
Scotland's Rural College

Identification of the onset of disease within a potato crop using a UAV equipped with
un-modified and modified commercial off-the-shelf digital cameras
Gibson-Poole, S; Humphris, Sonia; Toth, Ian K; Hamilton, A

Published in:
Advances in Animal Biosciences

DOI:
10.1017/S204047001700084X

Print publication: 01/07/2017

Document Version
Early version, also known as preprint

Link to publication

Citation for pulished version (APA):
Gibson-Poole, S., Humphris, S., Toth, I. K., & Hamilton, A. (2017). Identification of the onset of disease within a
potato crop using a UAV equipped with un-modified and modified commercial off-the-shelf digital cameras.
Advances in Animal Biosciences, 8(2), 812-816. https://doi.org/10.1017/S204047001700084X

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 19. Oct. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SRUC - Scotland's Rural College

https://core.ac.uk/display/228105837?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1017/S204047001700084X
https://pure.sruc.ac.uk/en/publications/6c8bb20d-fa99-41a0-8952-fb079cedacfa
https://doi.org/10.1017/S204047001700084X


This is the authors original copy (final edit before review) and the 

full article has been published in Advances in Animal Biosciences 

(Cambridge University Press) and is available at: 
 

 

https://www.cambridge.org/core/journals/advances-in-animal-

biosciences/issue/B6269341942FB500EA392C74D957C60C 
 

 

Advances in Animal Biosciences: Precision Agriculture (ECPA) 2017, 

(2017), 8:2, pp 812–816 © The Animal Consortium 2017 

 

doi:10.1017/S204047001700084X 
 

 

 

  

https://www.cambridge.org/core/journals/advances-in-animal-biosciences/issue/B6269341942FB500EA392C74D957C60C
https://www.cambridge.org/core/journals/advances-in-animal-biosciences/issue/B6269341942FB500EA392C74D957C60C


Identification of the onset of disease within a potato crop using a UAV equipped with un-

modified and modified commercial off-the-shelf digital cameras 

 

S. Gibson-Poole1, S. Humphris2, I. Toth2, A. Hamilton1 
1Scotland’s Rural College, Peter Wilson Building, Kings Buildings, West Mains Road, 

Edinburgh, EH9 3JG, UK.  
2The James Hutton Institute, Invergowrie Dundee DD2 5DA, UK. 

Simon.Gibson-Poole@sruc.ac.uk 

 

Abstract 

 

The rapid development of unmanned aerial vehicles (UAV) has resulted in these aircraft being 

much easier to operate via the use of portable computers or phones, using fully automated flight 

paths and at a ready to fly price point that’s within the financial reach of most consumers. UAVs 

are potentially very useful tools for farmers as they allow an overhead view of crops and field 

boundaries and although they are typically only equipped with commercial off-the-shelf (COTS) 

digital cameras, recent photogrammetry techniques allow the creation of orthorectified visual 

data as well as a digital elevation model of the observed scene. This paper investigates the 

effectiveness of using a UAV with dual COTS cameras, one un-modified and one modified to 

sense near infra-red (NIR) wavelengths of light, in order to identify the onset of disease within a 

trial crop of potatoes. The trial was composed of 2 plots of 16 drills containing 12 tubers that had 

been exposed to the blackleg disease-causing bacterial pathogen Pectobacterium atrosepticum in 

order to demonstrate best practise tuber storage and haulm destruction methods. 11 sets of aerial 

data were gathered between 27/5/2016 ~ 29/7/2016 and then compared with ground truth data 

collected on 14/7/2016. Visual analysis of the data could only detect the onset of disease and not 

the specific infection and resulted in a users accuracy (UA) of 83% and producers accuracy (PA) 

of 78% in detecting the onset of disease, with a total accuracy (TA) of 91% and Kappa 

coefficient (K) of 0.75. The building blocks of an automated classification routine have been 

constructed using pixel and object based image analysis (OBIA) methods, which have shown 

promising first results (UA 65%, PA 73%, TA 87%, K 0.61) but requires further refinement to 

achieve an equivalent level of accuracy as that of the visual analysis. 
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Introduction 

 

Blackleg disease of potato plants and tubers is caused by different bacterial pathogens belonging 

to the genera Pectobacterium and Dickeya, formerly Erwinia species (Charkowski, 2015). In 

Scotland, the disease is largely caused by Pectobacterium atrosepticum (Pba), via contaminated 

seed tubers (Perombelon, 2002). Worldwide, blackleg disease is a major contributor to the loss 

of potato crops, and in some countries is the main cause of seed tuber failure and downgrading, 

e.g. in the Netherlands strict tolerances for certification have led to direct losses of up to €30M 

annually (Toth et al. 2011). Unlike infections by fungi, oomycetes and insects, there are no 

chemical treatments for these pathogens, and breeding for disease resistance has been minimal, 

making it necessary to control disease through crop inspections and certification of the resulting 

seed potatoes (Czajkowski et al. 2011). Crop inspection requires a person(s) to walk through 



potato fields and visually identify and record plants showing signs of disease. However, this is 

very time consuming, it increases the chance of damage to the crop canopy, disease plants can be 

difficult to identify (especially if symptoms are not yet developed or in the early stages), and 

their spatial distribution is difficult to assess. The latter, which is currently not carried out, would 

be particularly useful in modelling disease spread (Skelsey et al. 2016). The outcome of a crop 

inspection is central to certification and determines the overall grade (and therefore the price) of 

a seed crop, and allows growers to make decisions regarding the best way to store and 

subsequently sell the crop, as well as manage it in future generations. 

 

Remote sensing using UAVs offers an opportunity to overcome many of the limitations in crop 

inspection and as they have already been used in studies covering a wide range of crops (Zhang 

& Kovacs, 2012; Shahbazi et al. 2014), including canopy damage (Zhou et al. 2016) and disease 

detection in potatoes (Suigiura et al. 2016), so they could help to reduce the impacts of this 

economically important disease. UAVs equipped with COTS digital cameras are typically used 

and can be effective sensors when assessing green vegetation using vegetation indexes 

(Rasmussen et al. 2016) and due to their excellent spatial resolution (< 5cm per pixel) and price 

point, are more likely to be adopted for precision agriculture applications compared to more 

expensive traditional aerial platforms and satellites (Zhang & Kovacs, 2012). This paper 

investigates the effectiveness of using a UAV with dual COTS cameras, in order to identify the 

onset of disease within a trial crop of potatoes. It shows the initial results from a single set of 

data that was collected as part of a larger project conducted over the 2016 growing season. 

 

Materials and methods 

 

The trial plots used for this experiment were located to the west of Perth, Scotland and were part 

of a set of varied trial plots designed to show either different potato varieties or treatments as 

part the Potatoes in Practise 2016 display to the public that is held every year 

(http://www.hutton.ac.uk/events/potatoes-practice-2016). Planting occurred on 5/5/2016 and the 

trial was composed of 2 plots of 16 drills, each containing 12 tubers that had all been exposed to 

blackleg (Pectobacterium atrosepticum) bacteria in order to demonstrate best practise tuber 

storage and haulm destruction methods (Figure 1a). A visual assessment (ground truth) was 

carried out on 14/7/2016 to show the presence or absence of disease for each emerged plant and 

detailed the disease symptoms displayed at that time. 

 

Aerial data acquisition 

Aerial data was acquired in 2016 on May 27th (pre-emergence), June 2nd, 7th, 13th, 21st and 26th, 

July 6, 11th, 19th and 29th., at varying times of the day and environmental conditions (bright 

sunlight ~ overcast). Data was acquired using a pre-programed automatic flight at 35 m above 

ground level (AGL) in order to give data at 1 cm ground sampling distance (GSD). The imagery 

collected had an expected image overlap of 62% and side overlap of 87% and georectification of 

imagery was assisted by the placement of nine ground control points (GCP) surveyed using a 

Piksi (Swift Navigation, San Francisco, USA) real-time kinematic global positing system (GPS) 

with an expected accuracy of ±13 cm. The UAV used was a custom built multi-rotor utilising 

eight rotors controlled via a 3DR Pixhawk autopilot running Arducopter (v3.2.1) firmware (3D 

Robotics, Berkeley, USA). The autopilot has an inbuilt inertial measurement unit, barometer, 

magnetometer and an external GPS for navigation. This was housed in a 1 m diameter Vulcan 

http://www.hutton.ac.uk/events/potatoes-practice-2016


octocopter frame (VulcanUAV, Mitcheldean, UK, Figure 1b) and powered by two 14.8 V, 

10,000 mAh lithium polymer batteries to give flight endurance of 14 minutes whilst carrying the 

dual camera payload of ~320 g. 

 

 
Figure 1. (a) The trial plot layout on 21/6/2016; (b) The custom built Vulcan multi-rotor UAV. 

 

Camera system 

The camera system comprised of two Canon A2200 (Canon, Tokyo, Japan) COTS cameras, one 

un-modified (RGB) and one modified to sense NIR wavelengths of light in its blue channel due 

to the through the removal of its internal NIR filter and the addition of an acrylic 585 nm long 

pass filter (Knight Optical, Harrietsham, UK). The spectral sensitivity of the cameras was tested 

to identify their spectral characteristics (Berra et al. 2015) and used the Canon hack development 

kit modified firmware (v1.2; http://chdk.wikia.com/wiki/CHDK) and the KAP UAV exposure 

control script (v3.1; http://chdk.wikia.com/wiki/KAP_UAV_Exposure_Control_Script) to enable 

RAW imagery to be acquired when commanded via the autopilot, allowing shutter speed and 

ISO to vary within a specified range (1/200~1/2000 s and 200~400 ISO respectively). The 

internal neutral density filter was not used, the aperture (f 2.8) and zoom level (default) were 

fixed with focus set to infinity and the white balance was calibrated against a grey card before 

each flight to give good visual results. 

 

Image processing 

The RGB and NIR RAW imagery was initially processed using CHDKPTP 

(http://chdk.wikia.com/wiki/PTP_Extension) to remove hot pixels and then processed using a 

custom script in ImageJ (v1.49k; Fiji, 2012) that converted each image to a 16 bit linear tagged 

image file format (TIFF) file (white balance set to 1, no gamma correction) using DCRAW 

(v9.25; Coffin, 2016), which utilised a dark image of the same ISO and shutter speed in order to 

reduce dark current signal noise. Each image was the smoothed using ImageJs despeckle filter to 

further remove noise before PTLens (v9.0; Niemann, 2016) was used to correct lens distortion 

and crop each image to reduce the worst areas of vignetting. The RGB RAW imagery was 

processed a second time to produce a better visual set of data (VIS) in 16 bit TIFF format 

(gamma corrected, white balance as set for each flight, utilised highlight recovery options) and 

sharpened using ImageJs sharpen filter. The TIFF files were geotagged using the GPS 

http://chdk.wikia.com/wiki/CHDK
http://chdk.wikia.com/wiki/KAP_UAV_Exposure_Control_Script
http://chdk.wikia.com/wiki/PTP_Extension


information from the UAVs flight log and all three sets of data were then processed using 

Agisoft Photoscan (v1.2.5; Agisoft LLC, St. Petersburg, Russia), using high settings with mild 

depth filtering to produce a georeferenced orthomosaic for each dataset (RGB, NIR and VIS) 

plus a digital surface model (DSM) derived from the RGB dataset. 

 

Manual image analysis method 

ArcGIS (v10; ESRI, Redlands, USA) was used to assess the data in both true and false colour. 

For each date a plant emergence point was added if the assessor was satisfied it was valid (not 

noise) and that plant was then marked as diseased at a later date if the assessor believed that 

signs of disease were showing (discolouration, canopy loss or stunting). The assessor could go 

back in time through the data but not forward beyond the date they were currently investigating. 

 

Automatic emergence analysis 

A region of interest (ROI) was created across the top of each drill from a 15 cm buffer of a line 

drawn along the centre of each drill that covered each point of planting. A normalised difference 

vegetation index (NDVI; Rouse et al. 1973) layer was created and thresholded manually for each 

date to delineate vegetation from soil. A model was formed in ArcGIS that created vegetation 

and soil polygons from the NDVI layer of the date being processed, clipped to the ROI. Any 

vegetation polygons not classed as vegetation in the following sensing date were erased (as these 

were most likely invalid), before the centre of each remaining vegetation polygon was marked as 

an emergence point. A buffer of 2 cm per day (between the current and following date) was then 

applied to the remaining vegetation polygons to simulate the growth of that plants canopy 

between sensing dates. Each subsequent date was processed using the same method, except that 

any new emergence points were ignored if they were within the vegetation buffer of the previous 

sensing date (as these were most likely the same plant). This process was repeated until no new 

emergence points were discovered across all of the drills. 

 

Automatic disease detection 

The data for each date was classified using the OBIA software InterImage (v1.43; Camargo et al. 

2012), using the NDVI thresholds already set and utilising the TA_Arithmetic operator to denote 

vegetation ( => NDVI threshold ), areas of shadow ( Red+Green+Blue+NIR \ 4 <= 2000 ) and 

potato flowers ( < NDVI threshold, Brightness => 15000 ). Vegetation and potato flowers were 

combined and shadows removed to give the total vegetation for each sensing date. All of the 

emergence points previously detected were buffered by 7.5 cm in order to create emergence 

point regions of interest (eROI) and as each eROI could contain more than one emergence point, 

the centre of each eROI was marked as the location of a plant. Plant regions of interest (pROI) 

were then created by delineating an area around each plant point using Thiessen polygons, 

clipped to a maximum of 60 cm from each plant point (pROI are essentially the growing space 

allocated to each plant). Another model was built in ArcGIS that identified the change in 

vegetation within each pROI between successive sensing dates and the total vegetation cover 

within each eROI for each sensing date. A plant was marked as diseased if it showed a reduction 

of 6% or more within its pROI between successive dates, or if it showed a change greater than -6% 

but less than 12% in its pROI and its eROI showed less than 99.9% cover (a possible indicator of 

the breakup of the canopy).  

 



 

Results 

 

Measures of accuracy for detecting emergence and disease used error matrices to produce Kappa 

coefficient values that consider the actual agreement between classes whilst taking into 

consideration the possibility of agreement by chance, with values of 0.85 or higher being 

considered as an effective level of accuracy (Foody, 2002). 

 

Emergence 

The ground truth conducted on the 14/7/2016 identified two extra plants (left over tubers had 

been planted) and one non-emerged plant (potentially caused by early black leg infection), 

giving an expected 385 emerged plants. 385 emerged plants were detected using both methods 

however two cases of non-emergence and three extra plants were discovered. From the manual 

method 69% of the plants had emerged by the 2/6/2016 and all plants had emerged by the 

13/6/2016. The automatic method differed slightly as it identified 13 plants at an earlier date and 

7 later (the last on the 21/6/2016) but the emergence identification per date accuracy was high, 

with a TA of 95%, and K of 0.88. 

 

Disease detection 

As the emergence analysis detected anomalies with the ground truth and remotely sensed data 

that extended beyond the ground truth date, it was decided to show accuracies of disease 

detection against both the original (GT) and an amended ground truth (AGT) that accounted for 

the emergence anomalies and plants that showed obvious signs of disease on the 19/7/2016. By 

the 14/7/2016 the ground truth had identified 85 diseased plants, which rose to 98 after the 

amendments for the 19/7/2016, with both the manual method (MAN) identifying 80 and the 

automatic method (AUTO) identifying 75 by the 19/7/2016 (all excluding the cases of non-

emergence). Disease detection accuracies for both methods can be seen in Table 1, but when 

comparing GT vs MAN, 14 plants were false positives and 19 diseased plants were missed, 

however there were 0 false positives and 18 missed diseased plants when comparing AGT vs 

MAN. The comparison between GT vs AUTO revealed 20 false positives and 30 missed 

diseased plants, which changed to 10 false positives and 33 missed plants when comparing AGT 

vs AUTO. 

 

Table 1: Disease detection accuracy of manual (MAN) and automatic (AUTO) methods verses 

original (GT) and amended ground truth (AGT), showing expected number of diseased plants 

(E), observed number of diseased plants (O), correctly identified diseased plants (C), Producers 

(PA), Users (UA) and Total accuracy (TA), along with Kappa statistic. 

 

Disease detection comparison E O C PA UA TA Kappa 

GT vs MAN by 07/19/2016 85 80 66 78 % 83 % 91 % 0.75 

AGT vs MAN by 07/19/2016 98 80 80 82 % 100 % 95 % 0.87 

GT vs AUTO by 07/19/2016 85 75 55 65 % 73 % 87 % 0.61 

AGT vs AUTO by 07/19/2016 98 75 65 66 % 87 % 89 % 0.68 

 

As the remotely sensed data extended until the 29/7/2016, comparisons were also made to 

determine how well the automatic method compared to the manual (with the manual method 



effectively being the ground truth). When looking simply at the presence of diseased plants by 

the 29/7/2016, 18 false positives were detected and 29 diseased plants missed, with UA 83%, PA 

75%, TA 88% and K 0.70. However, when looking at the presence of diseased plants per date 

the accuracy diminishes (TA 79%, K 0.57) as the automatic method tends to not detect disease 

until the date following manual method detection. 

 

Discussion 

 

From the emergence results we can say that a simple automatic method based on a detection 

threshold can prove effective, however in this trial the tubers had been placed by hand and so 

were well spaced, plus weed control had been effective with practically no non-potato vegetation 

present within the emergence period. Spacing of tubers and weed control are important factors to 

ensure effective growth within the crop (Bussan et al. 2007), but less optimal conditions in these 

factors may decrease the effectiveness of automatic detection. When visually assessing the 

imagery for emergence and diseased plants, the high resolution and ability to quickly view 

before and after images of the same drill aided the assessor and allowed judgements to be made 

with a good level of accuracy that would likely improve as the assessor became more 

experienced. However this would likely be a tedious over a much larger number of plots and is 

still not as effective as performing a ground assessment especially as only damage to the canopy 

can be detected, which are often symptoms shown in the later stages of disease such as blackleg 

(Czajkowski et al. 2011). 

 

The automatic method for disease detection needs to be improved before it could be said that it 

could be truly useful, and one major area that was missing was the use of the DSM to show the 

heights of vegetation within each drill. Issues were encountered when trying to process the DSM 

into height data (too much variance) that could have been due to not using enough GCPs or the 

accuracy of the Piksi GPS not being sufficient but if it had been good enough to use then it may 

well have improved the accuracy of the automatic method as a loss in canopy height could also 

indicate the presence of disease. Height data could also help discriminate between two connected 

potato plant canopies and may be a more effective method than delineating hard boundaries 

using Thiessen polygons, especially as some of the missed diseased plants were due to their 

neighbours spreading into the pROI of a diseased plant, confusing the analysis. The operator 

used as part of the OBIA of the drills is essentially just thresholding the data and so barely used 

the potential power of analysis that is available, however this route was taken as the model is to 

be tested and improved against data from different trials that had been collected at the same time, 

where the presence of weeds poses a significant challenge compared to this trial. 

 

Data collection using a UAV is fairly swift compared to visually inspecting a crop on the ground 

and ideally surveys should be carried out regularly, especially to capture the emergence period 

before canopy closure. However processing does take time and in this case the use of RAW 

imagery made for lengthier processing but RAW was preferred as it allows much more 

flexibility in how an image is reproduced, allowing linear transformations that are more 

applicable for quantitative analysis and much better highlight recovery for visual analysis 

(Verhoeven, 2008). Ideally surveys should be conducted on days with stable ambient light 

conditions (Rasmussen et al. 2016) however this is not always possible if trying to collect data 

regularly, meaning some datasets might be of lesser quality but still more useful than not having 



any data at all. The datasets were manually thresholded as efforts to normalise brightness across 

datasets was not satisfactory so the use of automatic thresholding as demonstrated by Rabatel et 

al. (2014) will be investigated in the future to see if it can separate potato canopy form the soil 

effectively. As can be seen in Figure 2 (a, b), being able to visualise the spread of the disease 

over time within drills could be advantageous in understanding the start and spread of disease 

within a drill and its neighbours (Skelsey et al. 2016) and having image data covering the entire 

growing period allows for cross referencing with ground based data, potentially improving trials 

analysis. 

 

 
Figure 2. (a) Disease detected from the ground truth (14/7/2016); (b) Disease detected per date 

until 29/7/2016 using the manual assessment method. 

 

Conclusions 

 

Visual analysis of UAV derived aerial imagery using COTS digital cameras is an effective 

method of detecting disease but not the specific infection. Automated analysis could help flag up 

potential points of disease but are not yet sensitive enough to be completely relied upon. 
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