity hardware, simulations proceed at approximately
6x real-time. Finally, the simulation environment provides a
method for the members of the vehicle dynamics parameter
class to be modified by TUNERCAR at the beginning of each
rollout. Lastly, the simulation toolchain include a front end
for generating random maps and pre-processing occupancy
grid maps created using SLAM.

The TUNERCAR toolchain employs a MapReduce [36]
messaging pattern implemented using ZeroMQ [37], a high-
performance asynchronous messaging library. As shown in
Fig. Bl many ‘workers’ are spawned in parallel, each equipped
with a simulator, velocity optimizer, and full vehicle stack.
Samples from the CMA-ES search node are then broadcast
to a pool of worker nodes. On receipt of a new sample,
the worker instantiates vehicle and environment parameters
and simulates a rollout to compute the lap time. In order
to update the searcher’s sampling distribution, the worker
simply transmits the lap time and task index to a sink node
which collects the worker results and synchronizes the search
epochs.

C. Vehicle Software

Some algorithms are considered adaptable; others such as
the simultaneous localization and mapping package (SLAM)
are only used offline to create a model of the environment
and, thus, are not tuned. The complete set of non-adaptable
algorithms and software is as follows: Google Cartographer
[38] for SLAM, a particle filter for pure localization [39], a
behavior controller which manages communication between
the plannning nodes and the motor controller.

TUNERCAR compiles parameterized versions of two pro-
cesses on the vehicle: a geometric path tracking controller

Fig. 4: Adjusting the horizon of the path planner shifts the
lattice of samples (blue markers), the green marker represents
the pure pursuit trackers selected lookahead distance.

based on pure pursuit [1], [40] and a path planning module
which utilizes a sampling-based non-linear model predictive
control [41], [42].

1) Path Tracker: The goal of path tracker is to compute
steering inputs which allow the autonomous vehicle to
follow a sequence of waypoints defined in the map frame.
Performance of a path tracker is measured by the feasibility
of the inputs, heading error, and lateral offset between the
path and vehicle’s position [40]. We utilize the pure pursuit
path tracker [1], a simple geometric method which has been
shown to be effective if properly tuned for the expected
operating conditions. In particular, the lookahead distance,
which is used to select a point on the path ahead of the
vehicle significantly affects the performance. Too small of a
lookahead and the vehicle oscillates; too large and corners are
cut. Thus, the lookahead distance of the path tracker computed
as: dy,;dy; in order to ensure that it does not exceed the path
planning horizon, is included in the search space as a tunable
parameter.

2) Path Planner: The goal of the path planner is to
generate kinematically and dynamically feasible trajectories
that can take the vehicle from its current pose to a sampled
set of goal poses (see Fig.). Each trajectory is represented
as a set of cubic spirals, p = [s, a, b, ¢, d] where s is the total
arc length of the trajectory and (a,b,c,d) are equispaced
knot points encoding the path curvature. For each trajectory,
gradient descent is used to find spline parameters which
minimize the error between the goal pose and the calculated
end point given by a forward simulation of the vehicle
dynamics. Real-time performance of the system is improved
by creating a dense lookup table of precomputed goal, solution
pairs as described in [43]. Thus, online, once a goal point
has been chosen, all that remains is to sample N equidistant
points corresponding to the spline parameters stored in the
lookup-table and check them against an occupancy grid for
feasibility. In order to adapt the method to the operational
domain the horizon of the planner is adjusted to account for
track geometry.

V. CASE STUDY

CMA-ES requires only three hyperparameters: e the thresh-
old of the L2 norm of covariance matrix for the sampling
distribution, A the population size, and p the quantile of

—— Fastest time
—— L2 Norm of Covariant Matrix

16.0

riant Matrix

Time (seconds)

L2 Norm of Cova

0 100000 200000 300000 400000
Number of samples

Fig. 5: Convergence on L2 Norm of Covariance Matrix

1000, 0.10
1000, 0.20
1000, 0.40
2000, 0.01
6000, 0.01
10000, 0.01

——

14

0 25000 50000 75000 100000 125000 150000 175000 200000
of samples

Fig. 6: Effect of hyperparameters on performance

samples to retain between epochs. Fig. [5]shows an experiment
in which e is determined. Fig. [6] details the performance of
the top 5% of the CMA-ES algorithm relative to the number
or simulations performed for a variety of population sizes,
A, and quantile-thresholds, p. Based on the results of these
experiments we select a A of 10000, and p of 0.01 for best
overall performance in terms of convergence rate and best
lap time.

In order to further evaluate the CMA-ES implementation
in TUNERCAR, we compare the top 100 laptimes relative
to a naive-random-search for fixed computational budgets
between 10,000 and 200,000 simulations. The results, shown
in Fig. [7| show that our methodology converges to a set of
solutions with lap times significantly lower than that of naive
random sampling.

We designed three sets of experiment to evaluate the effec-
tiveness of our toolchain. First, we conducted experiments to
validate the results our methods using the F1/10th race cars
detailed in Section These experiments are conducted on
the Levine Track map which is a challenging hallway loop due
to the 90 degree turns and narrow driveable surface area. The
list of physical car parameters to tune were limited to an easily
modifiable subset that avoided major structural changes to
the car’s components: total car mass and longitudinal location
of the car’s center of mass. After the pipeline has computed
an optimal trajectory and set of parameters, we physically
modified the car’s parameters and deployed the tuned system,

0 TunerCar
Naive

16 1

75000 100000 125000 150000 175000 200000
of samples

25000 50000

Fig. 7: Performance on Levine Map with fixed computation

Fig. 8: Agent solutions on the track collection.

using the optimized waypoints and velocities.

Our second set of experiments were conducted primar-
ily in simulation and compared against historical racing
times recorded in the environments. We chose to run the
optimization process on a set of three tracks (PORTO [44],
TORINO [45], and PHILADELPHIA [46]) where we have
hosted competitive racing events in order to benchmark the
performance of TUNERCAR relative to hand-tuned solutions.
Due to the variety of modifications various entrants utilized
(e.g. springs, suspension, geometry and custom chassis), we
do not restrict the set of physical parameters.

Lastly, we evaluate the reality gap in light of the proposed
online optimization strategy by comparing vehicle perfor-
mance in simulation to that which was achievable in reality.
Fig[7] details the performance of TUNERCAR relative to naive-
random search given a fixed computational budget. Fig.
shows solutions found by TUNERCAR which exceed expert
tuning-performance on (A) TORINO, (B) PORTO, and (C)
PHILADELPHIA. Fig. [0 shows a comparison of the relative
performance between top solutions deployed on the car and
in the simulator.

Simulated Trajectory
« oo Real Trajectory

Fig. 9: Comparison of simulated vs. real performance

TABLE I: TUNERCAR vs. Expert-tuned Agents

Torino Track

Method Lap Time (s)
TUNERCAR 17.96
Follow The Gap 18.29
Pure Pursuit 19.29

Porto Track

Pure Pursuit

Method Lap Time (s)
TUNERCAR 8.11
Follow The Gap 9.10

11.9

Philadelphia Track

Method Lap Time (s) | Top Speed (m/s)
TUNERCAR 16.19 9.4967
Pure Pursuit 17.0 7.4532

Teleop 22.62 6.0

VI. CONCLUSIONS

We introduce TUNERCAR, a superoptimization toolchain
for jointly optimizing racing strategy, vehicle parameters,
planning methods, and control algorithms for an autonomous
racecar. We detail the target hardware, software, simulators,
and systems infrastructure necessary for implementation. Our
methodology deploys a modern evolution strategy onto a
massively parallelized software stack that enables simulations
to proceed 6P times faster than real-world rollouts, achieving
6% faster lap times compared a naive sampling approach
given a fixed computational budget. We validate our solution
on an AV software stack and 1/10th-scale open-source vehicle
developed for this project [f1tenth.org].

While the method as described in this paper has not been
rigourously tested in head-to-head racing, the online path-
planning component is capable of navigating the vehicle in
the presence of other agents. Future work should investigate
the feasibility of deploying this methodology utilizing an
expanded search space that encodes the behaviors of other
agents. A clear limitation of the presentation of this work
is a lack of comparisons to other black-box optimizations,
we mitigate this deficiency by measuring the toolchains
performance against a variety of hand-tuned solutions entered
in F1/10 competitions. Given that the experimental results
show that we can find significant performance improvements
over the other competition entries it is important to explore
whether other search strategies can create even faster agents.

f1tenth.org

APPENDIX
A.

Parameter Identification

Parameter identification was performed on the real world
vehicle in order to match the simulation vehicle as close as
possible. The parameters identified were mass, center of mass
moment of inertia, friction coefficient, cornering stiffness, and
maximum acceleration/deceleration rates.

1) Mass and Center of Mass: The vehicle was placed on
scale and found to be 3518.6 £ 0.1g. The lithium polymer
battery, whose weight is 363 4= 0.1g, was included on the

vehicle when the mass measurement of the vehicle was taken.

The center of mass was estimated by balancing the vehicle
on the edge of the ruler. For a wheelbase of 0.317m, the
distance from the center of mass to the front wheel center
lcg,y was found to be 0.147 £ 0.005m and the distance to
the rear wheel center [4, was 0.147 £ 0.005m.

2) Moment of Inertia: The moment of inertia of the vehicle

was estimated using the bifilar (two-wire) pendulum method.

This method is used to measure the moment of inertia of
symmetric objects, such as airplanes [31], unmanned air
vehicles [47], and tennis rackets [48]. The bifilar pendulum is
a torsional pendulum that consists of the test object suspended
by two thin parallel wires that are equidistant from the center
of mass. A small moment is applied to the vehicle and the
angular frequency w is found by recording the period of
oscillation about the vertical axis that goes through the center
of mass. The moment of inertia can then be calculated using
the following equation:

_ mgd?

 4Lw?
where m is the mass of the vehicle, g is acceleration due
to gravity, d is the distance between the wires, L is the
length of the wires, and w is the angular frequency found
above. Equation|[T]is obtained from the nonlinear mathematical
model of a bifilar pendulum and derivations can be found in

(D

[49]. shows the setup of the vehicle used in this paper.

Fig. 10: Test setup of vehicle.

ion Values

Acceleration
Deceleration

Distribution of ion and D

. I I . .
0 5 10 15 20 25 30
Acceleration (m/sz)

Fig. 11: Acceleration and Deceleration Curves

The moment of inertia of the vehicle was estimated using
the bifilar pendulum method was found to be 0.047kg-m?
compared with the moment of inertia obtained from a CAD
model of the vehicle was 0.041kg-m?. The moment of inertia
of the vehicle was estimated to be 0.047kg-m?. The moment
of inertia obtained from a CAD model of the vehicle was
0.041kg-m?.

3) Friction Coefficient and Cornering Stiffness: The simu-
lator is based on the single-track CommonRoad vehicle model
[30]. Instead of using cornering stiffness C, as is convention-
ally used for single-track models, the CommonRoad model
separates the effect of the friction coefficient yu, the cornering
stiffness coefficient Cy, and the vertical force F, and relates
them with C; = uCgF, ; where i = {f,r} for the front and
rear axle. This separation allows for the influence of weather
to be modeled in friction coefficient. A force scale was used to
measure the kinetic friction coefficient ¢ between the rubber
tires and linoleum floor as the vehicle was dragged laterally at
a constant velocity. ¢ was found to be 0.5230 £ 0.0014. The
CommonRoad model used the PAC2002 Magic-Formula tire
model developed by MSC Software [32] in order to find the
tire parameters. For the purposes of this paper, the cornering
stiffness coefficient was back-calculated by estimating the
cornering stiffness using [33] as 16.5% of the weight on
the tires. C's y was found to be 4.191 4 0.002 and C's, was
found to be 4.8469 + 0.002.

4) Maximum Acceleration and Deceleration Rates: Nine-
teen speed tests ranging from 2.0m/s to 11.0m/s in increasing
increments of 0.5m/s were performed. The vehicle was
commanded to accelerate to a certain speed, maintain the
speed for 0.5 second, and then brake. Position data from a
particle filter on the vehicle and velocity data from the vehicle
odometry were recorded for all of the tests. The acceleration
and deceleration sections were fitted with separate exponential
curves and the constant speed region was fitted with a linear
curve. Finally, the maximum acceleration and deceleration for
each test was extracted. It was also found that the commanded
velocity was about 0.5m/s faster than the measured speed
obtained from the constant velocity region.

Figure [TT] shows the distribution of the results obtained.
The mean for the acceleration curve accel,,q; was 9.514m/s?
while the mean for the deceleration curve decel,,q, was
13.257m/s>.

B. Minimum Time Path

[MOK: Achin: details of convex optimization problem go
here]

REFERENCES

[1] R. C. Coulter, “Implementation of the pure pursuit path tracking
algorithm,” Carnegie-Mellon UNIV Pittsburgh PA Robotics INST, Tech.
Rep., 1992.

[2] A. V. Aho, R. Sethi, and J. D. Ullman, “Compilers, principles,
techniques,” Addison wesley, vol. 7, no. 8, p. 9, 1986.

[3] C. A. Lattner, “Llvm: An infrastructure for multi-stage optimization,”
Ph.D. dissertation, University of Illinois at Urbana-Champaign, 2002.

[4] E. Schkufza, R. Sharma, and A. Aiken, “Stochastic superoptimization,”
in ACM SIGPLAN Notices, vol. 48, no. 4. ACM, 2013, pp. 305-316.

[5] H. Massalin, “Superoptimizer: a look at the smallest program,” in
ACM SIGARCH Computer Architecture News, vol. 15, no. 5. 1EEE
Computer Society Press, 1987, pp. 122-126.

[6] A. Solar-Lezama, “Program sketching,” International Journal on
Software Tools for Technology Transfer, vol. 15, no. 5-6, pp. 475—
495, 2013.

[7] P. Liang, M. I. Jordan, and D. Klein, “Learning programs: A hierar-
chical bayesian approach,” in Proceedings of the 27th International
Conference on Machine Learning (ICML-10), 2010, pp. 639-646.

[8] N. Vasilache, O. Zinenko, T. Theodoridis, P. Goyal, Z. DeVito, W. S.

Moses, S. Verdoolaege, A. Adams, and A. Cohen, “Tensor compre-

hensions: Framework-agnostic high-performance machine learning

abstractions,” arXiv preprint arXiv:1802.04730, 2018.

J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and

S. Amarasinghe, “Halide: a language and compiler for optimizing

parallelism, locality, and recomputation in image processing pipelines,”

in Acm Sigplan Notices, vol. 48, no. 6. ACM, 2013, pp. 519-530.

[10] T. Lipp and S. Boyd, “Minimum-time speed optimisation over a fixed
path,” International Journal of Control, vol. 87, no. 6, pp. 1297-1311,

2014.

[11] N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies,” Evolutionary computation, vol. 9,
no. 2, pp. 159-195, 2001.

[12] N. Hansen, “The cma evolution strategy: A tutorial,” arXiv preprint
arXiv:1604.00772, 2016.

[13] N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis of reactive (1)
designs,” in International Workshop on Verification, Model Checking,
and Abstract Interpretation. Springer, 2006, pp. 364-380.

[14] T. Campos, J. P. Inala, A. Solar-Lezama, and H. Kress-Gazit, “Task-
based design of ad-hoc modular manipulators,” in 2019 International
Conference on Robotics and Automation (ICRA). 1EEE, 2019, pp.
6058-6064.

[15] J. Liu, N. Ozay, U. Topcu, and R. M. Murray, “Synthesis of
reactive switching protocols from temporal logic specifications,” IEEE
Transactions on Automatic Control, vol. 58, no. 7, pp. 1771-1785,
2013.

[16] R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas, “Discrete
abstractions of hybrid systems,” Proceedings of the IEEE, vol. 88,
no. 7, pp. 971-984, 2000.

[17] M. Jaderberg, V. Dalibard, S. Osindero, W. M. Czarnecki, J. Don-
ahue, A. Razavi, O. Vinyals, T. Green, I. Dunning, K. Simonyan
et al., “Population based training of neural networks,” arXiv preprint
arXiv:1711.09846, 2017.

[18] N. Cheney, R. MacCurdy, J. Clune, and H. Lipson, “Unshackling
evolution: evolving soft robots with multiple materials and a powerful
generative encoding,” ACM SIGEVOlution, vol. 7, no. 1, pp. 11-23,
2014.

[19] D. Ha and J. Schmidhuber, “Recurrent world models facilitate
policy evolution,” in Advances in Neural Information Processing
Systems 31. Curran Associates, Inc., 2018, pp. 2451-2463,
https://worldmodels.github.iol [Online]. Available: https://papers.nips
cc/paper/7512-recurrent- world-models-facilitate- policy-evolution

[9

—

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]
[32]
[33]

[34]

[35]

[36]

(37]

[38]

[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

E. M. Kasprzak, K. E. Lewis, and D. L. Milliken, “Steady-state vehicle
optimization using pareto-minimum analysis,” SAE transactions, pp.
2624-2631, 1998.

K. Hacker, K. Lewis, and E. M. Kasprzak, “Racecar optimization and
tradeoff analysis in a parallel computing environment,” SAE Technical
Paper, Tech. Rep., 2000.

F. Castellani and G. Franceschini, “Use of genetic algorithms as an
innovative tool for race car design,” SAE Technical Paper, Tech. Rep.,
2003.

K. Hayward, Application of Evolutionary Algorithms to Engineering
Design. University of Western Australia, 2007.

N. R. Kapania, J. Subosits, and J. C. Gerdes, “A sequential two-step
algorithm for fast generation of vehicle racing trajectories,” Journal
of Dynamic Systems, Measurement, and Control, vol. 138, no. 9, p.
091005, 2016.

A. Liniger, A. Domahidi, and M. Morari, “Optimization-based au-
tonomous racing of 1: 43 scale rc cars,” Optimal Control Applications
and Methods, vol. 36, no. 5, pp. 628-647, 2015.

K. L. Talvala, K. Kritayakirana, and J. C. Gerdes, “Pushing the limits:
From lanekeeping to autonomous racing,” Annual Reviews in Control,
vol. 35, no. 1, pp. 137-148, 2011.

Traxxas, “Fiesta® st rally, 1/10 scale ford fiesta awd rally car".”
D. Frank, K. Kolotka, A. Phillips, M. Schulz, C. Rigney, A. Drown,
R. Stricko, K. Harper, and R. Freuler, “Developing and improving a
multi-element first-year engineering cornerstone autonomous robotics
design project,” in Proceedings of the 2017 American Society for
Engineering Education Annual Conference, 2017.

B. Vedder, “Vedder electronic speed controller.” [Online]. Available:
https://vesc-project.com/documentation

M. Althoff, M. Koschi, and S. Manzinger, “Commonroad: Composable
benchmarks for motion planning on roads,” in 2017 IEEE Intelligent
Vehicles Symposium (IV). 1EEE, 2017, pp. 719-726.

H. A. Soule and M. P. Miller, “The experimental determination of the
moments of inertia of airplanes,” 1934.

“Adams/tire help,” MSC Software, 2 MacArthur Place, Santa Ana, CA
92707, April 2011.

“Discussion: Cornering stiffness,” McHenry Software Manual, M-smac
Input, 2002.

P. E. Felzenszwalb and D. P. Huttenlocher, “Distance transforms of
sampled functions,” Theory of computing, vol. 8, no. 1, pp. 415-428,
2012.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” 2016.

J. Dean and S. Ghemawat, “Mapreduce: simplified data processing
on large clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107-113, 2008.

P. Hintjens, ZeroMQ: messaging for many applications. " O’Reilly
Media, Inc.", 2013.

W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure
in 2d lidar slam,” in 2016 IEEE International Conference on Robotics
and Automation (ICRA). 1EEE, 2016, pp. 1271-1278.

C. Walsh and S. Karaman, “Cddt: Fast approximate 2d ray casting
for accelerated localization,” vol. abs/1705.01167, 2017. [Online].
Available: http://arxiv.org/abs/1705.01167

J. M. Snider et al., “Automatic steering methods for autonomous
automobile path tracking,” Robotics Institute, Pittsburgh, PA, Tech.
Rep. CMU-RITR-09-08, 20009.

T. M. Howard, Adaptive model-predictive motion planning for naviga-
tion in complex environments. Carnegie Mellon University, 2009.
M. McNaughton, “Parallel algorithms for real-time motion planning,”
2011.

C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. Clark,
J. Dolan, D. Duggins, T. Galatali, C. Geyer et al., “Autonomous
driving in urban environments: Boss and the urban challenge,” Journal
of Field Robotics, vol. 25, no. 8, pp. 425-466, 2008.

R. Mangharam, M. Behl, H. Abbas, and M. O’Kelly, “2018 Portuguese
Grand Prix,” in F1/10 Workshop and Competition as part of the 2018
ACM/IEEE 9th International Conference on Cyber-Physical Systems
(ICCPS), 2018.

R. Mangharam, M. Behl, H. Abbas, M. Bertonga, and M. O’Kelly,
“2018 Italian Grand Prix,” in F1/10 Workshop and Competition as part
of ESWEEK 2018, Torino, Italy, 2018.

H. Abbas, R. Mangharam, and M. O’Kelly, “Ese 680: Autonomous
racing.” [Online]. Available: http://web.engr.oregonstate.edu/~abbasho/
papers/F110PennSyllabus.pdf

https://worldmodels.github.io
https://papers.nips.cc/paper/7512-recurrent-world-models-facilitate-policy-evolution
https://papers.nips.cc/paper/7512-recurrent-world-models-facilitate-policy-evolution
https://vesc-project.com/documentation
http://arxiv.org/abs/1705.01167
http://web.engr.oregonstate.edu/~abbasho/papers/F110PennSyllabus.pdf
http://web.engr.oregonstate.edu/~abbasho/papers/F110PennSyllabus.pdf

(471

[48]

[49]

M. R. Jardin and E. R. Mueller, “Optimized measurements of unmanned-
air-vehicle mass moment of inertia with a bifilar pendulum,” Journal
of Aircraft, vol. 46, no. 3, pp. 763-775, 2009.

J. Spurr, S. Goodwill, J. Kelley, and S. Haake, “Measuring the inertial
properties of a tennis racket,” Procedia Engineering, vol. 72, pp. 569—
574, 2014.

A. Kotikalpudi, B. Taylor, C. Moreno, H. Pfifer, and G. Balas,
“Swing tests for estimation of moments of inertia,” Unpublished
notes, University of Minnesota Dept. of Aerospace Engineering and
Mechanics, 2013.

	University of Pennsylvania
	ScholarlyCommons
	9-22-2019

	Tech Report: TUNERCAR: A Superoptimization Toolchain for Autonomous Racing
	Matthew O'Kelly
	Hongrui Zheng
	Achin Jain
	Joseph Auckley
	Kim Luong
	See next page for additional authors
	Recommended Citation

	Tech Report: TUNERCAR: A Superoptimization Toolchain for Autonomous Racing
	Disciplines
	Author(s)

	INTRODUCTION
	Methodology
	Problem Statement
	Search Space
	Evaluation Criteria
	Optimization

	Related Work
	SIMULATOR AND HARDWARE
	Hardware
	Simulator
	Vehicle Software
	Path Tracker
	Path Planner

	CASE STUDY
	Conclusions
	Appendix
	System Identification
	Mass and Center of Mass
	Moment of Inertia
	Friction Coefficient and Cornering Stiffness
	Maximum Acceleration and Deceleration Rates

	Minimum Time Path

	References

