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ABSTRACT 17 

Good quality husk-caryopsis adhesion is essential for malting barley, but that quality is 18 

influenced by caryopsis surface lipid composition. Raman spectroscopy was applied to lipid 19 
extracts from barley caryopses of cultivars with differential adhesion qualities. Principal 20 
component regression indicated that Raman spectroscopy can distinguish among cultivars 21 
with good and poor quality adhesion due to differences in compounds associated with 22 
adhesion quality. 23 

 24 

1. Introduction 25 

Raman spectroscopy has been successfully used for food and cereal quality applications, 26 
including determining suitability of wheat for flour production based on protein structure 27 
(Guzmán et al., 2012; Piot et al., 2002). Premium quality malting barley (Hordeum vulgare) 28 

has a husk, which adheres to the caryopsis (barley fruit) at harvest. When adhesion quality is 29 

poor, the grain quality defect “skinning” results, which is the partial or complete loss of the 30 

husk at harvest or during handling. Skinning is a significant economic problem affecting the 31 
wider malting industry, reducing malting productivity by affecting germination efficiency 32 
(Okoro et al., 2017). Newer malting cultivars are more susceptible to skinning than older 33 
cultivars (M. Brennan et al., 2017) and development of cultivars resistant to skinning, but 34 

which retain desirable malting characteristics is needed. Husk-caryopsis adhesion is mediated 35 
through a lipid cementing layer produced by the pericarp (fruit coat) during grain 36 

development (M Brennan et al., 2017; Harlan, 1920; Hoad and Brennan, 2016; Taketa et al., 37 
2008). Changes in caryopsis surface lipid composition during cementing layer development 38 
have been quantitatively linked to grain skinning (Brennan et al., 2017). Cultivars with 39 

increased proportions of sterols, triterpenoids and fatty acids, and lower proportions of 40 
alkanes were associated with good quality husk adhesion, and consequently reduced skinning. 41 

Traditional wet-chemical analyses are time-consuming and impractical in a breeding context. 42 

Here, we used Raman micro-spectroscopy on caryopsis surface-lipid extracts to determine 43 

whether this technique could distinguish among cultivars with differential adhesion qualities, 44 
as a potential tool for identifying skinning-resistant cultivars. 45 

 46 

2. Materials and methods 47 

Fifteen commercially relevant malting barley cultivars with husk adhesion qualities from 48 
“good” (low skinning) to “poor” (high skinning) were grown in triplicate in a glasshouse at 49 
Scotland’s Rural College, Edinburgh. Skinning was assessed as described in Brennan et al. 50 

(2017), where grains with more than 20% husk loss by area are considered to be skinned. 51 

Caryopses from one main shoot ear of each replicate were harvested at 15 days post-anthesis, 52 
after cementing layer development. Soluble surface lipids were extracted from all caryopses 53 
(~30) from each ear by dipping in dichloromethane (puriss p.a. grade for GS >99.9%, Sigma-54 

Aldrich, UK) for 20 s each. Surface lipid extracts were evaporated onto a quartz microscope 55 
slide, and examined with a Raman microscope (Renishaw, UK) equipped with a Leica 56 
DMLM microscope using the 100× objective, calibrated each day with a silicon wafer (520 57 

cm-1) at the University of Edinburgh’s School of Engineering Bioimaging Facility. Three 58 
spectra were acquired from each sample (three acquisitions each) from 400 to 3200 59 
wavenumbers, with exposure time 10 s at 100% laser power. For each, a background 60 
spectrum of the quartz slide was acquired at the same magnification, then subtracted from the 61 
corresponding sample spectrum. Spectral pre-processing was done in R (R Development Core 62 
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Team., 2008) using the HyperSpec package (Beleites and Sergo, 2017). Spectra were re-63 

aligned on the wavenumber axis using loess interpolation. Mean spectra were calculated for 64 
the three sample replicates, which was the standardized before further analysis. Principal 65 
component analysis of the standardised spectra values for the 15 varieties was done, and re-66 

performed with all combinations of 14 varieties to ensure that no single variety biased the 67 
results. We identified the principal components (PCs) significantly correlated with husk 68 
adhesion quality. Then, using the PC scores for the 15 varieties, linear regression between 69 
husk adhesion quality and the key PCs was done. All analysis was carried out in R (R 70 
Development Core Team., 2008). Lipid assignments were made by comparison with the 71 

literature (Czamara et al., 2015; Edwards et al., 2011; Heredia-Guerrero et al., 2014; 72 
Littlejohn et al., 2015; Prats Mateu et al., 2016; Prinsloo et al., 2004; Wu et al., 2011). 73 

 74 

3. Results and discussion 75 

The PCs which had the highest correlation with husk adhesion quality (skinning) were PC11 76 
and PC14. In PC11, negative scores dominated, associated with CH2 twisting (1296) and C-C 77 
stretching (1126 and 1064). In PC14, a negative score associated with CH2 and CH3 78 

scissoring and deformations, and CH2 bending, was observed (1444), and a positive score 79 
associated with C=C alkyl stretches (1656). The proportion of skinned grains had a positive 80 
relationship with both PCs, and using both as predictor variables, the relationship with 81 
skinning was significant as shown in Fig. 1A (R² = 0.45, p < 0.02). The loadings for each 82 

wavenumber in PCs 11 and 14 are shown in Fig. 1B and C. Wavenumbers with highest and 83 
lowest loadings are shown with their vibrational assignment in Table 1. A positive loading in 84 

both PCs indicates that wavenumber contributed to poor husk adhesion (high skinning). That 85 
alkyl backbone C-C stretches contributed both positively and negatively to husk adhesion is 86 
consistent with low alkanes and higher proportions of fatty acids being associated with good 87 

quality adhesion (Brennan et al., 2017). For both PCs, CH2 twisting, and CH2 and CH3 88 
stretches and deformations contributed only positively to good husk adhesion however, 89 

indicating that the presence of fatty acids may be more important in the determination of 90 
adhesion quality. The C=C aromatic ring stretches contributed positively to husk adhesion 91 

quality in PC14, consistent with higher proportions of sterols and triterpenes being associated 92 
with low skinning (Brennan et al., 2017). Our results show that Raman spectroscopy could be 93 
useful for predicting husk adhesion quality based on differences in caryopsis surface lipids 94 

among cultivars. Previously, total internal reflectance Raman was used to directly examine 95 
barley leaf surface waxes (Greene and Bain, 2005), the limited penetration depth has the 96 

advantage of less interference from cell wall autofluorescence which made surface lipid 97 
extraction necessary in our study. Such Raman technology could allow direct on-caryopsis 98 
measurements to be made and therefore be more efficacious for breeding applications. 99 
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Table 1 Wavenumbers that had the highest and lowest loadings for PCs 11 and 14, assignments and their contribution to 

husk adhesion quality 

PC Contributiona Wavenumber Assignment of vibrational modeb 

14 - 412  

14 - 466 δCCC 

14 - 494  

14 - 528  

14 - 682 νCC, ring 

11 - 832  

14 - 870  

11 + 890 νCC, backbone 

14 - 894 νCC, backbone 

14 - 942 νCC, νCOC 

11 + 948 ρCH3, νCC, vCOC 

14 - 982 βCH 

11 + 1064 νCC 

14 + 1074 νCC 

11 + 1094 νCC 

14 - 1096 νCC 

14 - 1124 νCC 

11 + 1126 νCC 

14 + 1156 νCC 

14 - 1240 δ=CH 

14 - 1260 δ=CH, νCH cis 

11 + 1296 τCH2 

14 + 1306 τCH2 

14 - 1416 βCH2 

11 + 1432 αCH2, αCH3, δCH2, δCH3 

14 + 1444 αCH2, αCH3, δCH2, δCH3, βCH2 

11 + 1454 βCH2, βCH3, δCH2, δCH3 

14 + 1468 βCH2, βCH3 

14 - 1488  

14 - 1504  

14 - 1554  

14 + 1604 υC=C, aromatic 

11 + 1638 υC=C, unsaturated alkyl 

14 - 1656 υC=C, alkyl 

14 + 1716  

11 - 2852 υ=CH2, s 

11 - 2880 υ=CH2, s 

11 + 2904 υCH2, υCH3, s, as 

14 + 2916 υCH3, s, as 

11 + 2962 υCH3, as 
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14 + 2990  

14 - 3044  

14 + 3094  

14 - 3156  

14 + 3186   
aA "+" indicates this wavenumber increased husk adhesion quality; a "-" indicates this wavenumber decreased husk adhesion 163 
quality. 164 

bα, scissoring; β, bending; δ, deformation; ρ, rocking; τ, twisting; υ, stretching; s, symmetric; as, asymmetric. 165 

 166 
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Fig. 1. A, Adhesion quality predicted by cultivar scores of PCs 11 and 14 is plotted against 167 

measured adhesion quality. The fitted model is shown, with a 95% confidence interval in 168 
grey. Loadings for B, PC11 and C, PC14 are plotted for each wavenumber. Wavenumbers 169 
with the greatest influence and for which vibrational assignments could be made are 170 

indicated. 171 
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