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ABSTRACT

Validating genomic prediction equations in inde-
pendent populations is an important part of evaluat-
ing genomic selection. Published genomic predictions
from 2 studies on (1) residual feed intake and (2) dry
matter intake (DMI) were validated in a cohort of 78
multiparous Holsteins from Australia. The mean real-
ized accuracy of genomic prediction for residual feed
intake was 0.27 when the reference population included
phenotypes from 939 New Zealand and 843 Australian
growing heifers (aged 5-8 mo) genotyped on high den-
sity (770k) single nucleotide polymorphism chips. The
90% bootstrapped confidence interval of this estimate
was between 0.16 and 0.36. The mean realized accuracy
was slightly lower (0.25) when the reference popula-
tion comprised only Australian growing heifers. Higher
realized accuracies were achieved for DMI in the same
validation population and using a multicountry model
that included 958 lactating cows from the Netherlands
and United Kingdom in addition to 843 growing heif-
ers from Australia. The multicountry analysis for DMI
generated 3 sets of genomic predictions for validation
animals, one on each country scale. The highest mean
accuracy (0.72) was obtained when the genomic breed-
ing values were expressed on the Dutch scale. Although
the validation population used in this study was small
(n = 78), the results illustrate that genomic selection
for DMTI and residual feed intake is feasible. Multicoun-
try collaboration in the area of dairy cow feed efficiency
is the evident pathway to achieving reasonable genomic
prediction accuracies for these valuable traits.
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Short Communication

Given the difficulty of obtaining individual animal
feed intake phenotypes and the importance of feed
costs to the profitability of dairying, interest has been
growing in combining DMI phenotype data collected
at research farms internationally (Banos et al., 2012;
de Haas et al.. 2012; Pryce et al., 2012; Veerkamp et
al., 2012; Berry et al., 2013). Combined data sets could
be used to develop genomic estimated breeding values
(GEBYV) for feed intake and feed efficiency, which may
then be used by industry to select for improved feed ef-
ficiency. Pryce et al. (2012) developed a set of genomic
prediction equations for residual feed intake (RFI)
estimated from phenotypes and genotypes of approxi-
mately 1,900 growing Holstein heifers (aged 5-8 mo at
testing). de Haas et al. (2012) used DMI phenotypes
from both growing calves from Australia and lactat-
ing cows from the Netherlands and United Kingdom
to derive genomic predictions for DMI. In this study,
genomic prediction equations from both studies have
been validated in a completely independent cohort of
78 lactating Australian cows.

Seventy-eight cows (all between second and ninth
parity) were selected at random from the Ellinbank
research herd belonging to the Department of Environ-
ment and Primary Industries (Melbourne, Australia).
The cows were sired by 32 different bulls, 4 of which
had 5 or more daughters in the data set. The cows were
genotyped using the Bovine SNP50 Beadchip (Illumina
Inc., San Diego, CA). The genotypes were imputed to
high density (632,002) SNP using BEAGLE (Browning
and Browning, 2009). The same quality control pro-
cesses described by Erbe et al. (2012) and Pryce et al.
(2012) were applied to the genotype data, although a
larger reference population was used (n = 1,783), which
led to around 1% more SNP passing quality control.
The quality control criteria included overall call rates
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of greater than 95% and genotype calls with Illumina
GenTrain score (Gen-Call) of greater than 0.6. The
SNP were also excluded if they were unmapped or mis-
mapped, had duplicate positions, or were located on
the Y chromosome. The 609,321 SNP in common with
Pryce et al. (2012) were used to calculate GEBV for
RFT as GEBV = Xu, where X is a matrix of the cows’
genotypes and u is the vector of SNP effects estimated
by BayesMulti (Pryce et al., 2012).

Individual cow daily feed intakes in the validation
population of cows were determined using feed bins
mounted on load cells that were electronically moni-
tored by linking the intake data to electronic identifica-
tion of individual cows (Gallagher Animal Management
Systems, Hamilton, New Zealand). Cows had ad libi-
tum access to feed and water. In the growing heifer ex-
periment described by Pryce et al. (2012), the growing
heifer diets were entirely alfalfa cubes. To be consistent
with this, the lactating cows were also fed a diet that
consisted mainly of alfalfa cubes, provided by the same
manufacturer, Multicube Ltd. (Yarrawonga, Australia)
supplemented with crushed wheat fed at milking time.

Following a 14-d adjustment period, the experiment
started on February 23, 2013, and continued for 28 d.
At the start of the experiment, the 78 cows were 181
(mean) DIM (SD = 25.2 d). Cows were milked twice
daily and milk samples were collected at 6 milkings per
week for composition analysis. The cows” mean daily
DMI of alfalfa was 19.7 + 2.21 (mean + SD) kg. The
mean daily intake of crushed wheat was 5.7 & 0.83
(mean + SD) kg of DM. To gain statistical power, RFI
phenotypes were calculated simultaneously for the 78
cows used in this study combined with records from
112 additional lactating cows, also from the Ellinbank
research herd, that, as growing heifers, were part of the
experiment described by Pryce et al. (2012). Some of
the 112 additional cows had 2 parities of data collected
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from a total of 3 experiments; 2 of the experiments
were with cows in first parity and the other was with
the same cows that survived to second or third parity.
The total number of records used to estimate RFI was
258. A permanent environmental effect (cow) was fit-
ted to account for animals with repeated records in a
repeated measurements linear model, where RFI was
the residual term as

DMI = p + DIM + experiment + pregnant + parity
+ milk + fat + protein + lactose + BW
+ BCS + cow + RFI,

where DMI is the average DMI over the 28 d experi-
mental period; DIM is DIM at the start of each experi-
ment; experiment was the fixed effect of the experiment
(n = 4); pregnant was pregnancy status (scored as
pregnant or not pregnant) at the start of the experi-
ment; and parity is the parity group. The 78 cows were
assigned to 4 parity groups: parity 3 or less (n = 9),
parity 4 (n = 20), parity 5 (n = 29), and parities 6 or
more (n = 20). Milk, fat, protein, and lactose were the
average daily yields (kg) over the 28-d experimental
period. Body weight was average daily BW measured
using walkover scales of the Delaval Automatic weigh
system (model AWS100, Tumba, Sweden). On average,
20 BW measurements were recorded per cow over the
28-d experimental period. Body condition score was
assessed weekly by 4 assessors at different times each
week using the 8-point scale described by Earle (1976).
A mean BCS of the 4 assessors was recorded per week
and averaged over the experimental period. Body con-
dition score was included as a covariate in the model
to correct for an approximation of body fat content. A
summary of the data of the 78 cows that were used in
the rest of this study is presented in Table 1.

Table 1. Means and SD by parity within experiment (28-d duration) average residual feed intake (RFT); DMI; milk, fat, protein, and lactose

yields; BCS; and BW*

Parity <3 Parity 4 Parity 5 Parity >6 All

Item Mean SD Mean SD Mean SD Mean sD Mean sD
DIM 186 20.0 182 27.8 186 24 171 22 181 24.5
RFI (kg/d) 0 1.33 0 1.09 0 1.0 0 0.9 0 1.01
DMI (kg/d) 24.5 1.5 25.5 1.9 26.1 1.9 24.7 2.5 25.4 2.1
Milk (L/d) 20.9 3.5 23.1 3.3 22.2 2.8 21.6 22.2 3.1
Fat (kg/d) 0.98 0.11 1.04 0.12 1.00 0.11 1.00 0.13 1.00 0.11
Protein (kg/d) 0.79 0.07 0.87 0.10 0.84 0.09 0.81 0.11 0.83 0.10
Lactose (kg/d) 1.03 0.15 1.15 0.18 1.11 0.15 1.06 0.14 1.10 0.16
BCS (8-point scale) 4.63 0.25 4.54 0.14 4.61 0.16 4.56 0.12 4.58 0.16
BW (kg) 648 46 646 42 675 43 655 44 659 45

"Parity <3 = 7 of 9 cows pregnant; Parity 4 = 14 of 20 cows pregnant; Parity 5 = 25 of 29 cows pregnant; Parity 6 = 16 of 20 cows pregnant;

All = 62 of 78 cows pregnant.
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For RFI, the genomic prediction equations (calcu-
lated using genotypes and phenotypes) were tested
using (1) only growing heifers from Australia and (2)
growing heifers from Australia and New Zealand as
reference populations. Pryce et al. (2012) found that
the highest realized accuracies of genomic prediction
were obtained by using high-density genotypes and the
statistical method BayesMulti (similar to BayesR; Erbe
et al., 2012). To make the results comparable to Pryce
et al. (2012), BayesMulti genomic predictions were also
used in this study.

Using only the Australian heifers in the reference
population, the mean realized accuracy, defined as the
correlation between the vector of RFT phenotypes and
corresponding GEBV, was 0.11. After correcting for the
heritability (dividing by the square-root of the herita-
bility of RFI, 0.22 obtained from the study of Pryce
et al., 2012), the mean realized accuracy of genomic
prediction was 0.25 (Table 2). The correction for the
heritability estimate was performed so that the real-
ized accuracy was similar to the correlation between
GEBYV and true breeding values instead of phenotypes
(de Haas et al., 2012; Pryce et al., 2012). When the
heifers from New Zealand were added to the reference
population, the realized accuracy of genomic prediction
of RFI increased to a mean of 0.27 (Table 2). For the
analysis that included only Australian heifers in the
reference population, some of the correlations of the
bootstrapped samples were negative, which is prob-
ably due to the comparatively low numbers of animals
in the reference population. Encouragingly, the mean
correlation (0.27) was 68% of the accuracy achieved
in the cross-validation of growing heifers (0.4; Pryce
et al., 2012), suggesting that reduced RFI in lactation
can be selected for by using a genomic prediction tool
developed in growing heifers. The reduction in accuracy
is not surprising because lactating cows have additional
energy requirements compared with growing heifers
and are physiologically mature.

A second analysis was conducted using the genomic
predictions from de Haas et al. (2012) based on DMI
phenotypes to predict DMI in the validation popula-
tions (instead of RFI). The reference population in-
cluded a multicountry mixed age group reference popu-
lation that comprised 843 Australian growing heifers,
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359 lactating cows from the United Kingdom, and 599
lactating cows from the Netherlands. Genotypes from
these animals, in addition to the genotypes from the 78
lactating cows from Australia, were used to calculate a
genomic relationship matrix using the methodology of
Yang et al. (2010). A total of 30,594 SNP were used in
the genomic relationship matrix that were also used in
the high-density SNP genotypes described earlier and
the 30,949 SNP used by de Haas et al. (2012). The
G-REML (i.e., ASReml; Gilmour et al., 2009) imple-
mented with a genomic relationship matrix, was used
to estimate GEBV (de Haas et al. 2012). The inverse
of the genomic relationship matrix was used in a model
to predict genomic breeding values that included phe-
notypes for Australian growing heifers and lactating
cows from the Netherlands and United Kingdom, but
excluded the phenotypes for the 78 validation experi-
ment Australian cows. Phenotypes for DMI were calcu-
lated for the 78 lactating cows as the mean DMI over
the experimental period of 28 d (i.e., the total DMI
of alfalfa plus cracked wheat) so that they could be
used to evaluate the realized accuracies of genomic pre-
diction. Dry matter intake was precorrected for fixed
effects (DIM, pregnancy status, and the 4 levels of par-
ity groups described in the RFI model) such that the
analysis was consistent with de Haas et al. (2012). The
accuracy of genomic prediction was calculated as the
Pearson correlation between the corrected phenotype
and GEBV (realized accuracy) and the same correla-
tion was corrected for heritability (h” = 0.342) to make
the results directly comparable to estimates published
by de Haas et al. (2012). As with the previous analysis,
a 90% CI was calculated using bootstrapping with 1,000
replicates. The current study used several models in the
analyses, including three univariate models comprising
data from (1) 843 Australian growing heifers, (2) 359
lactating cows from the United Kingdom, and (3) 599
lactating cows from the Netherlands, as well as mul-
ticountry models comprising data from each country,
where country was a separate trait.

Realized accuracies of genomic prediction for DMI
using univariate models after dividing by the square-
root of the heritability ranged between 0.25 (United
Kingdom reference population) and 0.49 (Dutch refer-
ence population; Table 3). The highest accuracies in

Table 2. Realized accuracy (r) of published genomic predictions for genomic EBV for the phenotype residual
feed intake (RFI) using BayesMulti (Pryce et al., 2012) in 78 multiparous lactating Australian cows and the
realized accuracy corrected for the square root of the heritability (r/h)'

Reference population

r/h

843 Australian heifers (AUS)
AUS and 939 New Zealand heifers

0.11 (—0.05 to 0.25)
0.13 (0.08 to 0.17)

0.25 (—0.11 to 0.53)
0.27 (0.16 to 0.36)

'The 5th and 95th percentiles of the bootstrapped distribution are shown in parentheses.
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Figure 1. Genomic estimated breeding values (GEBV) for DMI calculated for 78 Australian lactating cows using a multicountry prediction
model where 3 populations were included in the reference population (from Australia, the Netherlands, and the United Kingdom) as predictors
of Australian lactating cow DMI phenotypes corrected for fixed effects (DIM, pregnancy status, and parity). The dotted line is the regression of
DMI on GEBV, where DMI = 4.2, GEBV = —0.32, and R? = 0.18. Color version available in the online PDF.

the study of de Haas et al. (2012) were achieved using
a multicountry analysis, where phenotypes from each
country were treated as different traits. The multi-
country analysis generated 3 sets of genomic predic-
tions for validation animals on the scales of each of
the 3 countries. The accuracy of DMI GEBV for the
78 wvalidation cows was higher (0.7; Table 3) when
the genomic breeding values were expressed on the
Dutch scale (which was also observed in the univariate
analysis). The corrected DMI phenotypes were visually
compared with their corresponding GEBV to assess

whether the correlations were influenced by a few data
points. An example of one of these is shown in Figure 1
for GEBV calculated using the multicountry model ex-
pressed on the Dutch scale. These results demonstrate
that genomic predictions derived for DMI collected in
2 European countries can be used to predict DMI in
Australian lactating cows with reasonable accuracy.
The highest accuracy reported by de Haas et al. (2012)
for the multicountry analysis was 0.48, which was lower
than the accuracies presented here. This could be due
to population sampling, as the data set used for valida-

Table 3. Realized accuracies (r) of published genomic predictions for genomic EBV for the phenotype DMI
using genomic REML (de Haas et al., 2012) in 78 multiparous lactating Australian cows and the realized
accuracy corrected for the square-root of the heritability (r/h)*

Reference
Model population® r r/h
Single country AUS 0.26 (0.08 to 0.42) 0.45 (0.13 to 0.73)
Single country NLD 0.30 (0.09 to 0.49) 0.49 (0.15 to 0.83)
UK 0.15 (—0.02 to 0.33) 0.26 (—0.03 to 0.57)

Single countrgf

Multicountry AUS + NLD + UK

AUS = 0.36 (0.2 to 0.51)
NLD = 0.42 (0.27 to 0.55)
UK = 0.40 (0.21 to 0.56)

AUS = 0.62 (0.34 to 0.87)
NLD = 0.72 (0.45 to 0.95)
UK = 0.68 (0.36 to 0.96)

"The 5th and 95th percentiles of the bootstrapped distribution are shown in parentheses.
2AUS = 843 Australian heifers; NLD = 599 Netherlands lactating cows; UK = 359 UK lactating cows.
*The multicountry analysis generated 3 sets of genomic predictions for validation animals, one on each country

scale.
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Figure 2. Genomic relationships of validation experiment animals (78 lactating dairy cows) to the reference populations for deriving genomic
prediction equations from Australia (AUS), United Kingdom (UK), and the Netherlands (NLD). (A) Maximum genomic relationship (i.e., maxi-
mum value of row 7 in the genomic covariance matrix between validation cow i and reference population animals) ordered from smallest largest
value. (B) Mean relationship (i.e., average value of the row i in the genomic covariances matrix between validation cow i and animals in the
reference population) ordered from smallest largest value.

tion comprised only 78 cows. The 90% CI presented in  they should be treated cautiously until more animals
Table 3 suggest that the correlation between DMI phe-  are evaluated.

notypes and corresponding GEBV could be in a broad To check that the accuracies reported in Table 3 were
range. Therefore, although the results presented here not a result of unexpectedly high genomic relationships
are promising, with accuracies of up to 0.72 (Table 3), between reference and validation populations, the
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maximum (Figure 2A) and mean (Figure 2B) genomic
relationships between the 78 cows and the reference
population used by de Haas et al. (2012) were assessed.
As expected, the Australian lactating cows had the
strongest genomic relationships with the Australian
growing heifers (on average 0.0042) and the weakest
with the United Kingdom population (on average
—0.0078), which were similar to the Dutch population.
Therefore. it was surprising that higher accuracies were
achieved using the Dutch reference population com-
pared with the Australian reference population (Table
3). This is in contrast to the results of Pszezola et al.
(2012), where the highest accuracies of genomic predic-
tion were achieved when the reference and validation
populations were more related. However, the studies are
not really comparable, as the Dutch cows in the refer-
ence population were lactating whereas the Australian
heifers (in the reference population) were only around
6 mo of age. Thus. it appears that the age when phe-
notypes are measured is more important than strength
of relationship and, consequently, a genomic selection
tool based on lactating cow DMI is a better predictor
of lactating cow DMI than using growing heifer DMI.

The global Dry Matter Initiative (Berry et al., 2013;
Veerkamp et al., 2013) aims to accumulate a large
reference population by combining genotype and phe-
notype information from international research popula-
tions. The results presented here are encouraging. as
they suggest that data from several countries could be
combined to realize reasonable accuracies for genomic
predictions of DMI. A large upcoming research project
will match genotypes of around 6,000 animals from
10 research herds with their phenotypes (Berry et al.,
2013) to assess the accuracy of genomic prediction of
DMI in a larger population. Using this larger popula-
tion may resolve the large CI observed in this study due
to the small number of animals used.

Validation of genomic breeding values for RFI in 78
lactating Australian cows gave an accuracy of 0.27 when
the reference population included 939 New Zealand
and 843 Australian growing heifers genotyped at high
density. The 90% CI of this estimate ranged between
0.16 and 0.36. For the same validation population,
GEBYV for DMI had an accuracy of up to 0.72 when the
multicountry model included lactating cow phenotypes
from 2 countries (958 cows from the Netherlands and
United Kingdom) and 843 Australian growing heifers.
Therefore. although the wvalidation population was
small, the results indicate that genomic selection for
feed efficiency and feed intake traits is feasible.

ACKNOWLEDGMENTS

The authors thank the Gardiner Foundation (Mel-
bourne, Australia) and Dairy Futures Cooperative Re-

Journal of Dairy Science Vol. 97 No. 1, 2014

PRYCE ET AL.

search Centre (Melbourne, Australia) for funding this
research. Funding for this research from the Dutch Dairy
Board (Zoetermeer, the Netherlands) is acknowledged.
United Kingdom feed intake data collection was funded
by the Secottish Government. We also thank Elizabeth
Ross (Department of Environment and Primary Indus-
tries, Melbourne, Australia) for constructive comments
on an earlier version of this manuscript.

REFERENCES

Banos, G., M. P. Coffey, R. F. Veerkamp, D. P. Berry, and E. Wall.
2012. Merging and characterising phenotypic data on conventional
and rare traits from dairy cattle experimental resources in three
countries. Animal 6:1040-1048.

Berry, D. P., M. P. Coffey, J. E. Pryce, Y. de Haas, P. Lovendahl, N.
Krattenmacher, J. J. Crowley, Z. Wang, D. Spurlock, K. A. Wei-
gel, K. A. Macdonald, and R. F. Veerkamp. 2013. International
genetic evaluations for feed intake in dairy cattle. Pages 5257
in Proc. Interbull Annual Mtg., Nantes, France. Interbull No. 47.
Interbull, Uppsala, Sweden.

Browning, B. L., and S. R. Browning. 2009. A unified approach to
genotype imputation and haplotype phase inference for large
data sets of trios and unrelated individuals. Am. J. Hum. Genet.
84:210-223.

de Haas, Y., M. P. L. Calus, R. F. Veerkamp, E. Wall, M. P. Coffey,
H. D. Daetwyler, B. J. Hayes, and J. E. Pryce. 2012. Improved ac-
curacy of genomic prediction for dry matter intake of dairy cattle
from combined European and Australian data sets. J. Dairy Sci.
05:6103-6112.

Earle, D. 1976. A guide to scoring dairy cow condition.
(Victoria) 74:228-231.

Erbe, M., B. J. Hayes, L. K. Matukumalli, S. Goswami, P. J. Bow-
man, C. M. Reich, B. A. Mason, and M. E. Goddard. 2012. Im-
proving accuracy of genomic predictions within and between dairy
cattle breeds with imputed high density SNP panels. J. Dairy Sci.
95:4114-4129.

Gilmour, A. R., B. J. Gogel, B. R. Cullis, and R. Thompson. 2009.
ASReml User Guide Release 3.0. VSN International Ltd., Hemel
Hempstead, UK.

Pryce, J. E., J. Arias, P. J. Bowman, S. R. Davis, K. A. Macdonald,
G. C. Waghorn, W. J. Wales, Y. J. Williams, R. J. Spelman, and
B. J. Hayes. 2012. Accuracy of genomic predictions of residual feed
intake and 250 day bodyweight in growing heifers using 625,000
SNP markers. J. Dairy Seci. 95:2108-2119.

Pszczola, M., T. Strabel, H. A. Mulder, and M. P. L. Calus. 2012.
Reliability of direct genomic values for animals with different re-
lationships within and to the reference population. J. Dairy Sci.
95:389-400.

Veerkamp, R. F., M. P. Coffey, D. P. Berry, Y. De Haas, E. Strand-
berg, H. Bovenhuis, M. P. L. Calus, and E. Wall. 2012. Genome-
wide assoclations for feed utilisation complex in primiparous Hol-
stein-Friesian dairy cows from experimental research herds in four
European countries. Animal 6:1738 1749.

Veerkamp, R. F., J. E. Pryece, D. Spurlock, D. P. Berry, M. P. Coffey,
P. Lovendahl, R. van der Linde, J. Bryant, F. Miglior, Z. Wang,
M. Winters, N. Krattenmacher, N. Charfeddine, J. Pedersen, and
Y. de Haas. 2013. Selection on feed intake or feed efficiency: A
position paper from gDMI breeding goal discussions. Pages 1522
in Proc. Interbull Annual Mtg., Nantes, France. Interbull No. 47.
Interbull, Uppsala, Sweden.

Yang, J., B. Benyamin, B. P. McEvoy, S. Gordon, A. K. Henders, D.
R. Nyholt, P. A. Madden, A. C. Heath, N. G. Martin, G. W. Mont-
gomery, M. E. Goddard, and P. M. Visscher. 2010. Common SNP
explain a large proportion of the heritability for human height.
Nat. Genet. 42:565-569.

J. Agric.



