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Abstract 26 

Adding nitrate to the diet or increasing the concentration of dietary lipid are effective 27 

strategies for reducing enteric methane emissions. This study investigated their 28 

effect on health and performance of finishing beef cattle. The experiment was a two 29 

× two × three factorial design comprising two breeds (CHX, crossbred Charolais; LU, 30 

Luing); two basal diets consisting of (g/kg dry matter (DM), forage to concentrate 31 

ratios) 520:480 (Mixed) or 84:916 (Concentrate); and three treatments: (i) control 32 

with rapeseed meal as the main protein source replaced with either (ii) calcium 33 

nitrate (18 g nitrate/kg diet DM) or (iii) rapeseed cake (increasing acid hydrolysed 34 

ether extract from 25 to 48 g/kg diet DM). Steers (n = 84) were allocated to each of 35 

the six basal diet × treatments in equal numbers of each breed with feed offered ad 36 

libitum. Blood methaemoglobin (MetHb) concentrations (marker for nitrate poisoning) 37 

were monitored throughout the study in steers receiving nitrate. After dietary 38 

adaptation over 28 days, individual animal intake, performance and feed efficiency 39 

were recorded for a test period of 56 d. Blood MetHb concentrations were low and 40 

similar up to 14 g nitrate/kg diet DM but increased when nitrate increased to 18 g 41 

nitrate/kg diet DM (P < 0.001). An interaction between basal diet and day (P < 0.001) 42 

indicated that MetHb% was consistently greater in Concentrate- than Mixed-fed 43 

steers at 18 g nitrate/kg diet DM. Maximum individual MetHb% was 15.4% (of total 44 

Hb), which is lower than considered clinically significant (30%). MetHb 45 

concentrations for individual steers remained consistent across time. Concentrate-46 

fed steers were more efficient (lower residual feed intake (RFI) values) than Mixed-47 

fed steers (P < 0.01), with lower dry matter intake (DMI) (kg/d) (P < 0.001) and 48 

similar average daily gain (ADG). CHx steers were more efficient (lower RFI; P < 49 

0.01) than LU steers with greater ADG (P < 0.01), lower DMI (/kg BW; P < 0.01) and 50 
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lower fat depth (P < 0.001). ADG, BW or DMI did not differ across dietary treatments 51 

(P > 0.05). Neither basal diet nor treatment affected carcass quality (P > 0.05), but 52 

CHX steers achieved a greater killing out proportion (P < 0.001) than LU steers. 53 

Thus, adding nitrate to the diet or increasing the level of dietary lipid through the use 54 

of cold-pressed RSC, did not adversely affect health or performance of finishing beef 55 

steers when used within the diets studied. 56 

 57 

Keywords: beef cattle, lipid, methaemoglobin, nitrate, performance 58 

 59 

Implications 60 

Adding nitrate to the diet or increasing the level of dietary lipid has been shown to 61 

reduce methane from cattle. These strategies should not adversely affect animal 62 

health or performance. The use of nitrate in ruminant diets has been limited due to 63 

the potential adverse effects on health and productivity. Following four weeks 64 

adaptation, neither the addition of nitrate to the diet (18 g nitrate/kg diet dry matter) 65 

nor increased dietary lipid (48 g acid hydrolysed ether extract/kg diet dry matter) 66 

adversely affected steer health or performance. These strategies provide the 67 

potential for reducing the environmental impact of beef enterprises. 68 

 69 

Introduction 70 

Livestock systems, in particular ruminant production, are under increasing political 71 

pressure to reduce their greenhouse gas outputs. Breeding, enterprise and systems 72 

management and diet formulation are all possible strategies to reduce methane 73 

(CH4) from cattle (Cottle et al., 2011), with diet formulation representing one of the 74 

most practical and promising approaches. In addition to determining the 75 
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effectiveness of dietary strategies on CH4, it is important to report their implications 76 

on health, overall performance and efficiency.  77 

Recent interest in the controlled feeding of nitrate has been stimulated 78 

because the reduction of nitrate to ammonium in the rumen of adapted animals 79 

provides an alternative hydrogen sink to the production of CH4 (van Zijderveld et al., 80 

2010). The reduction of nitrate to nitrite and then to ammonium provides an 81 

energetically more favourable route for disposal of metabolic hydrogen produced 82 

during fermentation of feed carbohydrates in the rumen than the production of CH4. 83 

Although nitrate has been shown in many studies to reduce CH4 emissions from 84 

ruminants (Nolan et al., 2010; van Zijderveld et al., 2010; van Zijderveld et al., 2011, 85 

Hulshof et al., 2012; Li et al., 2012), the potential for its use has been hindered due 86 

to the toxicity of the intermediate product (nitrite). In the rumen, microbes rapidly 87 

reduce nitrate to nitrite and then reduce nitrite to ammonia. However, in an animal 88 

that has not been previously exposed to nitrate, the rate of reduction of nitrite to 89 

ammonia is slower than the reduction of nitrate to nitrite resulting in the accumulation 90 

of nitrite in the rumen (van Zijderveld et al., 2010; Jeyanathan et al., 2014). Absorbed 91 

nitrite binds to haemoglobin (Hb) in the blood converting it to methaemoglobin 92 

(MetHb) which is not capable of transporting oxygen to tissues. High concentrations 93 

of MetHb can cause methaemoglobinaemia, in which the functional oxygen carrying 94 

capacity of the blood is reduced. Blood MetHb is used as a marker for nitrate 95 

poisoning with a value of 30% of total Hb associated with clinical symptoms 96 

(Bruning-Fann and Kaneene, 1993). Nitrate toxicity may reduce animal performance 97 

(feed intake, growth, loss of BW), but in more severe cases may be fatal (Cockburn 98 

et al., 2013). Therefore, the use of nitrate in ruminant diets requires careful 99 

consideration.  100 
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Increasing the concentration of dietary lipid has been shown to reduce CH4 101 

emissions from ruminants (Martin et al., 2010; Grainger and Beauchemin, 2011; 102 

Patra, 2013). This is achieved through various mechanisms: fatty acids are not 103 

fermented in the rumen and therefore increasing dietary lipid concentration reduces 104 

the proportion of feed which is fermentable within the rumen; lipids can also reduce 105 

CH4 production by coating fibre particles, reducing their digestibility, and by reducing 106 

the numbers and activity of the rumen methanogens and protozoa responsible for 107 

methanogenesis (Johnson and Johnson, 1995; Patra, 2013). Dietary lipid can be 108 

increased through the addition of pure fats or oils to the diet or through the use of by-109 

products from distilleries, breweries or plant oil extraction as ingredients in the diet 110 

(Brask et al., 2013). At concentrations greater than 6% (DM basis), lipid can 111 

negatively affect feed intake and productivity, but lipid concentrations lower than 6% 112 

can be used with no adverse effects (Brask et al., 2013).  113 

When considering mitigation strategies for beef cattle, studies have been 114 

mainly focussed on breeds that are managed more intensively, with less focus on 115 

breeds suited to extensive systems. The performance characteristics of hill and 116 

upland breeds, when managed more intensively, may be considerably different to 117 

that of intensively managed breeds, although the availability of performance data is 118 

limited. For example, baseline performance data of Luing cattle, a hill and upland 119 

breed, is unavailable in the literature, even though their popularity as suckler cows is 120 

increasing in the UK and consequently the numbers of Luing calves reaching 121 

finishing units for more intensive finishing is also rising. Calf registrations of Luing 122 

and crossbred Luing calves in the UK has increased from 6165 in 2011 to 6525 in 123 

2014 and is likely to increase further in 2015 (Agriculture and Horticulture 124 

Development Board, UK, 2015, personal communication). The large differences in 125 
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performance are likely a result of considerable genetic and physiological differences. 126 

It is important to consider the effect of mitigation strategies across different breeds, 127 

alongside their implications for health and productivity. If this differs across different 128 

breeds, the industry and beef producers need to understand this if a real change in 129 

CH4 output is to be delivered in commercial practice. 130 

The primary objective of the present study was to investigate the effect of 131 

adding nitrate, or increasing the concentration of dietary lipid, within two contrasting 132 

diets which are typical of industry practice, on the performance and carcass quality 133 

of finishing beef steers of two breeds. Due to the risks associated with feeding 134 

nitrate, a further objective was to investigate the effect of dietary nitrate on blood 135 

MetHb concentrations. 136 

 137 

Materials and methods 138 

This study was conducted at the Beef and Sheep Research Centre, SRUC, UK. The 139 

experiment was approved by the Animal Experiment Committee of SRUC and was 140 

conducted in accordance with the requirements of the UK Animals (Scientific 141 

Procedures) Act 1986. 142 

 143 

Experimental design, animals and diets 144 

The experiment was of a two × two × three factorial design, comprising two breeds 145 

(CHX, crossbred Charolais; LU, purebred Luing), two basal diets (concentrate-straw 146 

or silage-based) and three treatments selected for their potential CH4 mitigation 147 

effects (Control, Nitrate or Rapeseed Cake (RSC)). The breed types were selected 148 

to represent two commercially relevant breeds where CHX cattle represent a 149 

common continental sired beef breed in the UK well known for fast growth and 150 
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excellent carcass conformation, whilst the LU breed is typical of a more extensively 151 

managed hardy hill and upland breed. The steers were fed one of two basal diets (as 152 

total mixed rations) using a diet mixing wagon, consisting of (g/kg dry matter (DM)) 153 

forage to concentrate ratios of either 520:480 (Mixed) or 84:916 (Concentrate). 154 

Within each basal diet the steers were offered one of three treatments: (i) Control 155 

containing rapeseed meal as the main protein source which was replaced with either 156 

(ii) Nitrate in the form of calcium nitrate (Calcinit, Yara, Oslo, Norway; 18 g nitrate/kg 157 

diet DM) or (iii) an added source of lipid in the form of pelleted RSC which is a by-158 

product from cold-pressing rapeseed (acid hydrolysed ether extract (AHEE) 159 

increased from 25 to 48 g AHEE/kg diet DM). The ingredient and chemical 160 

composition of the experimental diets are given in Table 1. The chemical 161 

composition of individual components is given in Table 2. The DM contents of 162 

individual components were determined on duplicate samples twice weekly and 163 

bulked feed samples (two per component) were analysed. Feed samples were 164 

analysed for DM, ash, CP, ADF, NDF, AHEE, starch and neutral cellulase and 165 

gammanase digestibility (Ministry of Agriculture Fisheries and Food, 1992) and gross 166 

energy by adiabatic bomb calorimetry. For the Nitrate and RSC-containing diets, 167 

calcium nitrate and RSC were incorporated firstly into a premix which contained the 168 

concentrate portion of the diet alongside minerals and molasses. Each batch of 169 

premix was mixed using a diet mixing wagon to produce a consistent premix. On a 170 

daily basis each premix was then mixed with the forage portion of the diet using the 171 

same mixing wagon to generate a consistent total mixed ration. Diets were mixed for 172 

a minimum duration of 20 minutes. 173 

In total, 84 steers (42 of each breed) were used. Thus, 14 animals (seven of 174 

each breed) were allocated to each of the six basal diet × treatment combinations. 175 
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Due to the high risk of ill-health of unadapted animals gaining access to dietary 176 

nitrate, and the risks of forage-fed animals gaining access to large quantities of 177 

concentrate (e.g. acidosis), each diet × treatment combination was allocated to one 178 

pen (six pens in total). Treatments were balanced for sire within each breed, farm of 179 

origin and BW and were balanced across basal diets and treatment groups at the 180 

start of the experiment. Fresh water was provided ad libitum using a water trough, 181 

and diets were offered ad libitum to all steers using 32 electronic feeders (HOKO, 182 

Insentec, Marknesse, The Netherlands). Electronic feeders allow expression of 183 

performance in an environment close to on-farm conditions. All steers were bedded 184 

on wood fibre and sawdust to ensure that consumption of bedding did not contribute 185 

to nutrient intake.  186 

Steers were adapted to the experimental diets in two stages. In stage one 187 

(day -56 to day -29), the animals were adapted to the basal diets. All steers were 188 

being fed the Mixed diet at the start of the adaptation period. Steers which were 189 

allocated the Concentrate diet, were adapted to the full concentrate inclusion over 4 190 

weeks. This was undertaken at weekly intervals where diets comprising (g/kg DM) 191 

forage to concentrate ratios of 38:62, 25:75, 13:87 and 8:92 were offered during 192 

weeks 1, 2, 3 and 4, respectively. During this period, steers were trained to use the 193 

electronic feed intake recording equipment. In stage two (day –28 to day 0), steers 194 

were adapted to the treatments over a second 4 week period. Treatments (Nitrate 195 

and RSC) were progressively incorporated into the diets at 25%, 50%, 75% and 196 

100% of the required level, on days -28, -21, -14 and -7, respectively. 197 

 198 

Blood methaemoglobin measurements 199 
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All steers receiving dietary nitrate had blood samples taken weekly throughout the 200 

second treatment adaptation phase to monitor blood MetHb concentrations. Blood 201 

samples were taken when MetHb was expected to be greatest, i.e., 3 h after fresh 202 

feed was offered (van Zijderveld et al., 2010), on the day after dietary nitrate was 203 

increased (days -27 (25%), -20 (50%), -13 (75%) and -6 (100%)) and then 15 days 204 

after maximum nitrate inclusion was achieved (day 8). To assess the long-term 205 

effects of feeding nitrate, blood samples were obtained at day 87 and day 101 (128 206 

days after initial inclusion of nitrate). Blood samples were taken from the caudal vein 207 

into an evacuated tube (Vacuette, Griener Bio One Ltd., Gloucestershire, UK) 208 

containing heparin. MetHb concentration in blood was measured within 2 h of 209 

sampling by co-oximetry (Stat Profile Critical Care Xpress, Nova Biomedical U.K., 210 

Cheshire, UK). For each steer, dry matter intake (DMI) (kg/d) and weekly BW were 211 

assessed throughout adaptation.  212 

 213 

56-d performance test 214 

After full adaptation to the experimental diets, performance and feed efficiency were 215 

characterised for all steers over a 56 d test period (day 0 to 56). Steers were 216 

maintained under controlled conditions, where group sizes within the pen remained 217 

constant. Individual DMI (kg/d) was recorded for each animal using the electronic 218 

feeding equipment and BW was measured weekly using a calibrated weigh scale. 219 

Measurements of BW were obtained before fresh feed was offered. For all steers, 220 

ultrasonic fat depth was obtained at the 12th/13th rib at the start (FD0) and end (FD1) 221 

of the 56 d test using an industry-standard Aloka 500 machine (BCF technology ltd., 222 

Scotland, UK). Images were analysed using Matrox Inspector 8 software (Matrox 223 

Video and Imaging Technology Europe Ltd., Middlesex, UK). Hyslop et al. (2012) 224 
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assessed the consequences of alternative test lengths on the precision of average 225 

daily gain (ADG) and demonstrated that a 56-day measurement period, with weekly 226 

weighing is sufficient for characterising ADG of finishing beef cattle. 227 

 228 

Pre-slaughter measurements and carcass quality 229 

Steers remained within the same pens and on the same diets from the end of the 56 230 

d test to slaughter. During this period CH4 measurements were obtained from 76 of 231 

these steers and reported in Troy et al. (2015). On the day before slaughter, 232 

ultrasonic fat depth (FD2) at the 12th/13th rib was measured in all steers as described 233 

above. Steers were slaughtered in four batches of 17, 18, 21 and 25 steers on days 234 

85, 106, 127 and 148, respectively. Steers were selected for slaughter based on BW 235 

and visual assessment of fatness. The steers were transported (approximately 1 h) 236 

to a commercial abattoir and slaughtered within 2 h of arrival. Cattle were stunned 237 

using a captive bolt, exsanguinated and subject to low voltage electrical stimulation. 238 

Following hide removal, carcasses were split in half down the mid-line and dressed 239 

to UK specification (see Meat and Livestock Commercial Services Limited beef 240 

authentication manual, www. mlcsl.co.uk, for full description). EUROP conformation 241 

and fat classifications (Fisher, 2007), based on the UK scale, were allocated to all 242 

carcasses through visual assessment using a trained assessor. 243 

Video Image Analysis (VIA) was used to estimate EUROP classifications 244 

(conformation and fat), total lean (kg) and total fat (kg) content of the whole carcass. 245 

The VIA systems in use in the EU are automatic machines that perform carcass 246 

evaluation based on images of the half carcass. The VBS 2000 system used in this 247 

study (E+V technology GmbH, Oranienburg, Germany) has been approved by the 248 

Department for Environment, Food and Rural Affairs (Defra) for use in the UK since 249 
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2010. The system operated at the end of the slaughter line after all necessary 250 

dressing and trimming had been completed. A pneumatically operated cradle 251 

presented the left half side of each carcass for imaging. The VIA camera took two 252 

images of the half carcass, a 2-dimensional image and a pseudo 3-dimensional 253 

image using structured light (Craigie et al., 2012). The VBS 2000 required 254 

information on the category of the carcass (i.e., steer) and hot carcass weight (kg) 255 

and, by combining this information with data automatically captured by the VIA 256 

system (i.e., carcass dimensions, angles, areas, colour), predicted EUROP 257 

classification and total lean and fat content of the whole carcass.  258 

 259 

Calculations and statistical analysis 260 

MetHb data were analysed using the mixed procedure of SAS software (SAS 261 

Institute Inc., Cary, NC, USA) using a repeated measures ANOVA including the 262 

effects of basal diet, sampling day and their interactions. Data are reported as 263 

means and standard errors of the mean (s.e.m.). 264 

Data from three steers were unavailable as the animals were removed from 265 

the trial during the 56-d test period for health reasons unconnected to the diets and 266 

treatments imposed. Growth was modelled by linear regression of BW against test 267 

date, to obtain ADG, mid-test BW (mid-BW) and mid-test metabolic BW (mid-MBW = 268 

BW0.75). Mean DMI over the 56 d period was expressed as kg per day or as a 269 

proportion of mid-BW and mid-MBW. Feed conversion ratio (FCR) was calculated as 270 

average DMI per day (kg/d)/ADG. Residual feed intake (RFI) was calculated as 271 

deviation of actual DMI (kg/d) from DMI predicted based on linear regression of 272 

actual DMI on ADG, mid-MBW and FD1 (Basarab et al., 2003). Cold carcass weight 273 

(CCW) was calculated as a percentage of slaughter BW (SBW) to determine killing 274 
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out percentage (KO). To allow for statistical comparison, the EUROP carcass 275 

classification values were expressed on the equivalent 15 point scale (Kempster et 276 

al., 1986). Statistical analyses of performance and carcass data were conducted 277 

using the mixed procedure of SAS software with the fixed effects of breed, basal diet 278 

and treatment, and the random effect of pen (and slaughter batch for carcass traits). 279 

In addition, in the analysis of FD1 and FD2 the deviation from the breed mean of 280 

FD0 was included as a covariable. The interaction effects of breed × basal diet, 281 

basal diet × treatment, breed × treatment and breed × basal diet × treatment were 282 

included in the model when these effects proved significant (P < 0.05). Data are 283 

reported as means with their s.e.m. Differences between means were tested using a 284 

least square means comparison test (PDIFF option of SAS). Probability values were 285 

deemed significant where P < 0.05 and indicated a tendency when probability values 286 

were between P = 0.05 and P = 0.1. 287 

 288 

Results 289 

Blood met-haemoglobin response to dietary nitrate 290 

During the adaptation period (Table 3), blood MetHb concentrations were similar 291 

when feed contained up to 75% of total nitrate (up to -13 d) but increased when 292 

nitrate was included at the 100% level (18 g nitrate/kg diet DM) on both basal diets. 293 

During adaptation there was no difference (P > 0.05) in MetHb between the basal 294 

diets but blood MetHb concentrations of steers offered the Concentrate diet were 295 

consistently greater (day × basal diet interaction, P < 0.001) than those offered the 296 

Mixed diet from day 8 onwards. 297 

There was a consistent individual animal response across sampling days in 298 

MetHb concentrations when animals were offered the maximum dietary nitrate 299 
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(100%, day -6 to 101). Of 28 steers, six always had MetHb concentrations less than 300 

the median MetHb for each sampling day whilst nine steers consistently had MetHb 301 

concentrations greater than the upper quartile. Figure 1 shows individual values for 302 

five steers with the smallest mean MetHb concentration and the five steers with the 303 

greatest mean concentrations and demonstrates consistency of steer response 304 

across time (from day -6 onwards, when 100% nitrate was offered). Maximum values 305 

for blood MetHb concentration (Table 3) were always less than 30% of total Hb. The 306 

greatest individual MetHb concentration value was 15.4%. There was no significant 307 

effect of breed on blood MetHb concentrations (P > 0.05). 308 

 309 

56-d performance test 310 

Neither age at the start (AgeST) nor Mid-BW differed between basal diets (P > 0.05; 311 

Table 4). Although not significant, the greater ADG in Mixed-fed steers (1.54 v. 1.41 312 

kg/d; P > 0.05) was associated with greater daily DMI than Concentrate-fed steers 313 

(12.0 v. 11.0 kg/day; P < 0.001). Basal diet did not affect DMI per kg BW (P > 0.05). 314 

Concentrate-fed steers were more efficient (lower RFI) than Mixed-fed steers (-0.24 315 

v. 0.22 kg; P < 0.01) due to lower daily DMI. Basal diet did not affect FD1 (P > 0.05). 316 

Mid-BW, ADG, DMI and FD1 (kg/day or g/kg BW) did not differ across 317 

treatments (P > 0.05). An interaction between basal diet and treatment was identified 318 

for FCR and RFI (P < 0.05). For concentrate-fed steers, FCR did not differ between 319 

RSC and Control treatments (P > 0.05). There was, however, a tendency for steers 320 

offered Nitrate to have improved (lower) FCR values compared to steers offered the 321 

Control (7.40 v. 8.17 kg,kg; P = 0.07). Similarly nitrate-fed steers achieved lower RFI 322 

values than steers offered the Control treatment but this was not significant (P > 323 
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0.05). When offered the Mixed basal diet, neither Nitrate nor RSC treatments differed 324 

to the Control for FCR or RFI (P > 0.05).  325 

To balance for BW, CHX steers were younger than LU steers at the start of 326 

test (442 v. 476 d; P < 0.001). Mid-BW did not differ between breeds (P > 0.05). CHX 327 

steers achieved greater ADG than LU steers (1.56 v. 1.39 kg/day; P < 0.01) with 328 

similar levels of daily DMI (11.4 v. 11.7 kg/day; P > 0.05) and lower DMI per kg BW 329 

(18.98 v. 19.98 g/kg BW; P < 0.01) to LU steers. Furthermore, FD1 was lower in CHx 330 

steers than LU steers (6.41 v. 8.28 mm; P < 0.001). Thus, CHx steers were more 331 

efficient than LU steers with lower FCR (7.39 v. 8.57 kg, kg; P < 0.001) and RFI (-0.2 332 

v. 0.22 kg; P < 0.01) values.  333 

 334 

Pre-slaughter measurements and carcass traits 335 

Carcass traits were not affected by basal diet (Table 5), except for fat score 336 

(determined by VIA) where Concentrate-fed steers had lower fat scores than Mixed-337 

fed steers (8.02 v. 9.08; P < 0.001). There was no difference between treatments for 338 

any carcass quality trait other than for FD2, where steers offered the RSC treatment 339 

had greater FD2 compared to the Control treatment (10.07 v. 8.48 mm; P < 0.05). 340 

Compared to LU steers, CHX steers had lower FD2 (6.99 v. 10.79 mm; P < 341 

0.001), greater SBW (723 v. 701 kg; P = 0.051), greater CCW (415 v. 369 kg; P < 342 

0.001) and greater KO (57.5 v. 52.8%; P < 0.001). LU steers offered the Concentrate 343 

diet had lower CCW than those offered the Mixed diet (357 v. 379 kg; P < 0.05). For 344 

visually assigned EUROP classifications, CHX steers achieved greater conformation 345 

grades (9.90 v. 8.05; P < 0.001) and lower fat grades (9.50 v. 11.03; P < 0.001) 346 

compared to the LU steers which are in agreement with the VIA data. LU steers had 347 

greater total fat content (51.4 v. 40.4 kg; P < 0.01) and lower total meat content 348 
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(258.8 v. 305.7 kg; P < 0.001) determined by VIA than CHX steers. There were 349 

neither any treatment nor breed × treatment interaction effects for any performance 350 

or carcass-related trait (P > 0.05). 351 

 352 

Discussion 353 

Methaemoglobin response to dietary nitrate 354 

Blood MetHb concentrations were monitored in Nitrate-fed steers for 128 d after 355 

introduction of nitrate to the diet: mean concentrations ranged from 2-7% of total Hb 356 

over this period with values in Concentrate-fed steers being consistently greater than 357 

in Mixed-fed steers. No individual MetHb measurement was greater than 15% of 358 

total Hb which was substantially less than 30% total Hb, the value associated with 359 

clinical symptoms of methaemoglobinemia (Bruning-Fann and Kaneene, 1993). This 360 

agrees with most studies in which animals were adapted slowly to dietary nitrate by 361 

increasing nitrate intakes over a period of weeks (cattle, Hulshof et al., 2012, van 362 

Zijderveld et al., 2011; sheep, Li et al., 2012, van Zijderveld et al., 2010). Slow 363 

adaptation to dietary nitrate allows the rate of reduction of nitrite to ammonia by the 364 

rumen microflora to increase and prevents accumulation of nitrite in the rumen and 365 

absorption from the rumen and thereby avoids conversion of haemoglobin to MetHb 366 

(Lee and Beauchemin, 2014). Only where nitrate was administered directly into the 367 

rumen (Takahashi et al., 1998; Sar et al., 2004) were greater MetHb concentrations 368 

than those found in the present study observed (34.3% and 18.37% in each of the 369 

studies, respectively), presumably because of transiently high concentrations of 370 

nitrite in the rumen generated by the method of administration. Recently, Newbold et 371 

al. (2014) removed steers from an experiment because MetHb concentrations in 372 

excess of 20% were observed during adaptation to nitrate. Although most steers 373 
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removed (8 of 9) were fed higher dietary nitrate concentrations (24 and 30 g 374 

nitrate/kg diet DM) than used in the present study, one steer removed was fed 18 g 375 

nitrate/kg diet DM. There was no evidence in the current experiment for adverse 376 

effects of dietary nitrate over the 128 d monitoring period. 377 

  Measurement of blood MetHb over a 128 d period in the present study has 378 

demonstrated (i) that after adaptation to nitrate, MetHb concentrations remained 379 

elevated and (ii) that individual steers were consistent in their response to nitrate 380 

across time, i.e., some steers always had elevated MetHb concentrations. Thus, 381 

although there was no association between MetHb and animal performance in the 382 

present study, in assessing the risk of methaemoglobinemia, this consistent 383 

difference in response to nitrate between individual animals, together with the 384 

observations of Newbold et al. (2014) should be noted. There was however no 385 

evidence for any association between meal size and MetHb concentrations in the 386 

present experiment and therefore the differences between individual animals in 387 

MetHb response to nitrate are more likely to be explained by differences between 388 

animals in rumen microflora, rates of absorption of nitrite from the rumen and the 389 

metabolism of absorbed nitrite.  390 

 391 

Basal diet and treatment effects 392 

Feeding diets containing a high proportion of cereals has been shown to reduce 393 

enteric CH4 production compared to forage-based diets (Johnson and Johnson, 394 

1995; Moss et al., 1995; Mc Geough et al., 2010; Rooke et al., 2014). This strategy 395 

is attractive, in that accompanying improvements in animal performance and 396 

efficiency has been demonstrated (Lovett et al., 2003; Mc Geough et al., 2010). In 397 

the present study, steers offered a higher proportion of concentrate in the diet 398 
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expressed better feed efficiency (RFI) than those offered a mixed forage:concentrate 399 

diet. These steers were also shown to have lower levels of CH4 production 400 

compared to steers offered higher quantities of forage (Troy et al., 2015). 401 

Consistent results in the literature demonstrate, over the short-term, that 402 

dietary nitrate can be successfully administered at levels capable of reducing CH4 403 

with no adverse effects on performance in sheep (van Zijderveld et al., 2010; Li et 404 

al., 2012; El-Zaiat et al., 2014), goats (Nguyen et al., 2010), dairy cows (van 405 

Zijderveld et al., 2011) and beef cattle (Ngoc Huyen et al., 2010). However, a 406 

comprehensive review by Bruning-Fann and Kaneene (1993) reported a reduction in 407 

feed intake when nitrate was included in the diet at 10 g nitrate/kg DM (cattle) and 30 408 

g nitrate/kg DM (sheep). In agreement, Hulshof et al. (2012) reported a tendency for 409 

calcium nitrate (fed at 22 g nitrate/kg DM) to reduce DMI by 6% in beef cattle fed a 410 

sugarcane-based diet. In contrast, Sangkhom et al. (2012) reported improved growth 411 

rates and feed conversion efficiency in growing cattle when potassium nitrate (fed at 412 

36.8 g nitrate/kg DM) was included in the diet. In agreement with most studies to 413 

date, feeding 18 g nitrate/kg diet DM had no adverse effects on DMI or ADG in the 414 

present study. Furthermore, the Nitrate treatment tended to improve FCR of steers 415 

offered the Concentrate basal diet but not the Mixed diet.  416 

  Van Zijderveld et al. (2011) reported the persistency of the effects of dietary 417 

nitrate in dairy cows fed a mixed forage and concentrate diet, in which 418 

measurements were obtained over four successive 24 d periods. No adverse effects 419 

on milk yield or energy balance were identified, but the reductions in energy losses 420 

as CH4 were not associated with any improvements in productivity. In the present 421 

study steers received the experimental diets for a minimum of 120 d and maximum 422 

of 176 d. No differences in SBW, CCW, carcass grades or yields were observed 423 

17 
 



between treatments, and thus long-term feeding of nitrate did not adversely affect 424 

the level of production.  425 

 In the wider study from which this experiment is drawn, nitrate was shown to 426 

reduce CH4 (i.e., reduced energy loss) from steers offered the Mixed diet (Troy et al., 427 

2015); however no response was observed in the present study on FCR or RFI. The 428 

benefits in reduced energy loss as CH4 observed by Troy et al. (2015) may have 429 

been counter-balanced by sub-clinical effects of nitrate. In contrast, nitrate improved 430 

the FCR of steers offered the Concentrate diet, but with no aligned reduction in CH4 431 

(Troy et al., 2015).  432 

Although increased concentrations of dietary lipid has been shown to reduce 433 

CH4 from ruminants (Martin et al., 2010; Grainger and Beauchemin, 2011; Patra, 434 

2013), at high concentrations in the diet lipid can negatively affect DMI and 435 

productivity (Brask et al., 2013). Based on a meta-analysis, Patra (2013) 436 

demonstrated that dietary lipid concentrations in excess of 6% cause problems with 437 

productivity. Such diets with high lipid levels which negatively affect productivity are 438 

unsuitable for livestock producers due to their adverse consequences on the 439 

profitability of the enterprise. However, since the AHEE level in the RSC treatment 440 

was only 48 g/kg DM this dietary lipid concentration did not suppress DMI and no 441 

adverse effects were observed for any performance or carcass-related trait. The 442 

RSC treatment was shown to positively reduce CH4 production by 7.5% from steers 443 

offered the Mixed basal diet but no reduction in CH4 was observed on the 444 

Concentrate diet (Troy et al., 2015). 445 

 446 

Breed effects 447 
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Data on the performance and efficiency of native hill breeds in direct comparison to 448 

the more common breeds of finishing cattle are sparse in the literature. The 449 

performance of the LU breed on the two finishing basal diets and dietary treatments 450 

considered here have not been reported to date, and thus provides novel insight into 451 

the performance of this breed when managed within indoor finishing units. When 452 

given diets typical of indoor finishing systems in the UK, considerable differences in 453 

performance characteristics between LU and CHx steers were determined. CHx 454 

steers expressed greater rates of ADG, consumed lower DMI (/day and /kg BW), 455 

thus had better feed efficiency compared to the LU steers. This inefficiency will have 456 

considerable impact on profitability. Although both breeds reached similar SBW, CHx 457 

cattle yielded greater CCW and better EUROP classifications, both of which are 458 

incorporated into current payment schemes in the UK. These differences are not 459 

unexpected given the selection history of these breeds. Here LU cattle are being 460 

compared with a breed intensively selected for fast growth, however in comparison 461 

to the average 2014 Scottish figures for ADG of cereal-based finishing enterprises 462 

(1.34 kg/d) (QMS, 2014), the Concentrate-fed LU cattle performed well (1.32 kg/d). 463 

Given the animal performance results reported here, it is anticipated that the dietary 464 

mitigation strategies considered will not adversely affect health or performance of 465 

either breed type. Consequently, the same practical advice with regard to dietary 466 

mitigation strategies can be given to commercial beef finishers looking to reduce 467 

CH4 regardless of the breed types being finished.  468 

 469 

Conclusions 470 

This study demonstrated that (i) the addition of nitrate to the diet or (ii) increasing the 471 

level of dietary lipid through the use of cold-pressed RSC, does not adversely affect 472 

19 
 



either the performance or feed efficiency of finishing beef steers when used within 473 

either a Mixed forage/concentrate diet or a high Concentrate diet. The use of nitrate 474 

in the diet of ruminants has been limited to date due to the potential toxicity of the 475 

intermediate product (nitrite) which, at high levels, can severely impact animal health 476 

and productivity. The present study demonstrated that, following an appropriate 477 

adaptation period (four weeks), feeding of nitrate at the level considered here (18 g 478 

nitrate/kg diet DM) together with the basal diet types studied did not provide 479 

measureable adverse effects, in terms of blood MetHb response (where the 480 

maximum level reached was 15% of total Hb), animal performance and carcass 481 

characteristics. This study demonstrated that the use of RSC to increase the level of 482 

dietary lipid from 25 to 48 g AHEE/kg diet DM did not suppress DMI or ADG. 483 

Furthermore, based on the same steers Troy et al. (2015) demonstrated the 484 

effectiveness of these dietary treatments within a Mixed diet for reducing CH4 (CH4 485 

yield was reduced by 17% and 7.5% through the use of nitrate and RSC treatments, 486 

respectively). Therefore, it is concluded that these are appropriate strategies on 487 

Mixed diets. Although the use of these mitigation strategies within a high concentrate 488 

diet was shown in the present study to provide no adverse effects on performance, 489 

they were not effective at reducing CH4 yield (Troy et al., 2015) and therefore cannot 490 

be recommended for use within high concentrate diets.  491 
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Table 1 Ingredient composition and calculated chemical composition of experimental diets 631 

Basal Diet Mixed  Concentrate 

Treatment Control Nitrate RSC  Control Nitrate RSC 

Ingredient composition, g/kg DM1 

Grass silage 189 193 192  
   

Whole crop barley silage 331 334 334  
   

Barley straw 
   

 84 84 83 

Barley 328 374 287  740 797 700 

Rapeseed meal 123 45 16  145 63 19 

Rapeseed cake 
  

142  
  

167 

Calcinit2 
 

24 
 

 
 

24 
 

Molasses 19 21 20  21 21 21 

Minerals3 9 10 9  10 10 10 

 

Chemical composition, g/kg DM4 

Dry matter (g/kg) 543 539 541  863 860 865 

CP 143 148 145  133 138 136 

ADF 252 240 253  145 130 143 

NDF 376 361 367  237 220 223 

Starch 234 257 211  430 458 408 

AHEE 23.9 23.4 44.1  27.0 26.6 51.0 

Ash 48 44 50  36 31 37 

ME (MJ/kg DM) 11.6 11.4 12.1  12.0 11.9 12.7 

GE (MJ /kg DM) 17.7 17.2 18.1  18.1 17.7 18.7 
1Ingredient composition is the mean of the daily diets received by the animals across the 632 

experimental period. 633 
2Contained (g/kg DM): nitrate, 769; Ca, 229. 634 
3Contained (mg/kg): Fe, 6036; Mn, 2200; Zn, 2600; Iodine, 200; Co, 90; Cu, 2500; Se 30; 635 

(µg/kg): vitamin E, 2000; vitamin B12, 1000; vitamin A, 151515; vitamin D, 2500 636 
4Chemical composition is the mean of 2 analyses per treatment, apart from DM which is the 637 

mean of 32 analyses. 638 

RSC, Rapeseed Cake; AHEE, acid hydrolysed ether extract; ME, metabolisable energy; GE, 639 

gross energy 640 

 641 

 642 
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Table 2 Chemical composition of feeding stuffs (g/kg DM) 643 

  Grass Silage WCBS Straw Barley RSM RSC Molasses 

DM (g/kg) 273 557 807 867 896 901 971 

CP 150 103 16 104 367 318 67 

NDF 486 575 826 163 326 209 0 

ADF 345 390 551 86 243 197 0 

Starch 5.7 122 0 571 52 41 0 

AHEE 36 12.6 14 30 27 170 0 

Ash 80 41 63 22 79 75 147 

NCGD (% DM)   44 88 73 78 0 

ME (MJ /kg DM) 11.4 10.75 6.5 13.05 10.9 15.15 12.7 

GE (MJ /kg DM) 19.1 16.0 15.0 18.7 19.3 22.4 14.25 

pH 4.1 5.3      

WCBS, whole crop barley silage; RSM, rapeseed meal; RSC, rapeseed cake; DM, dry 644 

matter; AHEE, acid hydrolysed ether extract; NCGD, neutral cellulase and gammanase 645 

digestibility; ME, metabolisable energy; GE, gross energy 646 

ME values (Thomas, 2004), were either estimated from near infra red spectroscopy (silage 647 

and WCBS), from NCDG and AHEE (barley, RSM and RSC) or from tabulated values for 648 

feed composition (straw and molasses).  649 

 650 
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Table 3 Changes in mean and maximum individual blood MetHb concentration (% total Hb) in relation to nitrate intake and long-term nitrate 651 

feeding 652 

Day1 -27 -20 -13 -6 8 87 101  Significance 
Nitrate (%)2 25 50 75 100 100 100 100 SEM Day Diet Day*Diet 
Mixed 0.26a 0.78ab 0.80ab 3.50c 2.16bc 1.29ab 3.60c 0.61

 

*** * *** 
Concentrate 0.32a 0.62a 0.98a 2.80b 4.53bc 6.46d 4.61c     
Maximum 0.60 2.00 3.20 9.50 11.60 15.40 10.30     

Number of steers = 28 653 
1Day relative to start of 56 day performance period. 654 
2Nitrate as percentage of maximum level of intake (100% = 18 g/kg DM). 655 

Within a row, means without a common superscript differ (P < 0.05).  656 

*P < 0.05; ***P <0.001. 657 

 658 

 659 

 660 

 661 

 662 

 663 

 664 

 665 

 666 

 667 

 668 

 669 
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Table 4 Effect of breed (B), basal diet (D) and treatment (T) on growth, feed intake and feed efficiency of Charolais-sired (CHX) and purebred 670 

Luing (LU) steers fed either a Mixed- or Concentrate-based diet containing one of three treatments: Control, Nitrate or Rapeseed cake (RSC) 671 

Basal Diet Mixed  Concentrate        

  

  

Treatment Control RSC Nitrate  Control RSC Nitrate  

 

Significance1 

Breed CHX LU CHX LU CHX LU  CHX LU CHX LU CHX LU  SEM B D T 

AgeST (days) 445 478 434 474 437 474  449 481 444 482 441 465  7.9 *** ns ns 

Mid-BW (kg) 611 601 591 594 605 596  594 567 588 573 602 571  22.2 ns ns ns 

Mid-MBW (kg) 123 121 120 120 122 121  120 116 119 117 121 117  3.4 ns ns ns 

ADG (kg/day) 1.56 1.48 1.71 1.42 1.61 1.46  1.47 1.32 1.46 1.19 1.53 1.44  0.092 ** ns ns 

DMI (kg/day) 11.4 12.8 11.7 11.8 12.1 12.2  11.1 11.2 11.1 10.9 10.7 11.0  0.50 ns *** ns 

DMI/BW(g/kg) 18.7 21.2 19.8 19.9 19.9 20.5  18.8 19.8 18.8 19.0 17.8 19.1  0.49 ** ns ns 

DMI/MBW(g/kg) 93.0 105.0 97.7 98.0 98.7 101.3  92.5 96.7 92.7 92.8 88.0 93.5  2.52 ** ns ns 

FCR (kg, kg)2 7.45 8.69 6.86 8.39 7.61 8.49  7.59 8.85 7.70 9.33 7.16 7.67  0.421 **** ns ns 

RFI (kg)3 -0.27 0.76 -0.15 -0.06 0.44 0.62  -0.27 0.12 -0.22 -0.10 -0.71 -0.18  0.228 ** ** ns 

FD1 (mm)4 6.31 8.83 6.87 9.12 5.89 7.53  6.85 8.34 6.65 8.49 5.87 7.25  0.650 *** ns ns 

Number of animals = 81; AgeST, Age at start of test; Mid-BW, mid-test BW; Mid-MBW, mid-test metabolic BW; ADG, average daily gain at the 672 

end of the 56 d test; FCR, feed conversion ratio; RFI, residual feed intake; FD1, fat depth at the 12/13th rib at the end of the 56 d test 673 
1Breed × Diet and Breed × Treatment interaction effects were not significant for all variables (P > 0.05) 674 
2Diet × Treatment interaction (P < 0.05): Concentrate-Nitrate different to Concentrate-RSC (P < 0.05); Concentrate-Control different to 675 

Concentrate-Nitrate (P = 0.07)  676 
3Diet × Treatment interaction (P < 0.05): Mixed-Nitrate different to Mixed-RSC (P < 0.01) 677 
4Deviation from breed mean of FD0 (measured at start of 56-d performance test) fitted as covariable 678 

*P < 0.05; **P <0.01; ***P <0.001.  679 
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Table 5 Effect of breed (B), basal diet (D) and treatment (T) on carcass traits of Charolais-sired (CHX) and purebred Luing (LU) steers fed 680 

either a Mixed- or Concentrate-based diet containing one of three treatments: Control, Nitrate or Rapeseed cake (RSC) 681 

Basal Diet Mixed  Concentrate        

  

  

Treatment Control RSC Nitrate  Control RSC Nitrate  

 

Significance1 

Breed CHX LU CHX LU CHX LU  CHX LU CHX LU CHX LU  SEM B D T 

FD2 (mm)2 6.31 10.17 7.84 12.90 6.47 9.28  6.60 10.83 8.03 11.50 6.67 10.06  0.907 *** ns * 

CCW (kg)3 430 370 406 385 408 382  417 365 411 361 418 346  9.4 *** ns ns 

KO (%) 58.4 52.3 56.7 53.7 57.0 53.1  58.4 52.8 57.3 53.0 57.4 51.5  0.88 *** ns ns 

SBW (kg) 738 710 717 719 717 720  713 694 718 682 729 672  19.5 ns ns ns 

CONF 10.3 8.0 9.7 8.3 9.7 8.3  10.0 8.0 9.4 8.0 10.3 7.7  0.34 *** ns ns 

FAT 10.0 10.6 10.0 12.0 8.7 10.6  9.4 10.7 9.4 11.0 9.4 11.3  0.44 *** ns ns 

CONF (VIA) 10.7 8.0 9.8 8.0 9.6 7.6  10.3 7.4 9.9 6.9 9.8 6.7  0.53 *** ns ns 

FAT (VIA) 7.9 10.7 8.3 10.2 7.5 10.0  7.6 8.7 7.6 9.3 6.6 8.7  0.47 *** *** ns 

TOTFat (kg) 46.4 51.3 42.1 70.7 38.1 50.1  41.8 44.5 34.7 45.9 37.8 42.8  5.95 ** ns ns 

TOTMeat (kg) 314.0 256.6 294.2 261.9 299.0 270.0  308.9 260.7 306.3 259.2 312.0 244.5  8.09 *** ns ns 

Number of animals = 81; FD2, pre-slaughter fat depth at the 12/13th rib; CCW, cold carcass weight; KO, killing out %; SBW, slaughter BW; 682 

CONF, EUROP conformation (15 pt scale) assigned by visual assessor; FAT, EUROP fatness (15pt scale) assigned by visual assessor; CONF 683 

(VIA), conformation grade (15pt scale) assigned by VIA; FAT (VIA), fatness grade (15pt scale) assigned by VIA; TOTFat; total fat content 684 

predicted by VIA; TOTMeat, total meat content predicted by VIA. 685 
1Breed × Treatment and Basal Diet × Treatment interaction effects were not significant for all variables (P > 0.05). 686 
2Deviation from breed mean of FD0 (measured at start of 56-d performance test) fitted as covariable 687 
3Breed × Diet interaction (P < 0.05): CHX-Concentrate different from LU-Concentrate and LU-Mixed (P < 0.001); CHX-Mixed different from LU-688 

Concentrate and LU-Mixed (P < 0.001); LU-Mixed different from LU-Concentrate (P <0.01).  *P < 0.05; **P <0.01; ***P <0.001. 689 
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List of Figure Captions 690 

Figure 1 Changes in Met-haemoglobin (MetHb) concentrations (% total blood Hb) when fed 691 

100% dietary nitrate (18 g nitrate/kg DM) for 5 steers with overall smallest and overall 692 

greatest mean MetHb concentrations. Solid lines and dashed lines represent the Mixed and 693 

Concentrate basal diets, respectively. Samples 1 to 4 refer to sampling days -6, 8, 87 and 694 

101, respectively. Each line represents an individual animal. Sample 4 was not present for 3 695 

animals as had been already been sent for slaughter before day 101. 696 

 697 
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