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Abstract 13 

In order to assess the extent of genotype by environment interactions (GxE) and 14 

environmental sensitivity in sheep farm systems, environmental factors must be 15 

identified and quantified, after which the relationship with the traits(s) of interest can 16 

be investigated. The objectives of this study were to develop a farm environment 17 

scale, using a canonical correlation analysis, which could then be used in linear 18 

reaction norm models. Fine-scale farm survey data, collected from a sample of 39 19 

Texel flocks across the UK, was combined with information available at the national 20 

level. The farm survey data included information on flock size and concentrate feed 21 

use. National data included flock performance averages for 21 week old weight 22 

(21WT), ultrasound back-fat (UFD) and muscle (UMD) depths, as well as regional 23 

climatic data. The farm environment scale developed was then combined with 24 

181555 (21WT), 175399 (UMD) and 175279 (UFD) records from lambs born 25 

between 1990-2011, on 494 different Texel flocks, to predict reaction norms for sires 26 

used within the population. A range of sire sensitivities estimated across the farm 27 

environment scale confirmed the presence of genetic variability as both “plastic” and 28 

“robust” genotypes were observed. Variations in heritability estimates were also 29 
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observed indicating that the rate genetic progress was dependent on the 30 

environment. Overall, the techniques and approaches used in this study have proven 31 

to be useful in defining sheep farm environments. The results observed for 21WT, 32 

UMD and UFD, using the reaction norm models, indicate that in order to improve 33 

genetic gain and flock efficiency, future genetic evaluations would benefit by 34 

accounting for the GxE observed.  35 

Keywords 36 

Sheep; Reaction Norms; Genotype x Environment Interactions; Environmental 37 

Sensitivity 38 

Implications 39 

Although there are a wide range of different sheep farming systems in the UK, there 40 

is relatively little information with regards to the extent of genotype by environment 41 

interactions and environmental sensitivity present within the industry. This study has 42 

demonstrated an approach for defining sheep farm environments, which was then 43 

used in the reaction norm analyses of Texel sheep. A range of sire sensitivities were 44 

observed across the different environments. The ability to identify this variation in 45 

sensitivities could allow the identification and selection of sires predicted to best suit 46 

specific farm environments, thus improving flock performance. 47 

Introduction 48 

The subject of genotype by environment interactions (GxE), and their effect on 49 

livestock breeding across the globe, can be complex and dependent on a number of 50 

different factors. In addition to identifying the presence of GxE, by methods such as 51 

the inclusion of an interaction term in the traditional quantitative genetic model or by 52 

estimating genetic correlations between different individual environments, the degree 53 
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by which genotypes vary across environments is also of interest. This is often 54 

referred to as phenotypic plasticity (Bradshaw, 1965; de Jong and Bijma, 2002) or 55 

environmental sensitivity (Falconer, 1990; Kolmodin et al., 2002). Genotypes are 56 

considered “plastic” if they demonstrate highly variable phenotypes across 57 

environments or “robust” if they remain relatively constant (de Jong and Bijma, 2002; 58 

Bryant et al., 2005). In addition to methods such as those described by SanCristobal-59 

Gaudy et al. (2001), Hill and Zhang (2004) and Mulder et al. (2007) regarding 60 

selection based on genetic heterogeneity of environmental variance in order to 61 

estimate environmental sensitivity an alternative method is the use of reaction 62 

norms, obtained by random regression on environmental descriptors (Strandberg et 63 

al., 2000; Kolmodin et al., 2002; Fikse et al., 2003). In other words, the model 64 

describes the phenotype expressed by a certain genotype over a number of different 65 

environments and can be particularly useful when environments are described along 66 

a continuous scale or gradient (de Jong and Bijma, 2002). The use of a continuous 67 

scale to define the environment also means that there is less reliance on genetic 68 

connections between each individual environment, thus removing some of the 69 

problems observed by McLaren et al. (2014). When environments were not well 70 

connected, the estimation of reliable genetic correlations proved difficult.  71 

The regression of sire breeding values on a continuous measure of environment, in 72 

which records from their offspring exist, allows reaction norms to be predicted for 73 

individual sires (Kolmodin et al., 2002). In terms of animal breeding, early studies for 74 

lactation in dairy cattle used random regression test day models to predict the 75 

lactation curves of individual dairy cows (Schaeffer and Dekkers, 1994). However 76 

more recently, interest has grown with regards to their use to describe the variation 77 

of performance across environmental gradients such as those in dairy cattle (Calus 78 
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et al., 2002; Kolmodin et al., 2002; Strandberg et al., 2009), beef cattle (Mattar et al., 79 

2011; Santana et al., 2013a), pigs (Knap and Su, 2008) and sheep (Pollot and 80 

Greeff, 2004; Santana et al., 2013b).  81 

In order to assess the extent of environmental sensitivity, and any associated GxE, 82 

environmental factors need to be identified and quantified, after which the 83 

relationship with the trait(s) of interest can be investigated. In experimental 84 

situations, environments can often be clearly defined, allowing relatively 85 

straightforward analyses. However, in commercial animal breeding circumstances, 86 

analyses can become more complicated, with a range of different factors 87 

determining each farm environment (FE). This is particularly true for sheep systems, 88 

which can differ in a number of aspects such as climatic conditions, flock size, health 89 

status and level of inputs. There are a number of different methods to determine FE, 90 

including the use of specific environmental descriptors such as rainfall and 91 

temperature (Ravagnolo and Misztal, 2000; Fikse et al., 2003), the use of phenotypic 92 

means or deviations (Calus et al., 2002; Kolmodin et al., 2002) as well as the 93 

identification of contemporary groups (Pollott and Greeff, 2004; Mattar et al., 2011; 94 

Santana et al., 2013b).  95 

Alternatively, a method similar to the one used by Haskell et al. (2007), while 96 

assessing the effect of different environments on the lifespan of dairy cattle, may 97 

prove useful in defining sheep FE. This method involves establishing a relationship 98 

between fine-scale information provided by a sample of farms with information 99 

available nationally for all farms. The scale developed by Haskell et al. (2007) has 100 

also been used by Strandberg et al. (2009) while investigating fertility traits in dairy 101 

cattle. The development of a similar scale, applicable to sheep systems, would 102 
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potentially allow future genetic evaluations to take GxE into account. Farmers could 103 

identify where their system would lie along an environmental scale, from which they 104 

could select animals predicted to suit their FE. Any negative effects from GxE that 105 

may be evident would potentially be reduced, thus enabling farmers to improve their 106 

production level through the increased knowledge of predicted animal performance.  107 

The aims of this study were therefore to a) relate fine-scale, farm-level data, 108 

collected from a sample of UK Texel flocks, with information available at the national 109 

level, using a canonical correlation analysis in order to provide a definition of a FE 110 

scale and b) to assess the effect of FE on individual Texel sires for lamb 111 

performance traits, across the UK, using the analysis of reaction norms. The 112 

heritability of lamb performance traits across the FE scale and correlations between 113 

different points along the FE scale were also investigated.  114 

Materials and methods  115 

Farm environment definition 116 

In order to obtain greater insight into the different management systems used on 117 

each farm, and therefore overall farm environments, a survey was carried out 118 

involving members of the UK’s national sheep improvement programme, ‘Signet 119 

Sheepbreeder’ (www.signetfbc.co.uk). A questionnaire was developed and sent to all 120 

515 members across the UK, in 2009. Questions posed covered aspects such as 121 

farm location and land cover; sheep numbers and breed; management of the flock 122 

throughout the year; health treatments and the use of labour. The questionnaire and 123 

results have been discussed in detail by McLaren et al. (2014). Data collected from 124 

the 40 Texel flocks that responded were used in the current study. The data 125 

collected regarding the use of concentrate feed was selected to provide information 126 
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on the level of feed inputs for each flock, from which an FE scale could be 127 

developed. The use of concentrate feed information allowed the identification of 128 

purely pasture-based systems and those that used additional feeding throughout the 129 

year.  130 

Traits chosen to describe all farm environments across the UK were selected on the 131 

basis that they were readily available for all flocks. They included flock averages for 132 

21 week old weight (21WT), ultrasound back-fat (UFD) and muscle (UMD) depths, 133 

as well as annual averages for rainfall, number of sun hours and temperature values. 134 

The flock averages for 21WT, UFD and UMD were calculated using performance 135 

records available from the Signet Sheepbreeder programme. The Texel breed 136 

performance record their flocks using the terminal sire index which places a heavy 137 

emphasis on these lamb carcass related traits in order to increase the overall yield of 138 

lean meat in the carcass whilst attempting to reduce and associated increase in fat 139 

levels (Simm and Dingwall, 1989). Unlike some other breeds and breeding indexes, 140 

less emphasis is placed on maternal traits. A total of 183153 pure Texel lamb 141 

performance records, from 536 different flocks, between 1990 and 2011, were 142 

analysed. For each flock, adjusted averages for 21WT, UMD and UFD were 143 

obtained by applying the following fixed effects model, using ASReml (Gilmour et al., 144 

2002): 145 

Trait = mean + sex + age + litter size at birth + birth year + rearing dam age + (sex x 146 

age) + flock  147 

Age was the age of the lamb (in days) at measurement, treated as a covariate. 148 

Rearing dam age was included as a fixed effect measured in years (7 levels: 1 to 149 
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≥7). Other factors included lamb birth year (22 levels: 1990 to 2011); sex (2 levels: 150 

male and female); litter size at birth (4 levels: 1 to ≥4) and flock (536 levels).  151 

Farm postcodes were used to identify the farm location and subsequently the 152 

relevant weather data available from the 10 regions across the UK, as provided by 153 

the Met Office (http://www.metoffice.gov.uk/climate/uk/datasets/). Average annual 154 

means were calculated for the 5-year period between 2005 and 2009 for regional 155 

temperature, rainfall and number of sun hours. This time period was the 5-year 156 

period prior to the questionnaire being distributed and was used as representative of 157 

the environmental conditions experienced by the flocks throughout the time span of 158 

the data. Only 3% of records in the dataset were from animals born outside the 159 

spring months of March, April and May, therefore the majority of farms followed a 160 

similar calendar of production. 161 

Canonical correlation analysis 162 

With the aim of assessing the relationship between the variables obtained from the 163 

questionnaire (the criteria variables P) and the weather and production variables 164 

available for all flocks in the UK (the predictor variables Q), a canonical correlation 165 

analysis (Clark, 1975), was carried out using Genstat (11th edition, VSN International 166 

Ltd, 2008), similar to the method used by Haskell et al. (2007). The Q-variables, in 167 

this analysis, were available for all farms and were the adjusted averages for 21WT, 168 

UMD and UFD as well as the overall 5-year average annual rainfall, temperature and 169 

number of sun hour values. The P-variables were from the flocks involved in the 170 

initial survey and were: the size of the flock (number of breeding ewes) recorded; the 171 

number of weeks lambs had access to concentrate feeding before weaning (0 to ≥12 172 

weeks); the number of months concentrate feeding was fed to the ewes (0 to 6 173 
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months) and whether or not the rams were fed concentrates during the month before 174 

mating (0 = no, 1 = yes). Overall, the analysis was based on P- and Q-variables from 175 

39 out of the original 40 Texel flocks that responded to the questionnaire, due to one 176 

farm having no records for 21WT, UMD or UFD in the dataset. 177 

Reaction norm analysis 178 

The original data set was reduced to 181555 individual lamb records after removing 179 

records that had no sire allocated as well as data from farms without data for all 180 

three traits studied (Table 1). The best linear combination of Q-variables, identified 181 

by the canonical correlation analysis, was then used to calculate a FE score for 494 182 

flocks in the national data set. Of the 5938 different sires represented in the data, 183 

4572 were used in only one flock whereas 1366 were used in multiple flocks, 184 

including 3 that were used in 30 flocks or more. 185 

Table 1 here 186 

Sire models, along with a sire pedigree file containing 9775 records, were used to 187 

analyse the data. The base model (A) included sire, flock and a sire by flock 188 

interaction as random effects (as shown in bold and italics): 189 

Trait = mean + sex + age + litter size at birth + birth year + rearing dam age + (sex x 190 

age) + sire + flock + (sire x flock)  191 

Following on from this, the covariate of FE was added to model A to form model B. 192 

Phenotypic observations of lamb performance were then regressed, within sire, on 193 

FE by adding an environmental variable to the random effects in the model, thus 194 

allowing the level (intercept) and slope of a linear reaction norm to be estimated for 195 

each sire (model C). By fitting FE as a fixed covariate, FE fits the overall regression 196 
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and therefore removes/corrects its effect. The inclusion of the sire x FE random 197 

effect allows the deviations from the overall trend line to be represented for each 198 

sire. Model C was therefore: 199 

Trait = mean + sex + age + litter size at birth + birth year + rearing dam age + FE + 200 

(sex x age) + sire + (sire x FE) + flock + (sire x flock)  201 

The flock and sire x flock terms represented residual effects that were unexplained 202 

by the reaction norm for each sire. Although two flocks may have the same FE value 203 

in the regression for the reaction norm, they may have different sire x flock terms. 204 

Haskell et al. (2007) commented that retaining these terms is important in order to 205 

preserve the correct variance-covariance structure in the mixed model.  206 

Preliminary analysis indicated that the environmental variance was not constant 207 

across environments. In order to estimate the heterogeneity of environmental 208 

variance, and based on the preliminary analyses, FE values were grouped into 6 209 

environmental classes and separate residual variances estimated for each, using 210 

model D (derived from model C). The environmental classes were based on different 211 

sections of the FE scale. For each trait, the classes were: a (-1.40 to -0.5); b (-0.5 to 212 

0); c (0 to 0.6); d (0.6 to 1.2); e (1.2 to 1.7) and f (1.7 to 2.66). Class c and d 213 

represented an average environment, centring on the middle point of the FE scale 214 

(0.6). Classes a and b represented environments at the low end of the scale, 215 

whereas classes d and f represented environments at the high end of the scale.  216 

Models B, C and D were tested using the log likelihood ratio test (LR) to determine if 217 

they were significantly different. Model B was tested against model C in order to 218 

identify if the inclusion of the sire x FE random effect was significant. The test 219 

statistic, LR = 2(logL0 – logL1), had a X2 distribution with 1 degree of freedom. 220 

9 
 



Additionally, in order to test the significance of accounting for heterogeneity of 221 

environmental variance, model D was tested against model C. Model C assumed a 222 

constant environmental variance, whereas model D allowed for different 223 

environmental variances for each environmental class (n=6). Therefore the test 224 

statistic, when model C was tested against model D, had a X2 distribution with 5 225 

degrees of freedom.  226 

Sensitivity and heritability analysis 227 

The use of reaction norm models allow the estimation of sire sensitivities, as well as 228 

genetic variances and heritabilities, across the environment FE values, similar to the 229 

methods used by Kolmodin et al. (2002) and Pollott and Greeff (2004) The sensitivity 230 

for each sire represents the extent to which the sire effect is dependent on the FE 231 

score. The values estimated for the slope of each sire reaction norm were used to 232 

represent the sensitivity. The genetic variance at each point along FE scale (σ2
g|FE), 233 

was calculated using the following equation:  234 

σ2
g|FE

 = σ2
a + FE2 σ2

b + 2FEσab  235 

Where σ2
a represents the reaction norm intercept variance, σ2

b represents the 236 

reaction norm slope variance and σ2
ab represents the covariance. Similarly, 237 

heritability estimates at each point along the FE scale (h2|FE) were estimated using 238 

the equation: 239 

h2|FE = 4σ2
g|FE /(σ2

g|FE + σ2
f + σ2

sf + σe
2) 240 

Where σ2
g|FE represents the genetic variance at each point on the FE scale, σ2

f 241 

represents the flock variance, σ2
sf represents the sire x flock variance and σe

2
 242 

represents the residual environmental variance. The heritability estimates for Model 243 
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C were adjusted by replacing σe
2 with the residual variance for each of the 6 244 

environmental classes (a-f).  245 

Genetic correlations between each point along the FE scale (two levels, FE1 and 246 

FE2), for each trait, were also calculated using the equation: 247 

rgFE1FE2 = [σ2
a + FE1FE2σ2

b + (FE1+FE2)σab] / �σ2g|FE1 σ2g|FE2 248 

Where σ2
g|FE1  and σ2

g|FE2  are the genetic variances in FE1 and FE2 respectively,  249 

(σ2
g|FE1

 = σ2
a + FE1

2 σ2
b + 2FE1σab and σ2

g|FE2
 = σ2

a + FE2
2 σ2

b + 2FE2σab). 250 

Results 251 

Questionnaire data 252 

The results of the questionnaire, in relation to the concentrate feed used for ewe and 253 

pre-weaned lamb feeding, are shown in Figure 1. Rams were provided with 254 

concentrate feed during the month prior to mating in 34 out of the 39 flocks. The 255 

majority of flocks lambed during February and March. When asked to classify their 256 

overall farm, in terms of the stratified production levels, 64% classed their farms as a 257 

lowland system, 33% as an upland system and 3% as a hill system. The average 258 

flock size was 80 ewes, ranging from 12 to 220. 259 
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 260 

Figure 1. Concentrate feed use for (i) ewes and (ii) lambs.  261 
 262 

Canonical correlation analysis 263 

The first canonical variables were scaled so that the maximum coefficient in each 264 

case was + 1 resulting in the following equations: 265 

P Value = +1.00 x Rams fed concentrates + 0.002 x Number of weeks concentrate 266 

feed available to lambs pre-wean - 0.005 x Recorded ewe flock size - 0.432 x 267 

Number of months ewes fed concentrates. 268 

Q Value = -1.00 x UFD - 0.0001 x Rainfall - 0.001 x Sun Hours + 0.104 x 21WT + 269 

0.235 x UMD + 0.249 x Temperature.  270 
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The corresponding canonical correlation between P and Q was 0.73. The first 271 

canonical P-variate represented the level of concentrate used in each system, with 272 

large, positive, values representing farms that fed their rams and lambs prior to 273 

mating and weaning respectively. In addition, they had a lower flock size and the 274 

ewes were fed for fewer months throughout the year. Low, negative, values 275 

represented larger flocks which fed their ewes for a longer period during the year. 276 

They did not, however, feed their rams or lambs prior to mating and weaning 277 

respectively. The corresponding Q-variate, which utilised data available for all farms, 278 

had large, positive, values for farms with high performance averages for 21WT and 279 

UMD as well as high average temperatures and low average rainfall. The highest 280 

values along the scale were also associated with low UFD averages, as well as low 281 

rainfall and number of sun hours. Conversely, low values were associated with low 282 

temperatures and low performance averages for 21WT and UMD, as well as high 283 

average rainfall and UFD averages. Table 2 shows the correlations between all 284 

variables. Temperature and sun hours were highly correlated (r = 0.90), which may 285 

explain the change in direction for sun hours when compared to the coefficient 286 

estimated in the canonical correlation analysis.  287 

Table 2 here 288 

Reaction norm analysis 289 

The FE scale was then calculated using the weather and production information 290 

available for all 494 nationally recorded farms. By using the Q-value equation 291 

developed, the values estimated along the FE scale ranged from -1.40 to 2.66, with 292 

the average estimated across the population being 0.70. Overall, the scale went from 293 

low performance averages and poorer weather conditions to high performance 294 
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averages and improved weather conditions. To illustrate, the average FE data for the 295 

ten farms located at both extremes of the FE scale are shown in Table 3. The 296 

average values for 21WT, UMD and UFD were calculated using the original flock 297 

solutions (as estimated using the fixed effect model and that were used to calculate 298 

each Q-value) plus the average values across all levels of each fixed effect in the 299 

model. 300 

Table 3 here 301 

The variance component estimates obtained by models A, B, C and D are shown in 302 

Table 4. When models C and D were fitted, for each trait, two breeding values were 303 

produced, representing the intercept and slope of the reaction norm for each sire. 304 

The intercept value represented the average sire effect on each trait across all farm 305 

environments. The slope represented the environmental sensitivity, or in other words 306 

the amount to which the sire effect was dependent on the farm environment value.  307 

Table 4 here 308 

Based on the LR, model C, when compared with model B, significantly improved the 309 

fit of the model for 21WT and UFD (P<0.001), but not for UMD. Model D was found 310 

to be the best model for all traits (P<0.001). The results demonstrate that the 311 

inclusion of the sire x FE effect was significant for all traits, although only for UMD 312 

when heterogeneity of environmental variance was accounted for. The correlations 313 

between the intercept and slope, using model D, were all less than one and 314 

negative, 21WT (-0.49) and UMD (-0.58) and UFD (-0.49), implying the re-ranking of 315 

sires. Similar results were also obtained using model C. The reaction norms 316 

estimated for a sample of sires (the six sires with the most offspring in the data) in 317 

terms of their estimated breeding values (EBVs) for 21WT and UFD, are shown in 318 
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Figure 2. The results for UMD were similar to those observed for 21WT. Overall, for 319 

21WT and UMD, the EBVs of all sires improved as the FE improved. However, of the 320 

5853 sires with UFD information, the EBVs of 61% of sires increased and 39% of 321 

sires decreased as the FE improved.  322 

 323 

Figure 2. Reaction norms, for a sample of 6 sires (A-F), for 21 week old weight 324 
(21WT) and ultrasound fat depth (UFD) estimated breeding values (EBVs) across 325 
the farm environment (FE) scale (using model B). 326 
 327 

Heritability and correlation analysis 328 

The heritabilities estimated using model B, for 21WT, UMD and UFD were 0.15 329 

(+0.01), 0.19 (+0.02) and 0.17 (+0.02) respectively. When using model D, the range 330 

of heritability estimates for 21WT, UMD and UFD, along the FE scale were, 0.15 - 331 

0.50, 0.18 - 0.55 and 0.15 – 0.63 for each trait respectively. Similar estimates were 332 

observed when using model B also. The heritabilities estimated for 21WT and UMD, 333 

using model D, are shown in Figure 3. The heritability estimates for UFD followed a 334 

similar pattern as 21WT. The highest heritability estimates for 21WT and UFD were 335 

observed at each end of the FE scale and lowest at the mid-point, at approximately 336 

FE value 0.6. The heritability estimates for UMD followed a similar pattern, although 337 

the estimates at the high end were slightly lower than those estimated at the low 338 

end. It should also be noted that the largest standard errors, for all traits, were 339 
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associated with heritability estimates at both extremes of the FE scale. The genetic 340 

variances estimated followed a similar pattern as the heritability estimates (Figure 3). 341 

The genetic correlations estimated across the FE scale are shown in Figure 4. The 342 

correlations estimated ranged from -0.42 to 1 for 21WT, -0.22 to 1 for UMD and -343 

0.51 to 1 for UFD. The correlations shown in Figure 4, for UMD and UFD, are 344 

estimated for flocks with an average Q-value in the population (0.7) as well as those 345 

+1 standard deviation (SD) from the average. Similarly, those in Figure 5 for UMD 346 

and UFD demonstrate how the correlations change between all environments. The 347 

results for 21WT were similar to those observed for UMD and UFD. 348 

Spearman’s rank correlations were also calculated using the breeding values 349 

estimated for all 5938 sires represented in the data, between environments +0.5, 350 

+1.0 and +1.5 SD from the average Q-value. The results observed for 21WT, 351 

between -0.5 and +0.5; -1.0 and +1.0; and -1.5 and +1.5 SD from the average were 352 

0.97, 0.90 and 0.79 respectively. The correlations estimated UMD and UFD between 353 

-0.5 and +0.5, -1.0 and +1.0 and -1.5 and +1.5 SD from the average were 0.99, 0.96 354 

and 0.94 and 0.96, 0.86 and 0.72 respectively. 355 

 356 

 357 
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 358 

Figure 3. Heritability (h2) and genetic variance (σ2
g) estimates, for 21 week old 359 

weight (21WT), ultrasound muscle depth (UMD) as functions of the farm 360 
environment (FE) scale (using model D). 361 

 362 

Figure 4. Genetic correlations estimated for ultrasound muscle depth (UMD) and 363 
ultrasound fat depth (UFD) across the farm environment (FE) scale. Graphs shown 364 
are between flocks with environment values of -1 SD from the average, average and 365 
+1 SD from the average, respectively, and all other environments along the FE 366 
scale.  367 

 368 
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 369 

Figure 5. Genetic correlations estimated across the farm environment (FE) scale 370 
between pairs of farm environments (FE1 and FE2) for ultrasound muscle depth 371 
(UMD) and ultrasound fat depth (UFD). 372 
 373 

Discussion 374 

Defining farm environment  375 

The canonical correlation analysis used in the present study provided an opportunity 376 

to relate fine scale information gathered from a sample of farms, with information 377 

available from farms at a national level. The concentrate feed-related variables 378 

obtained from the farm survey were selected for further analysis in order to improve 379 

our knowledge of the effects that different feeding regimes may have. When using 380 

canonical correlation analysis it is important to be aware of the sensitivity of the 381 

method with regards to any changes to the variables used (Hair et al., 2006). 382 

Although the results should be treated with a certain level of caution, due to the fact 383 

that the analysis was based on 40 randomly selected farms, they are still worthy of 384 

consideration. The canonical correlation estimated was reasonably high (0.73), 385 

therefore suggesting that the first canonical Q-variable was a useful measure of 386 

system input (in terms of the use of supplementary feed), and thus FE overall. The 387 
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correlation estimated by Haskell et al. (2007), when defining dairy farm FE, using a 388 

similar method, was 0.62. An interpretation of the first Q variable suggests, in terms 389 

of the production averages, that high FE values were associated with high 390 

performance averages for 21WT and UMD, and low averages for UFD. The Terminal 391 

Sire Index, within which the majority of Texel breeders record, has weightings on 392 

each of these traits in order to improve 21WT and UMD while reducing any 393 

associated rise in UFD (Simm and Dingwall, 1989; Macfarlane and Simm, 2007). 394 

Therefore the FE scale developed is a relatively good reflection of the overall aim of 395 

the breeding index. Similarly, the direction of the weather variables, in general, 396 

suggests that the highest FE values are associated with higher average 397 

temperatures and lower rainfall. This would agree with the general assumption that 398 

areas with better weather conditions have improved environments in terms of 399 

aspects such as pasture availability and quality.  400 

The first canonical P-variable, using data from the survey farms, provided an 401 

interesting result when compared with the corresponding canonical Q-variable. 402 

Farms with a high P value were associated with a higher use of ram and pre-weaned 403 

lamb concentrate feeding, but less so with ewe feeding and the overall flock size. 404 

The majority of flocks fed their rams during the month before mating. However, there 405 

was quite a range in the number of weeks before weaning, during which lambs had 406 

access to supplementary feed. The increased use of concentrate feed, particularly 407 

for pre-weaned lambs, is likely to have helped improve the production averages. 408 

However, when considered alongside the weather variables, it would seem that 409 

these farms already had a favourable FE and therefore these farms have chosen to 410 

try and improve the environment further by allowing their lambs access to feed 411 

before they are weaned.  412 
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Farms with a lower P value fed their ewes for a longer period during the year than 413 

those at the other end of the scale. This could again be related to the weather 414 

variables. In areas with lower average temperatures and higher rainfall, the 415 

increased use of feeding could be used to help maintain the condition of the ewe 416 

throughout pregnancy, and possibly post-pregnancy. This could be because the 417 

ewes have been kept outside in potentially poorer conditions where grass growth 418 

can be limited for a greater number of months. Alternatively, in order to remove the 419 

effects of the poorer weather conditions, they may have been housed for a longer 420 

period of time before and during lambing. Whatever the system used, both rely on 421 

the use of substantial amounts of supplementary feed for the ewes. The emphasis 422 

has therefore moved from improving lamb performance further, to perhaps better 423 

maintaining the ewe throughout pregnancy. With the variation over the past few 424 

years in the price of concentrate feed, both nationally and worldwide, if feed prices 425 

increase, while the price of lamb does not increase at a similar rate, farmers may 426 

decide to make adjustments to their management system. Should they cut back on 427 

the level of feed that they provide to their flocks, by using the scale described in the 428 

present study, farmers could potentially identify sires best suited to which ever 429 

system they choose to pursue. 430 

Although the initial aim of the analysis was to identify a way of measuring the level of 431 

concentrate feed use, the resulting FE scale, as estimated using the first canonical 432 

Q-value, was not dissimilar to a production level-type scale. Similar scales have 433 

been used in studies such as those by Strandberg et al. (2009), who, in addition to 434 

using the FE scale developed by Haskell et al. (2007), also used herd averages for 435 

production and fertility-related descriptors to define environments. Kolmodin et al. 436 

(2002), defined environments as the deviation from the overall herd-year averages of 437 
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protein production (production environment) and days open (fertility environment). 438 

Studies using sheep, such as Pollot and Greeff (2004), defined Merino production 439 

environments using the average value of each trait analysed, for each contemporary 440 

group identified. Similar methods have also been used by Santana et al. (2013b) 441 

when studying Santa Ines sheep in Brazil.   442 

However, it should be noted that before any scale can be introduced to the industry, 443 

further investigation would be required in order to identify an appropriate method by 444 

which the farmers could use this information. The scale used in the present study 445 

uses adjusted performance averages for a number of traits, therefore it may be more 446 

appropriate for the farmers to receive information with regards to a pre-calculated FE 447 

score when they receive their flock genetic evaluation data. It should also be noted 448 

that the scale discussed here was for a specific breed and specific lamb traits. It may 449 

be that the scale would be different if other breeds or traits were involved. 450 

Reaction norm analysis 451 

The reaction norms estimated for each trait suggest GxE was evident, in terms of 452 

both re-ranking and scaling. The sensitivities estimated, as represented by the slope 453 

value for each sire reaction norm, indicated that all sires represented in the dataset 454 

increased their performance, for 21WT and UMD, as the FE improved. When the 455 

overall regression coefficient was removed, there was a mix of positive and negative 456 

values indicating variation in the level of improvement across the scale. In other 457 

words some improved at a quicker rate than others. However, for UFD, the EBVs of 458 

some sires increased as the FE improved while others decreased as the FE 459 

improved. Overall, the range of slope gradients observed for each sire reaction norm 460 

indicated the presence of both scaling and re-ranking. It should be noted though that 461 
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a number of sires had sensitivities close to, or equal to, zero, indicating that there 462 

was very little variation in their performance across environments and they were 463 

therefore not influenced as much by changes in feeding regimes. Similar examples 464 

of scaling and re-ranking were observed by both Pollot and Greeff (2004) and 465 

Santana et al. (2013b), when using random regression models to investigate a 466 

number of sheep performance traits including faecal egg counts, wool, body and 467 

growth characteristics. Overall, as suggested by Haskell et al. (2007), the presence 468 

of environmental sensitivity provides an opportunity for farmers to choose sires 469 

based on the FE of their farm.  470 

When heterogeneous residual variances were investigated, their inclusion 471 

significantly improved the fit of the overall random regression model for all traits. 472 

Similar results were also observed by Pollot and Greef (2004), Cardoso and 473 

Tempelman (2012) and Santana et al. (2013b). Strandberg (2006) comments that 474 

this is not unexpected, particularly when using sire models. The 6 environmental 475 

classes (a-f) used for the analyses were kept consistent across the traits, and were 476 

selected based on the different sections of the FE scale, representing low, average 477 

and high environments. Although these classes provided significant improvements to 478 

the fit of the model, it may be that the fit could be improved further by adjusting the 479 

classes and using different classes for different traits. Nonetheless, the results 480 

presented here highlight that it may be beneficial for any similar analyses in the 481 

future to account for such heterogeneous variances. 482 

Heritability of traits across different environments 483 

When using environment scales based on production levels, such as those used by 484 

Kolmodin et al. (2002) and Strandberg et al. (2000), the heritabilities estimated often 485 
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increased as the environment improved. Heritabilities previously estimated, using 486 

data available for Texel lambs in the UK, for 21WT, UMD and UFD were 0.38, 0.29 487 

and 0.38 respectively (Jones et al., 2004). When the heritabilities of the three traits 488 

were estimated across the FE scale, in the present study, the highest values were 489 

estimated at the extremes of the scale for 21WT and UFD. However, it should be 490 

noted that these estimates were also associated with the highest standard errors 491 

therefore they should be treated with caution. The lowest values, and lowest 492 

standard errors, for these traits were estimated at the mid-point of the scale, possibly 493 

due to the distribution of the farms on the scale. These results are similar to those 494 

estimated by Pollot and Greeff (2004) for faecal egg count across environments. The 495 

estimates for UMD were slightly different than those for 21WT and UFD. The highest 496 

values estimated at the low end for the scale and the lowest values slightly above 497 

the mid-point, but again the standard errors were larger at the extremes of the FE 498 

scale and smaller nearer the mid-point.  499 

The heritability estimates for 21WT, UMD and UFD at the low end of the FE scale 500 

(poorer FE environment in terms of production and weather), indicated that the 501 

genetic variation for these traits was high. This would suggest that some rams have 502 

the ability to produce lambs with high 21WT, UMD and UFD values even when the 503 

environment is classed as poorer. Similarly, and perhaps somewhat more expected, 504 

at the higher end of the FE scale, the heritability estimates increased as the 505 

environment improved. The rate of increase was the highest for UFD, followed by 506 

21WT, suggesting that the genetic control over these traits was affected more by the 507 

improvement in environment than UMD. The observed rate of increase should be 508 

treated with some caution due to the increased size of the standard errors 509 

associated with these estimates. At the mid-point of the scale, the animals were 510 
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generally more similar in their genetic control of each trait. The lowest heritability 511 

values for UMD were estimated just above the mid-point of the scale. This, along 512 

with the fact that the UMD heritability estimates were the highest overall at the 513 

poorer end of the scale, indicates that improvements in this trait can also be made 514 

when environmental conditions are not so favourable.  515 

In terms of the different feeding levels, the results suggest that by increasing the 516 

amount of feed available to lambs, although improvements will be found with regards 517 

to all traits, the rate of genetic progress associated with UFD will be the greatest. 518 

This may prove costly if carcasses become over-fat and result in a financial penalty 519 

to the farmer. At the lower end of the FE scale, if the lambs are fed less feed, but the 520 

ewes are fed more, the rate of genetic progress of all three traits will also improve at 521 

a similar rate.  522 

Genetic correlations between farm environments 523 

A wide range of genetic correlations were estimated within each trait, between pairs 524 

of environments across the FE scale. The results suggest that there would be less 525 

GxE evident, in terms sires ranking, if the environmental conditions of the two 526 

environments were similar. For example, flocks with below average Q-values on the 527 

FE scale were relatively highly correlated with similar flocks located at that end of the 528 

FE scale and similarly, flocks with above average Q-values were more highly 529 

correlated with other flocks at the top end of the FE scale. However, as the 530 

environments become more divergent (e.g. the lowest points of the FE scale and the 531 

highest points on the FE scale) the genetic and Spearman’s rank correlations fell. 532 

Sires suitable for flocks at the lower end of the FE scale are therefore not necessarily 533 

as suitable for those at the higher end of the FE scale and this further emphasises 534 
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that GxE is evident in the population. These results were similar to those reported by 535 

Santana et al. (2013b) for the body weight of Santa Ines sheep at 180 days of age 536 

as well as Cardoso and Tempelman (2012) for post-weaning weight gain of Angus 537 

cattle. 538 

Accounting for GxE in genetic evaluations 539 

Overall, the use of reaction norm analyses provide an opportunity for future genetic 540 

evaluations to take into account any interactions that may be present between 541 

genotypes and environments. The reduced requirement for each individual 542 

environment to be genetically linked, such as those required when using the multi-543 

trait method and groups of environments, potentially allows the prediction of an 544 

animal’s performance across a greater number of environments. Providing a suitable 545 

“measure of environment” can be agreed, the method can allow the prediction of 546 

unique rankings for each level of environment.  547 

The method presented in the current study combined fine-level detail, with particular 548 

emphasis on the use of concentrate feed, with information available nationally for all 549 

flocks that are members of Signet Sheepbreeder programme. By using the 550 

environment scale developed, GxE was observed for all Texel lamb traits 551 

investigated, both in terms of re-ranking and scaling. The variation in heritability 552 

estimates across different environments, as well as the range of genetic correlations 553 

estimated between environments, all need consideration in future selection 554 

programmes. Mulder et al. (2006) recommended, while investigating the presence of 555 

GxE in dairy cattle, that when genetic correlations between environments were 556 

below 0.61, different breeding programmes should be used. However, whether this 557 

specific value is relevant to the sheep breeding situation of the present study, or 558 

25 
 



economically viable, would be worthy of further investigation. It may also be useful to 559 

investigate if the FE scale developed in this study is applicable to other traits and 560 

breeds, or if another way of quantifying FE should be considered.  561 

Conclusions 562 

The techniques and approaches used in this study have proven to be useful in 563 

defining sheep farm environments and have the potential to be adopted across the 564 

globe in relation to different farming systems. Although the environment scale 565 

identified in the current study may perhaps be more relevant to terminal sire breeds 566 

and traits, there is no reason why variables better suited to other breed types, such 567 

as hill breeds for example, cannot be identified and used in a similar manner. The 568 

range of sire sensitivities estimated across the environment scale, using the reaction 569 

norm methods, confirmed the presence of genetic variability, as both “plastic” and 570 

“robust” genotypes were observed in the population. The ability to identify 571 

differences in sensitivity allows farmers to select animals best suited to specific 572 

environments as well those that will perform consistently across a range of 573 

environments. The variation in heritability and correlation estimates also suggests 574 

that the rate genetic progress will vary depending on the environment. Overall, the 575 

results from this study indicate that in order to improve genetic gain and flock 576 

efficiency, future genetic evaluations would benefit by accounting for the GxE 577 

observed.   578 
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Table 1. Summary of lamb traits included in the data set. 

 

 

  Lamb Records Sires Represented Min. Max. Average s.d. 

21WT (kg) 181555 5938 12.0 90.0 46.0 9.2 

UMD (mm) 175399 5853 5.0 46.2 28.4 3.7 

UFD (mm) 175279 5853 0.1 16.0 2.7 1.4 

21WT = 21 Week Old Weight; UMD = Ultrasound Muscle Depth; UFD = Ultrasound Fat 670 
Depth 671 
 672 
 673 
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Table 2. Correlations between all variables used in the canonical correlation analysis and the resulting P- and Q-variates. 

  

P Value Q Value Rams 
Fed 

Months 
ewes fed 

Flock 
size 

Weeks 
lambs fed 

Rain Sun 
Hours 

Temp. Adjusted 
average 
21WT 

 Adjusted 
average 

UFD 
Q Value 0.73     

         Rams Fed 0.49 0.36     
        Months ewes fed -0.73 -0.53 0.07     

       Flock size -0.32 -0.23 -0.02 -0.13     
      Weeks lambs fed 0.23 0.16 0.24 0.03 -0.24     

     Rain -0.13 -0.20 -0.08 0.00 0.22 0.01     
    Sun Hours 0.08 0.12 0.15 0.12 -0.22 0.07 -0.72 
    Temperature 0.11 0.16 0.17 0.12 -0.28 0.06 -0.64 0.90     

  Adjusted average 21WT 0.58 0.80 0.23 -0.43 -0.25 0.21 -0.17 -0.06 0.00     
 Adjusted average UFD 0.25 0.35 0.11 -0.10 -0.26 0.23 -0.14 -0.11 0.00 0.78     

Adjusted average UMD 0.54 0.74 0.30 -0.32 -0.28 0.26 -0.07 -0.08 -0.02 0.84 0.80 
P-value and Q-value = Values estimated using the P- and Q-variable equations, respectively, derived during the canonical correlation 
analyses. 

  674 
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Table 3. Average descriptors for Texel sheep farms located at the 10 highest and 10 lowest points on the farm 
environment (FE) scale  
  Rainfall (mm)*  Sun (hours)* Temperature (oC)* 21WT (kg) UMD (mm) UFD (mm) Q-value 
High FE score 1189 1393 9.4 52.9 28.8 0.1 2.3 

Low FE score 1421 1431 9.2 40.1 25.7 0.3 -1.1 

21WT = 21 Week Old Weight; UMD = Ultrasound Muscle Depth; UFD = Ultrasound Fat Depth;  675 
Q-value = Value estimated using the Q-variable equation derived during the canonical correlation analyses. 676 
*Weather variables = overall 5 year annual averages677 
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Table 4. Estimates of fixed regression coefficients and  variance components for intercept (σ2
a), slope (σ2

b), flock 
(σ2

f), sire x flock interaction (σ2
sf), error variance (σe

2), log likelihood (LogL) and correlation (r) between intercept and 
slope from the reaction norm models for 21 week old weight (21WT), ultrasound muscle depth (UMD) and ultrasound 
fat depth (UFD) (s.e. in parenthesis). 

Trait Regression 
coefficient  σ2

a σ2
b r  σ2

f  σ2
sf σe

2 LogL 

21WT  
     

  
Model A  - 2.26 (0.22) - - 27.12 (1.88) 6.89 (0.22) 31.87 (0.11)  
Model B - 2.24 (0.22) - - 18.82 (1.34) 6.91 (0.22) 31.87 (0.11) -412492.87 
Model C 4.58 (0.33) 2.80 (0.36) 1.33 (0.38) -0.48 (0.09) 18.49 (1.32) 6.63 (0.23) 31.87 (0.11) -412483.62 
Model D 4.58 (0.33) 2.82 (0.36) 1.39 (0.39) -0.49 (0.09) 18.48 (1.32) 6.61 (0.23) 6 classes   -412446.59 

UMD  
     

  
Model A  - 0.58 (0.05) - - 3.56 (0.26) 1.53 (0.05) 7.84 (0.03)  
Model B - 0.57 (0.05) - - 2.18 (0.17) 1.53 (0.05) 7.84 (0.03) -275205.93 
Model C 1.89 (0.12) 0.82 (0.09) 0.23 (0.08) -0.61 (0.08) 2.14 (0.17) 1.47 (0.05) 7.84 (0.03) -275209.80 
Model D 1.89 (0.12) 0.80 (0.09) 0.23 (0.08) -0.58 (0.08) 2.14 (0.17) 1.47 (0.05) 6 classes -275028.60 

UFD  
     

  
Model A  - 0.08 (0.01) - - 0.52 (0.04) 0.28 (0.01) 1.09 (0.004)  
Model B - 0.08 (0.01) - - 0.52 (0.04) 0.28 (0.01) 1.09 (0.004) -103340.25 
Model C 0.01 (0.06) 0.10 (0.01) 0.06 (0.02) -0.47 (0.09) 0.51 (0.04) 0.27 (0.01) 1.09 (0.004) -103320.03 
Model D 0.01 (0.06) 0.10 (0.01) 0.06 (0.02) -0.49 (0.08) 0.51 (0.04) 0.27 (0.01) 6 classes -103123.83 

Model A = Sire model with sire, flock and sire x flock fitted as random effects. 678 
Model B = Sire model, similar to Model A, but with FE fitted as a covariate. 679 
Model C = Sire model, similar to Model B but with sire, flock, sire x flock and sire x FE environment fitted as random effects. 680 
Model D = Sire model, similar to Model C, but also accounting for heterogeneity of environmental variance. 681 
6 classes = Environmental classes a, b, c, d, e and f used for heterogeneity of environmental variance analysis682 
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