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Can genomics deliver climate-ch
ange ready crops?

Rajeev K Varshney1, Vikas K Singh2, Arvind Kumar2,
Wayne Powell3 and Mark E Sorrells4
Development of climate resilient crops with accelerating

genetic gains in crops will require integration of different

disciplines/technologies, to see the impact in the farmer’s field.

In this review, we summarize how we are utilizing our

germplasm collections to identify superior alleles/haplotypes

through NGS based sequencing approaches and how

genomics-enabled technologies together with precise

phenotyping are being used in crop breeding. Pre-breeding

and genomics-assisted breeding approaches are contributing

to themore efficient development of climate-resilient crops. It is

anticipated that the integration of several disciplines/

technologies will result in the delivery of climate change ready

crops in less time.
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Introduction
Based on recent reports and simulation studies it has been

predicted that climate change is likely to have an adverse

effect on the global yields of all major crops [1,2].

Although crop improvement has made progress, the real-

ized genetic gains in farmer’s fields, especially in rainfed

conditions has been very low [3]. Accelerating the rate of

genetic gain to mitigate climate change to meet the target

demands of food production, requires integration of mul-

tidisciplinary research platforms/disciplines [4,5,6��].
www.sciencedirect.com
Genetic gain in research plots is directly proportional to

first, the genetic variation (sA), second, the intensity of

selection (i) (i.e. the proportion of individuals not con-

tributing to the next generation), and third, the selection

accuracy (r) and inversely proportional to years per cycle

(y) [7]. The breeder’s equation originally conceived by

Lush [8] provides a framework to guide, quantify and

monitor interventions. Integration of modern genomics

approaches for example next generation sequencing

(NGS), high-throughput genotyping together with high

throughput phenotyping (phenomics) and informatics

and decision support tools can accelerate genetic gains

over time [9��]. Selection intensity (i) can be increased if

we can screen more plants per unit time or area. Advances

in phenotyping (such as disease plots, artificial screening

in labs/greenhouse, etc.) can accelerate the screening of a

large number of plants for the trait of interest. Molecular

markers can be used as proxies for phenotypic character-

istics allowing selection to be performed on young plants

and/or in early generations. Availability of high-through-

put sequencing/genotyping platforms can allow assaying

of thousands of plants in relatively short time. Selection

accuracy (r) can be increased by using trait-linked mar-

kers that allow off-season selection in any location. For

instance, in a year with adequate precipitation, selection

of drought-tolerant plants is not possible in traditional

breeding approaches. However, robust genomics-assisted

breeding (GAB) approaches can be utilized in any season

or any stage of plant growth [10�]. Genetic variance (sA)
can be increased by selecting those lines that have favor-

able but rare alleles for a trait(s) of interest. Years per cycle

(y) can be reduced by growing more generations per year

through rapid generation (3–6 crop seasons per year)

advancement and/or speed breeding [11��], instead of

1 or 2 crop seasons per year. Speed breeding can be

combined with selection on a single plant basis using

visual selection or molecular markers.

In this review, we discuss strategies for identification of

superior alleles/haplotypes from the genebanks, develop-

ment and use of genotyping and phenotyping platforms

and deployment of GAB approaches for pre-breeding and

development of climate-change ready crops. We also

present the challenges and opportunities toward integra-

tion of multidisciplinary research platforms/disciplines for

developing climate change ready crop varieties (Figure 1).

Identification of superior alleles/haplotypes
Approximately 7.4 million accessions are stored in

1700 seed banks globally, offering breeders a wealth of
Current Opinion in Plant Biology 2018, 45:205–211
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Integrated approach for development of climate-resilient crops. This figure presents an overview on use of germplasm/genetic resources together

with genomics and phenomics approaches for identification of superior alleles/haplotypes and source donors for climate-change breeding related

traits. Identified lines together with genomic information can be used in pre-breeding and genomics-assisted breeding (GAB) for faster delivery of

climate-resilient crops. Although sequencing/genotyping of the entire genebank for a crop will be ideal, smaller subsets of germplasm such as

reference set (Ref Set), core and mini core collections can be targeted initially. Similarly, specialized genetic resources/genetic stocks such as

multi-parental (nested association mapping, NAM and multi-parent advanced generation intercross, MAGIC), bi-parental (recombinant inbred lines,

RILs; introgression lines, ILs; F2) populations segregating for climate-change breeding related traits can be used. Training population (TP) can also

be developed based on the specialized set of breeding lines for deployment of genomic selection (GS). These germplasm/genetic resources can

be used for whole genome resequencing (WGRS) or high-density genotyping (e.g. genotyping-by-sequencing GBS, SNP-array based genotyping).

High-throughput phenotyping of germplasm/genetic resources especially for climate-change breeding related traits can be undertaken using the

visible light (VIS), the near-infrared (NIR) spectrum and fluorescence imaging (FLUO) in different environments (Env) by utilizing recent advances in

sensors and imaging based phenotyping technologies. Analysis of these sequencing/genotyping data and phenotyping data using analytical and

decision support tools (ADSTs) can provide quantitative trait loci (QTLs), marker trait associations (MTAs), quantitative trait nucleotides (QTNs),

and genomic estimated breeding value (GEBVs). In addition, a catalogue of superior haplotypes and source donors for a given trait can also be

identified. This information can be used in pre-breeding and GAB approaches. For instance, pre-breeding approaches by using novel donors can

introduce novel alleles in the elite/cultivated genepool from the un-adapted germplasm (landraces, crop wild relatives) coming from harsh and

extreme environmental conditions (simulating climate-change scenario). As a result, in addition to developing better pre-breeding lines, genetic

diversity of the elite genepool can also be broadened. In the end, a number of GAB approaches such as marker assisted selection (MAS), marker-

assisted recurrent selection (MARS) and GS can be deployed for integrating/accumulating superior alleles for climate-change breeding related

traits. QTNs can be edited through genome editing approach called promotion of alleles through genome editing (PAGE). It is important to use

ADSTs to analyze and make decision in every component of mining and integration of superior alleles in crop improvement programs. Integration

of such approaches should accelerate development of climate-resilient cultivars with improved yield, enhanced resistance/tolerance to anticipated

biotic and abiotic stresses and deliver higher genetics gains in farmer’s fields especially in developing world.
natural variation. Genebank passport data coupled with

climatic data could be used as surrogates for abiotic

stresses to identify genotypes that harbor important hap-

lotypes which can then be integrated into breeding pro-

grams. To enhance the genetic gains through the incor-

poration of new sources of genetic variation, novel and

superior genes need to be identified from crop wild

relatives (CWR) and landraces available in genebanks

[12,13]. There are many examples where NGS based

approaches are being successfully used to identify

DNA polymorphisms associated with traits of interest.

For instance, The 3000 Rice Genome [14��] and The
Current Opinion in Plant Biology 2018, 45:205–211
3000 Chickpea Genome Sequencing Initiative [15] offer

opportunities to identify novel variations for a large

number of genes through genotype-phenotypic associa-

tions. Re-sequencing of a large number of germplasm

accessions not only provides information on the origin,

domestication, and population structure [16�,17��], but
also identifies lines with deleterious mutations in the

genomes that can eliminated to minimize the genetic

load in the crop species [18]. NGS technologies together

with precise phenotyping have been used for identifica-

tion of marker trait associations in several crops, for

example, rice [19��], soybean [20], pigeonpea [16�],
www.sciencedirect.com
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foxtail millet [21] and pearl millet [17��]. Insights gained
from these studies include new information on the

genetic architecture of agriculturally important traits

and the identification of valuable and sometimes novel

alleles/haplotypes for morphological, agronomic, devel-

opmental and quality-related traits for enhancing genetic

gains. In the context of developing climate change ready

crops, it is essential to mine and incorporate superior

alleles adapted to harsh and extreme environmental con-

ditions by resequencing and phenotyping many germ-

plasm accessions for the crop species.

Specialized mapping populations can be used to enhance

the power and efficiency of genome wide association

studies (GWAS). Nested association mapping (NAM)

populations were first developed for maize as a way of

taking advantage of both historical and recent recombi-

nation events [22]. This was important to minimize the

density of markers required for GWAS and take the

advantage of the high allelic richness, high mapping

resolution, and high statistical power of association map-

ping. Multi-parent advanced generation inter-cross

(MAGIC) populations [23,24�] are another type of spe-

cialized mapping population, which are used to shuffle

the genetic background by allowing several rounds of

recombination in the genomes of diverse parental lines

[25]. Both types of populations have been successfully

developed and used to identify QTLs for a number of

traits in diverse crop species for example, maize [26],

wheat [27], rice [28] and cowpea [29]. Where robust

donors are available for targeted traits, bi-parental map-

ping populations, that is, doubled haploid, recombinant

inbred lines, introgression lines, and F2 populations are

still useful in the identification of significant genomic

region(s) for the trait of interest.

Genetic analysis of climate change relevant
traits
High-throughput and cost-effective genotyping and

phenotyping

Genotyping of all individual samples or selected recom-

binants of the targeted population either for trait mapping

or product development is a critical step for identifying

better alleles and/or superior lines for development of

climate-resilient crops. The reliability, turn-around-time,

ease of information retrieval, as well as the cost of a

genotyping assay are critical to a breeder for making

decisions about selection of individuals to advance to

the next generation. Several genotyping platforms that

leverage new technologies to discover and simultaneously

genotype single nucleotide polymorphisms (SNPs) are

currently available [30,31]. Some of the most widely used

sequencing-based genotyping approaches are genotyp-

ing-by-sequencing (GBS), restriction-site-associated

DNA sequencing, double digest restriction associated

DNA, skim-based genotyping by sequencing, repeat

amplification sequencing, exome sequencing and whole
www.sciencedirect.com
genome re-sequencing (WGRS). Fixed SNP genotyping

arrays may be preferred over NGS based technologies due

to higher throughput at a lower cost per sample with

minimum data analysis required. Rasheed and colleagues

[32�] recently compiled the available crop breeding chips

and genotyping platforms, which could be utilized in crop

breeding programs.

Phenotyping, at present, is a significant operational bot-

tleneck that limits the power and resolution of many

genetic analyses. Robust, precise and high-throughput

phenotyping systems are required for measuring a full

suite of genetic factors that contribute to quantitative

phenotypic variation across cells, organs, and tissues,

developmental stages, years, environments, species and

research programs [33]. A fundamental advance in high-

throughput phenotyping platforms is the capability to

non-destructively capture plant traits [34]. Recent

advances in sensors for imaging plants, ranging from

remote sensing including spectroradiometry, Light

Detection and Ranging (LiDAR), visible to far-infrared,

hyperspectral, thermal, fluorescence, and 3D laser scan-

ning to trichromatic imaging in conjunction with

advanced autonomous vehicles, have indeed opened up

the possibility of high-throughput phenotyping [35,36].

Autonomous platforms such as unmanned aerial vehicles

and ground robots equipped with multiple sensors can

take pictures in near real-time of the entire experimental

plot several times per day, or over the entire season from

germination to maturity, resulting in massive amounts of

data for analysis and storage [37]. Use of such phenotyp-

ing platforms for measuring traits on germplasm collec-

tions, adapted to harsh conditions, in simulated climate

change conditions will help to identify the genes and lines

that cope with future climatic conditions.

Rapid trait mapping

Advances in genomics have led to the development of

NGS based trait mapping approaches, which have speed

up trait mapping programs from a few years to just a few

months. For instance, NGS technologies have enabled

modification and improvement of time-consuming

bulked segregant analysis [38] into rapid and whole-

genome sequencing based high-resolution trait mapping

[39�,40]. The availability of draft genome sequences for a

number of crop species and reduction in sequencing costs

have also made it possible to resequence hundreds to

thousands of individuals of a genetic population. As a

result, the genetics community was able to deployWGRS

or low coverage sequencing of the entire population or

bulks of the extremes. GBS andWGRS of entire mapping

populations or extreme pools provide large-scale genome-

wide SNPs for conducting high-resolution trait mapping,

and several examples have been reported in many crop

species [41]. On the other hand, bulk or pool-based

sequencing has become popular for rapid trait mapping

in recent years [42–45].
Current Opinion in Plant Biology 2018, 45:205–211
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Next generation breeding approaches
Pre-breeding for capturing novel alleles

Pre-breeding is required to identify and transfer desirable

traits and genes from un-adapted materials to intermedi-

ate materials [46]. The breeders can use these interme-

diate materials further in producing new varieties. It is a

first essential step in the ‘linking genetic variability to

utilization’ use of diversity arising from CWR and other

un-adapted materials. A collaboration between the germ-

plasm curator and the plant breeder is essential for

bringing new traits from these collections into newly bred

varieties. The decision for pre-breeding is based on the

anticipated effectiveness and efficacy of transferring the

target traits into cultivars and source of the desired gene

(s). Pre-breeding can be useful in: first, broadening the

genetic base, second, identifying and characterizing cli-

mate change relevant traits in exotic materials, third,

identification and introgression of genes fromwild species

or unadapted material into breeding populations, and

fourth, identification and transfer of novel genes from

unrelated species using genetic transformation

techniques.

It is important to note that working with CWR in pre-

breeding program is a challenging task especially due to

the crossing barrier and introduction of linkage drag from

CWR in the elite genepool. Recently, Demepewolf and

colleagues [47] provided strategies to deal such chal-

lenges after undertaking extensive literature search and

in-depth interviews with the experts. For instance,

embryo rescue approach can be useful to handle inter-

specific crossability. Genomics technologies are very

helpful for identification of the markers linked with

useful segments in CWR that can be used for introgres-

sion and minimizing linkage drag. Furthermore, genome

editing technologies, once established in a given species,

can also be used to repair deleterious effect CWR allele(s)

and convert un-adapted material into superior lines [48].

Access and benefit-sharing agreements (ABS) arising

from the use of genetic resources (including CWR) should

be shared in a fair and equitable manner between differ-

ent stakeholders for successfully running the pre-breed-

ing program. Additionally, access to pre-breeding materi-

als, open access data, and in situ and ex situ agricultural

diversity conservation of pre-breeding materials are also

some important components of pre-breeding. Though

there are several success stories for accessing superior

alleles through pre-breeding, it is important to have long-

term and adequate funding for pre-breeding to have

accelerate access of superior alleles related to climate

change related traits.

Genomics-assisted breeding for rapid development of

superior lines

A number of molecular breeding approaches have been

used to introgress genomic regions into elite lines [49].
Current Opinion in Plant Biology 2018, 45:205–211
Marker-assisted selection is useful to introgress a few loci

(<10 loci) for improving elite varieties. It has been widely

used in a number of crops to incorporate desired traits into

elite cultivars through marker-assisted backcrossing

(MABC). Nowadays there is an emphasis on early gener-

ation selection by using the forward breeding (FB)

approach [15]. In this approach, a set of diagnostic mar-

kers for must-have traits is used to screen early genera-

tions and a subset of lines is advanced to the next

generation. This approach is useful for enhancing the

selection intensity to accelerate the genetic gains.

Marker-assisted recurrent selection may be appropriate

for more complex traits controlled by up to 40 loci. This

approach can be used to develop superior lines with an

optimum combination of superior alleles through

repeated inter-crossing [9��].

Genomic selection (GS) has been used extensively in

animal breeding programs and in the last 10 years has

become popular for improving the rate of genetic gain in

crop breeding. GS employs genomic estimated breeding

values (GEBVs) of lines in a segregating population,

which are calculated based on the genotypic and pheno-

typic dataset of a ‘training population’ [50]. This approach

is advantageous for quantitative traits and increases selec-

tion efficiency by shortening breeding cycles. GS has

been applied in many crops, and recently it has been

reviewed by Crossa et al. [51�]. Speed breeding coupled

with GS (SpeedGS) has been promoted for rapid devel-

opment of climate-resilient crops [11��].

Genome editing (GE) is a method that enables specific

nucleotides in the genome of an individual to be changed.

GE seems to be one of the promising approaches that

could be conveniently exploited to generate homozygous

mutants for multiple target genes in a single generation.

This implies that new varieties could be developed much

faster than usual traditional or even molecular breeding

methods. In addition, GE technology is also very useful

for generating targeted variations, thereby broadening the

allele pool for precision breeding [48,52]. Most impor-

tantly, the resultant product of genome editing, as per the

scientific community, is not a genetically modified organ-

ism (GMO) [53]. Therefore, the GE approach, although

superior and much more precise than genetic engineer-

ing, is likely not to face regulatory and public acceptance

[54].

A large number of genes for targeted traits in many crop

species have been cloned, and underlying quantitative

trait nucleotides (QTN) with significant effects have

been identified. Genes with defined QTNs that cause

a sizeable phenotypic effect can be modified by GE. It is

also possible to combine GE and GS and the strategy has

been referred to as the promotion of alleles by genome

editing (PAGE) [55]. In the near future, alleles that have a

positive effect in the targeted phenotype can be
www.sciencedirect.com
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transferred through genomics-based approaches (MABC

and FB) and alleles that have an adverse effect in the

targeted phenotype can be corrected through PAGE/

genome editing.

Once superior breeding lines are developed, evaluation of

these lines in the target population of environments

(TPEs) is the crucial component for selecting the lines

that will perform better in changing climate conditions. In

fact, breeding programs now need to place greater empha-

sis on increasing the TPEs for evaluation than on devel-

opment of more lines and phenotyping them at a limited

number of locations.

Conclusions and prospects
While working on germplasm collections including CWR,

the genetics community can map climate change relevant

traits with the help of high-throughput genotyping and

phenotyping platforms in a faster and more cost-effective

manner. Next generation breeding approaches including

GS and GE can use the new germplasm and technological

advances to develop climate change ready lines. Public

crop improvement programs have pioneered the devel-

opment of new technologies and breeding methods. To

capture these opportunities [56��] more co-ordination is

needed so that these advances can be translated into

delivering higher genetic gains in farmers’ fields, particu-

larly in the developing world. Therefore, to mitigate the

current challenges we have to deploy a unified strategy to

make a more significant impact through integrating dif-

ferent disciplines and to increase selection intensity,

selection accuracy, heritability and next generation

breeding approaches to develop climate change ready

crops in a cost-effective and rapid manner. To make

the unified strategy workable, crop improvement pro-

grams (with multi-disciplinary scientists and not just

breeders) need to set the priorities and take the advice

from their stakeholders to develop a product profile.

Team members need to work and complete their part

in the value chain. The new lines with higher yield and

adaptation to extreme conditions should be evaluated in

the TPEs so that climate resilient crop varieties are

developed quickly. Appropriate agronomical practices

together with GIS can be useful for improving adoption

of superior lines, for realizing enhanced yield in farmers’

fields and for providing more income to farmers. It is also

essential to connect with the farming community, state

governments and non-government organizations to sup-

port equitable ownership of resources and benefit sharing

[57] so that the full potential of genetic resources can be

fully realized for benefitting small holder farmers in

developing world.
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