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A programme of field trials for the study of the winter barley – Rhynchosporium commune 19 

pathosystem is reported. The associated seed-borne disease Rhynchosporium leaf scald is 20 

regarded as having an important impact on barley yields. The analysis reported here relates to 21 

the impact of the seed source (commercial or farm-saved seed) on disease incidence, and to 22 

the spatial pattern of Rhynchosporium leaf scald disease incidence. Disease incidence data 23 

were calculated from field data recorded as disease severity. Mean disease incidence was 24 

higher in the crops grown from farm-saved seed than in the crops grown from commercial 25 

seed, although we cannot attach great agronomic significance to this result. The spatial 26 

pattern of Rhynchosporium leaf scald disease incidence was characterized in terms of the 27 

binary power law (BPL), and was indicative of an aggregated pattern. Programme-wide BPL 28 

results were described using a novel phytopathological application of a random coefficients 29 

model. These results have application in field sampling for Rhynchosporium leaf scald 30 

disease. 31 

 32 

Introduction 33 

Rhynchosporium leaf scald is an important global disease of barley crops in cool temperate 34 

countries. Epidemics have been reported as far afield as Northern Europe (Shipton et al, 35 

1974; Avrova & Knogge, 2012; Polley et al., 1993), North Africa (Bouajila et al., 2007), 36 

North and South America (Penner et al., 1998; Carmona et al., 1997) and Australia (Brown, 37 

1985). The disease, caused by the fungal pathogen Rhynchosporium commune (formerly R. 38 

secalis), appreciably reduces barley yields. Estimates of economic damage can vary but 39 

losses of over 60% have been recorded in Africa (Semeane, 1995) and up to 35% in North 40 

America (Buchannon & Wallace, 1962; Webster, 1980). From a survey of farmer attitudes 41 

covering the period 2011 - 2015, Stetkiewicz et al. (2018) reported that most farmers 42 
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believed foliar diseases of spring-sown barley were important or very important in 43 

determining crop yield. Rhynchosporium leaf scald was cited by the majority of farmers 44 

questioned as being the most common of the three diseases covered by the survey 45 

(Rhynchosporium leaf scald, Ramularia leaf spot caused by Ramularia collo-cygni and 46 

powdery mildew caused by Blumeria graminis f. sp. hordei), as well as having the greatest 47 

impact on yield. These survey results are indicative of the contemporary relevance of the 48 

analysis of previous studies of the Rhynchosporium leaf scald pathosystem, including those 49 

reported by Stetkiewicz (2017) on spring barley, and those reported here on winter barley. An 50 

extremely useful review of the Rhynchosporium leaf scald pathosystem (Avrova & Knogge, 51 

2012) manages to be both comprehensive and concise, and readers are referred there for full 52 

details including the pathogen life cycle, disease symptomatology, fungicidal control and host 53 

resistance. Rather than repeat this material en bloc, we will refer to it as required in the 54 

context of the work reported here.  55 

R. commune is a seed-borne pathogen. Thus the initial inoculum may be infected seed, 56 

although the pathogen may also survive on debris from previous crops, on stubble of previous 57 

crops and on volunteers infected from previous crops. The primary inoculum for R. commune 58 

is considered to arise from crop debris and seed-borne infection with secondary infection due 59 

to the release of rain splash spores from infected lesions (Zhan et al., 2008; Fountaine et al., 60 

2010). The disease is polycyclic and secondary spread occurs via spore dispersal from 61 

infected leaves. The name Rhynchosporium leaf scald refers to the foliar symptoms 62 

characteristic of the disease (see Avrova & Knogge, 2012; AHDB 2016). In the work 63 

reported here, Rhynchosporium leaf scald was recorded in the field by visual assessment of 64 

foliar symptoms on winter-sown barley crops in an experimental programme carried out over 65 

a five-year period. Here, we investigate the significance of seed source for the level of 66 

disease and present an analysis of the spatial pattern of Rhynchosporium leaf scald.  The 67 
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latter uses a novel phytopathological application of a random coefficients model to provide a 68 

statistical overview of results from programme-wide spatial analysis.  69 

 70 

Materials and methods 71 

Outline of experimental programme 72 

The basic unit of the winter-sown barley experimental programme was a field trial. Trials 73 

took place at four centres in Scotland, UK, over a period of five years (harvest years 2005 – 74 

2009) as follows: Aberdeen (two trial sites), Bush (two trial sites near Edinburgh), 75 

Perth/Dundee, and Lanark/Lockerbie (see Table 1 for full details). Initially (2005 – 2006), 76 

trials included three treatments: farm-saved seed (no fungicide applied), commercial seed (no 77 

fungicide applied), and commercial seed (fungicide applied). The commercial seed (fungicide 78 

applied) treatment was discontinued after the first two years. Trials were either first- or 79 

second-barley in rotation. In total, there were 26 trials potentially available for analysis 80 

(Table 1).  A detailed description of the use of the trial data in the statistical analyses of 81 

treatment effects and of spatial pattern is given for each analysis below. 82 

The basic unit of a trial was a plot, the area to which treatments were applied. All 83 

trials comprised four replicate plots of the treatments applied. Thus trials comprised either 12 84 

plots (2005 – 2006) or 8 plots (2007 – 2009). Plots were 12m × 12m in size. For the purpose 85 

of data collection, plots were divided into 576 ‘quadrats’, each 0.5m × 0.5m in size.  86 

 87 
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Disease assessment 88 

The quadrat was the basic sampling unit for disease assessment. In each plot of each trial, 89 

disease symptoms were visually assessed on a continuous severity scale (0 – 100%) in each 90 

quadrat. Here, we consider only a single disease assessment for each trial, specifically the one 91 

made at or close to GS (growth stage) 31. Figure 1 illustrates such a % severity disease 92 

assessment from a 2005 trial. For data analysis, quadrat-level disease severity values were 93 

converted to disease incidence, using a detection threshold of 0.5% severity. Thus for 94 

quadrat-level disease severity ≤ 0.5%, quadrat-level disease incidence was coded “0”, and for 95 

quadrat-level severity > 0.5%, quadrat-level incidence was coded as “1”.  96 

 97 

Statistical analysis of treatment effects 98 

The statistical analysis of treatment effects reported here is a simple comparison of farm-99 

saved seed (no fungicide applied) with commercial seed (no fungicide applied). In two trials, 100 

no recorded disease data were available for such a comparison, so the analysis reported here 101 

has been carried out on the basis of data from 24 out of the 26 trials (Table 1). Data for a third 102 

treatment, commercial seed (fungicide applied), were collected in 10 trials. In five of these 103 

trials the fungicide was applied earlier than the date on which the disease assessment under 104 

consideration here was made, and in the other five, later. For the five trials in which the plots 105 

designated for the commercial seed (fungicide applied) treatment were untreated at the time 106 

of the disease assessment, the data are effectively extra replications of data for the 107 

commercial seed (no fungicide applied) treatment, and were incorporated in the analysis on 108 

that basis. For the five trials in which the plots designated for the commercial seed (fungicide 109 

applied) treatment were already treated at the time of the disease assessment, % severity data 110 

from the plots for the farm-saved seed (no fungicide applied) treatment and the commercial 111 
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seed (no fungicide applied) treatment were still available for the analysis but the data from 112 

the commercial seed (fungicide applied) treatment were excluded.   113 

A generalized linear mixed model (GLMM) with the logit link function, binomial 114 

error structure and dispersion fixed at unity (Brown & Prescott, 2015) was fitted to the 115 

number of quadrats per plot with disease incidence in order to compare treatment effects on 116 

mean disease incidence. Individual trials, the trial  treatment interaction and between-plot-117 

within-trial variation were fitted as random effects while the seed source ‘treatment’ 118 

(commercial or farm-saved) was fitted as a fixed effect. Thus the model was of the form 119 
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in which the subscript j refers to the jth treatment (j=1,2), the subscript k refers to the kth trial 121 

(k=1,…,24), and the subscript l refers to the lth plot (l=1,…,12). yjkl is the number of quadrats 122 

with disease incidence out of the njkl quadrats in that plot, and pjkl is the probability of 123 

incidence in an individual quadrat in the corresponding plot. α is the grand mean, and τj is the 124 

treatment j fixed effect. γk, δjk and εjkl are the trial, trial  treatment and the individual plot 125 

error random effects. 126 

Treatments were applied to entire plots and hence it is appropriate to model plot-level 127 

totals without explicitly needing to model spatial pattern within plots. Formal statistical 128 

comparisons of treatment effects, using the model (1), must be made on the logit scale and 129 

accordingly that is how means and the standard error of difference are presented in the 130 

Results section.  131 
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To aid understanding, treatment means on the incidence scale have also been 132 

presented. In principle, for each of the treatments the mean proportion of disease incidence 133 

can be averaged across plots for each trial and then the mean and standard error of these trial 134 

means can be computed. An adjustment to this calculation is needed to account for the fact 135 

that the number of plots varies between trials and treatments, leading to a lack of balance. We 136 

adjust by finding the minimum number of plots per trial  treatment combination (u) and 137 

then, for each of a large number of simulations (R), randomly subsampling exactly u values 138 

from each trial  treatment combination in order to simulate a balanced design. For each 139 

simulation r = 1,…,R we then calculate the observed mean mr and associated standard error sr 140 

for each treatment group in the same way that we would calculate these values for a balanced 141 

dataset. An overall estimate of the mean for each treatment group, m , is then given by the 142 

mean of the values m1,…mR, and an overall estimate of the associated standard error by  143 

     


R

r rr mmsR
1

221 . 144 

 145 

Statistical analysis of spatial pattern 146 

The analysis of spatial pattern of R. commune presented here is based on the Binary Power 147 

Law (BPL) (Hughes & Madden, 1992; Madden et al., 2018). The basic unit for the analysis 148 

of spatial pattern is the trial (e.g. Figure 1). For each trial, spatial pattern is determined within 149 

plots. No reference is made in this analysis to the treatments applied to the plots in a trial. The 150 

assumption here is that treatments may affect disease intensity rather in the way that 151 

“artificial” methods are used to manipulate levels of disease in experiments designed to study 152 

the relationship between crop yield loss and disease intensity (e.g. Sah & MacKenzie, 1987). 153 

Thus we are interested, initially, in the variation in disease intensity (recorded as mean 154 
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disease incidence) at the plot scale over a trial and, subsequently, the extension of this 155 

analysis across trials.  156 

A BPL analysis describes the logarithm of the observed variance of disease incidence 157 

as a linear function of the logarithm of the variance of the corresponding random distribution 158 

(the binomial distribution). For the analysis described here, we take the variance of the 159 

binomial distribution as p∙(1p)/n, in which p is estimated by observed mean disease 160 

incidence at the plot scale and n is the number of quadrats grouped to form the within-plot 161 

sampling unit. Within three trials (2006 Lockerbie, 2009 Aberdeen 1, and 2009 Aberdeen 2, 162 

see Table 1) observed mean incidence at the disease assessment reported here was in each 163 

case equal to zero in all the trial plots. Within a further three trials (2006 Perth, 2007 Perth, 164 

and 2008 Perth, see Table 1), observed mean incidence at the disease assessment reported 165 

here was equal to one in all plots for two of the trials, and equal to one in seven out of eight 166 

of the trial plots for the third. Data from all these six trials are therefore unsuitable for use in a 167 

BPL analysis and have been excluded from further consideration in this context. On that 168 

basis, the BPL analysis reported here has been carried out using data from 20 out of the 26 169 

trials (see Table 1). 170 

We motivate our application of BPL methodology by means of an illustration, built on 171 

the disease assessment shown in Figure 1. Each of the 12 plots in the trial consists of 24 × 24 172 

quadrats (each 0.5m × 0.5m), for which Figure 1 shows the observations of % disease 173 

severity (appropriately binned). As outlined above, these disease severity data were converted 174 

to disease incidence for further analysis.  175 

Now consider a single plot. The following description adopts the notation of Madden 176 

et al. (2018). Suppose we merge groups of n = 4 adjacent quadrats (in a 2 × 2 arrangement); 177 

in such a group, Xi = 0, 1, 2, 3 or 4 represents the number of diseased units (quadrats coded 178 
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“1”) and xi (= Xi/n) is the proportion of diseased units on a 5-point scale between zero and 179 

one. The entire plot comprises N = 144 such groups. We can calculate the proportion of 180 

diseased units in a plot (mean disease incidence) as 181 

N

x

Nn

X
p

ii 



ˆ  (i = 0, 1, …, N).     (2)  182 

where the notation indicates that mean disease incidence calculated at the plot scale is an 183 

estimate of the probability of disease incidence at that scale, p. Then the plot-scale observed 184 

variance of disease incidence is estimated as 185 

1
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i .        (3) 186 

Suppose that the disease status of a group (of n = 4 adjacent quadrats in a 2 × 2 arrangement) 187 

is independent of the disease status of other groups in the same plot; then x has a binomial 188 

distribution with variance nppvbin /)1(  . Then the plot-scale binomial variance of 189 

disease incidence is estimated as 190 

  nppvbin )ˆ1(ˆˆ  .         (4) 191 

The binomial distribution is the random distribution for proportions, so for the purpose of an 192 

analysis of spatial pattern, a comparison of v̂  and binv̂  is of interest. Aggregation (extra-193 

binomial variation, overdispersion) is indicated by binvv ˆˆ  . 194 

Now, for the trial illustrated in Figure 1, there are 12 plots, each of which yields a 195 

value of v̂  and binv̂ . The BPL can be characterized by   bp nppAv /1 , in which in 196 

practice v and p are replaced by their estimates and the resulting graphical plot has 197 

logarithmic scales on both axes (Hughes & Madden, 1992; Madden et al., 2018). Then, as 198 
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illustrated in Figure 2A, there is typically a linear relationship from which the parameters b 199 

(slope) and ln(Ap) (intercept) may be estimated by linear regression based on 200 

     binp vbAv ˆlnlnˆln  .       (5) 201 

We have used natural (i.e. base e) logs in BPL equations, although base 10 [i.e. log10()] or 202 

any other base can be used. The choice of log base has no effect on the slope parameter, but it 203 

does affect the intercept. 204 

Figure 2 shows four different versions of the analysis described above, resulting from 205 

four different ways of internally dividing up each of the 12 plots in the trial. These are 206 

described by n (the number of adjacent quadrats merged to form a group, always in a square 207 

arrangement) and N (the number of groups, each of n quadrats), such that n × N = 576 (the 208 

total number of quadrats in a plot). Thus we have, in order of increasing group size, BPL 209 

analyses denoted: G4Q (n=4, N=144, groups are 1m × 1m), G9Q (n=9, N=64, 1.5m × 1.5m), 210 

G16Q (n=16, N=36, 2m × 2m), G36Q (n=36, N=16, 3m × 3m) (Figure 2).  211 

When b = 1 and Ap = 1 (i.e. ln(Ap) = 0), then the BPL reduces to binvv ˆˆ  ; that is, the 212 

observed variance equals the binomial variance. The “binomial line” representing this 213 

situation is shown in Figure 2 for reference. We now have a basis for interpreting graphical 214 

plots such as Figure 2 in relation to spatial randomness of disease incidence (and, 215 

particularly, deviations from spatial randomness in the direction of aggregation) for a single 216 

trial at the within-plot scale. Estimates of b = 1 and Ap > 1 (i.e. ln(Ap) > 0) are indicative of 217 

aggregation that does not depend on the level of disease incidence.  Estimates of b > 1 are 218 

indicative of aggregation that systematically varies with the level of disease incidence. 219 

Typically, most of the observed values are above the reference line. Sometimes observed 220 

values may be close to, or even below, the reference line when mean disease incidence is 221 
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close to 0 or 1 (i.e. towards the left end of the horizontal axis). At such values, the spatial 222 

pattern of disease incidence is indistinguishable from random.  223 

What we require now is a method of extending such analysis across the series of trials 224 

available for spatial analysis (Table 1). At each of the four quadrat groupings (G4Q, G9Q, 225 

G16Q and G36Q) a random coefficients model (Brown & Prescott, 2015) was fitted across 226 

trials for the relationship (after natural log transformation) between the individual plot-level 227 

observed variances and the corresponding theoretical variances based on the binomial 228 

distribution. This assumes that for each trial that the intercept and slope of the relationship 229 

follows a bivariate normal distribution. Thus the model takes into account not only the lack of 230 

fit within individual trials but also that the relationship may vary from trial to trial. The 231 

random coefficients model is written as 232 
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where ln(Ap) and b are the fixed effect population intercept and slope, while ln(Ap,k) and bk 234 

are the corresponding intercept and slope random effects for the kth trial. The trial-specific 235 

intercepts and slopes respectively are derived by summing their population fixed effect and 236 

trial-specific random effect. 237 

 238 

Results 239 

Statistical analysis of treatment effects 240 

Based on the fitted GLMM, mean disease incidence was significantly different in the crops 241 

grown from farm-saved seed compared with the crops grown from commercial seed (P = 242 
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0.012) (see Table 2). The finding that Rhynchosporium leaf scald mean disease incidence 243 

was higher in the crops grown from farm-saved seed than in the crops grown from 244 

commercial seed (Table 2) is consistent with what might be expected for a disease caused by 245 

a pathogen for which seed-borne inoculum is an important component of the life-cycle, but 246 

we cannot attach too much agronomic significance to this result. There are no records of the 247 

initial level of seed infection for the two treatments, so in effect the result merely bolsters an 248 

assumption about the comparative levels of seed hygiene in farm-saved and commercial seed 249 

lots, rather than providing firm evidence. 250 

 251 

Statistical analysis of spatial pattern 252 

To facilitate illustration of the application of the BPL at four different quadrat groupings we 253 

first considered disease incidence data derived from the disease assessment shown in Figure 254 

1. Working at the plot scale, for each grouping, the natural logarithms of the observed and 255 

binomial variances were plotted against each other in Figure 2. The fitted relationships 256 

between log-transformed variances are shown along with a reference line representing the 257 

situation in which the observed variance equals the binomial variance. For the selected trial it 258 

is clear from slopes b > 1 and intercepts ln(Ap) > 0 that aggregation varied with mean disease 259 

incidence (see Madden et al., 2018). There was also an apparent relationship between the 260 

quadrat size and both the slope and intercept, both increasing as quadrat groupings became 261 

larger.  262 

While Figure 2 serves to illustrate typical BPL relationships between observed and 263 

binomial variances, it does so only for a single trial. Applying the principle of estimating 264 

parameters of the BPL to the relationship between observed and binomial variances but now 265 
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considering all 20 trials available for analysis (see Table 1), the fitted random coefficients 266 

model (6) at each quadrat grouping gave estimates of the population averages (fixed effect 267 

estimates) of b and ln(Ap). These are shown in Table 3, from which a relationship between 268 

quadrat size and both the slope and intercept is again apparent. In all four cases it can be seen 269 

that the estimates of the slope parameter b were statistically significantly greater than 1. It is 270 

also evident that the parameter estimates for b increased as quadrat groupings increased in 271 

size.  272 

For the four different quadrat groupings, each individual trial has its own estimated 273 

slopes and intercepts, which are a combination of the population average (fixed effects) and 274 

trial-specific deviations (random effects). Key aspects of the respective distributions of the 275 

trial-specific slopes and trial-specific intercepts are depicted graphically in Figure 3. 276 

 277 

Discussion 278 

Large-scale field experimentation of the kind on which the analysis reported here is based is 279 

highly resource intensive. It is therefore advantageous if the results of such experimentation 280 

can be applied to aspects of routine crop management that are themselves resource intensive, 281 

of which disease surveillance is a prime example. Looking again at Figure 1, it represents a 282 

disease assessment recorded by intensive mapping. All the Rhynchosporium leaf scald 283 

disease assessments that contributed to the analysis reported here were similarly recorded by 284 

intensive mapping. This is feasible for a research project, but not a practical proposition for 285 

disease assessments made in the context of crop protection decision making, where data will 286 

typically be collected by some kind of sparse sampling.  287 
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For the study reported here, Rhynchosporium leaf scald disease intensity was measured in 288 

terms of disease severity, but converted to disease incidence for the purpose of statistical 289 

analysis of treatment effects and of spatial pattern. As noted by Paul et al. (2005), lack of 290 

knowledge of the statistical distribution of disease severity as a continuous random variable 291 

limits its analytical usefulness, by comparison with disease incidence. The conversion from 292 

severity to incidence was carried out at the level of the individual units of disease assessment, 293 

so a relationship between mean severity and mean incidence (e.g. Seem (1984), McRoberts et 294 

al. (2003)) is not required here. In Germany, Rhynchosporium leaf scald intensity is 295 

measured as disease incidence in the context of crop protection decision making (Institut für 296 

Pflanzenschutz, 2018). In passing, we note that the GS31 (or near) disease assessments 297 

reported here show a wide range of disease, whether on a severity scale (Figure 1) or an 298 

incidence scale (Table 1). The implication is that GS31 assessments would likely be too late 299 

in the winter barley growing season for use in a decision process relating to management of 300 

Rhynchosporium leaf scald, at least for cultivars lacking good resistance. 301 

Since it was introduced by Hughes & Madden (1992), the Binary Power Law has 302 

been used to characterize aggregation of disease incidence in a large number of pathosystems 303 

(Madden et al., 2018), although not previously for Rhynchosporium leaf scald of barley. 304 

Typically, BPL analyses are illustrated by a graphical plot of the observed variance of disease 305 

incidence against the corresponding theoretical binomial variance, with logarithmic scales on 306 

both axes. Aggregation varying with mean disease incidence is indicated for slope b > 1 and 307 

intercept ln(Ap) > 0. Here, this is shown for a single trial in Figure 2, where there is a 308 

relationship between quadrat size and both the slope and intercept of the BPL regression.  309 

When it comes to the experimental programme as a whole (comprising 20 trials 310 

available for spatial analysis), we used a random coefficients model to obtain an estimated 311 

BPL slope and intercept for each trial based on the sum of a population fixed effect and a 312 
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trial-specific random effect. To the best of our knowledge, the deployment of a random 313 

coefficients model in the context of a programme-wide BPL analysis is a novel 314 

phytopathological application. The results (summarized in Figure 3) further illustrate the 315 

apparent relationship between quadrat size and both the slope and intercept of the BPL 316 

regression, and thus, the correlation between b and ln(Ap). 317 

The apparent relationship between quadrat size and both the slope and intercept of the 318 

BPL regression has also been noted in previous field studies (e.g. Bassanezi et al., 2002; 319 

Dallot et al., 2003; Humeau et al., 2006; Batista et al., 2008). Although these results are 320 

clear, field studies that provide a basis for characterizing observed patterns of disease do not 321 

necessarily elucidate the process(es) underlying those patterns. In this respect, a simulation 322 

study by Xu & Ridout (2000) is enlightening. The spatiotemporal spread of plant diseases 323 

was simulated using a stochastic model to study the effects of initial conditions (number of 324 

plants initially infected and their spatial pattern), spore dispersal gradient, and the dimensions 325 

of sampling quadrats, on spatial summary statistics (including BPL parameter estimates) for 326 

simulated epidemics. Such simulations show BPL parameter estimates increasing with 327 

quadrat size (see, for example, Figure 10 in Madden et al., 2018). The effects of the size of 328 

the sampling unit n arise as a result of the relationship of the BPL parameters b and Ap to the 329 

index of dispersion and the intracluster correlation coefficient (measures of spatial 330 

aggregation for incidence data), as illustrated in Figure 4 of Madden et al. (2018).  331 

The BPL analysis reported here contributes to the design of sampling in two ways. 332 

We consider the intensive mapping in terms of N groups of n sampling units (quadrats) each, 333 

and use this as a basis to estimate parameters of the BPL describing aggregation of disease 334 

incidence. Such analysis allows the specification of cluster sampling designs in which disease 335 

incidence may be estimated with a pre-specified level of precision (Madden & Hughes, 336 

1999a). Further, we have considered a range of sizes of sampling unit in our analysis, which 337 
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together constitute a spatial hierarchy. Such hierarchies have application in epidemiological 338 

research (e.g. Hughes et al., 1997; Turechek & McRoberts, 2013; Madden et al., 2018), and 339 

also in practical disease assessment for crop protection decision making, where hierarchical 340 

sampling of groups of sampling units saves on resources devoted to sampling while taking 341 

account of the spatial pattern of disease incidence (Madden & Hughes, 1999a;b; Arnold et 342 

al., 2017). Thus we have an analytical basis for field sampling of barley crops for 343 

Rhynchosporium leaf scald disease incidence that can contribute to a process for disease 344 

management decision making.  345 
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FIGURE LEGENDS 442 

 443 

Figure 1  The diagram shows the outcome of the Rhynchosporium leaf scald disease 444 

assessment on 8 April for the 2005 Bush (2) trial (for further details see Table 1). The key 445 

indicates % disease severity in 0.5×0.5m quadrats. Graphic prepared by Alasdair Sykes.  446 

 447 

Figure 2  Relationships between observed and binomial variances of disease incidence on 448 

natural logarithm axes (equation 1) at the plot scale, from the disease assessment on 8 April 449 

for the 2005 Bush (2) trial (see also Figure 1). Based on Equation 5, ordinary least squares 450 

(OLS) regression lines fitted to the data are shown (as solid lines) for four different quadrat 451 

groupings within plots: (a) G4Q (144 groups of 4 quadrats), ln(Ap) = 1.233 (SE = 0.312), b = 452 

1.177 (0.0755); (b) G9Q (64 groups of 9 quadrats), ln(Ap) = 1.687 (0.456), b = 1.207 453 

(0.0927); (c) G16Q (36 groups of 16 quadrats), ln(Ap) = 2.335 (0.679), b = 1.278 (0.124); and  454 

(d) G36Q (16 groups of 36 quadrats), ln(Ap) = 3.457 (0.991), b = 1.374 (0.158). On each 455 

graph, the dashed line is the reference line with ln(Ap) = 0, b = 1 which represents the 456 

situation in which the observed variance equals the binomial variance. 457 

 458 

 459 

Figure 3  Boxplots summarizing (a) intercepts (ln[Ap]) and (b) slopes (b) of binary power law 460 

(BPL) relationships between ln(observed variance) and ln(binomial variance) of disease 461 

incidence for 20 individual trials (see Table 1) calculated via random coefficients regression. 462 

The solid horizontal line within a box represents the median value, and the top and bottom of 463 

a box represent the 75th percentile (Q3) and the 25th percentile (Q1), respectively. The upper 464 

vertical line from a box extends to the highest data value within Q3 + 1.5∙(Q3  Q1), the 465 



22 
 

lower vertical line from a box extends to the lowest data value within Q1  1.5∙(Q3  Q1), 466 

and individual data values falling beyond the range delimited by the upper and lower vertical 467 

lines are indicated by filled circles. Results are shown for four different quadrat groupings 468 

within plots: G4Q (144 groups of 4 quadrats), G9Q (64 groups of 9 quadrats), G16Q (36 469 

groups of 16 quadrats) and G36Q (16 groups of 36 quadrats). 470 

 471 



Table 1  Winter barley experimental programme details. 

Year Centre  

(trial site) 

Ordnance 

survey grid 

reference 

Cultivar 

(resistance 

rating)a 

Disease 

assessment  

date 

Growth 

stage 

 

Minimum 

recorded 

incidenceb 

Maximum 

recorded 

incidencec 

Treatments 

analysis 

(● = yes)d 

Spatial 

analysis 

(● = yes)e 

2005 Bush (1) NT 253 652 Sumo (5) 22-Marf 24 – 29  0.0156 0.5278 ● ● 

2005 Bush (2)g NT 246 650 Sumo (5) 08-Aprf 31 0.0035 0.9167 ● ● 

2005 Lockerbie NY 115 806 Sumo (5) 13-Aprf 31 0.9965 1.0000 ● ● 

2005 Perth NO 082 179 Sumo (5) 12-Aprf 31 0.8819 1.0000 ● ● 

2006 Aberdeen (1) NJ 904 252 Sumo (5)  09-Mayh 31 0.2309 0.2674 X ● 

2006 Aberdeen (2) NJ 775 275 Sumo (5) 17-Mayh 32 0.0625 0.5816 X ● 

2006 Bush (1) NT 243 649 Sumo (5) 25-Aprh 31 0.9965 1.0000 ● ● 

2006 Bush (2) NT 247 653 Sumo (5) 25-Aprh 31 0.0087 0.7951 ● ● 

2006 Lockerbie NY 113 799 Sumo (5) 18-Aprf 26 0.0000 0.0000 ● X 

2006 Perth NO 055 235 Sumo (5) 24-Aprh 31 1.0000 1.0000 ● X 

2007 Bush (1) NT 250 659 Haka (5)  24-Apr 32 0.3986 0.9130 ● ● 

2007 Bush (2) NT 251 660 Haka (5) 24-Apr 32 0.8021 0.9462 ● ● 

2007 Lanark NS 907 384 Haka (5) 16-Apr 31 0.9844 1.0000 ● ● 

2007 Perth NO 045 238 Haka (5) 12-Apr 31 1.0000 1.0000 ● X 

2008 Aberdeen (1) NJ 874 107 Haka (5) 06-Mar 26 0.7413 1.0000 ● ● 

2008 Aberdeen (2) NJ 874 107 Haka (5) 06-Mar 26 0.8837 0.9965 ● ● 

2008 Bush (1) NT 253 656 Haka (5) 23-Apr 30 0.0000 0.0139 ● ● 

2008 Bush (2) NT 253 656 Haka (5) 01-May 31 0.9740 1.0000 ● ● 

2008 Lanark NS 904 383 Haka (5) 22-Apr 29 0.9774 1.0000 ● ● 

2008 Perth NO 048 235 Haka (5) 21-Apr 30 0.9983 1.0000 ● X 

2009 Aberdeen (1) NJ 874 107 Saffron (6) 11-May 31 0.0000 0.0000 ● X 

2009 Aberdeen (2) NJ 874 107 Saffron (6) 12-May 31 0.0000 0.0000 ● X 

2009 Bush (1) NT 246 650 Saffron (6) 30-Apr 30 0.0017 0.7205 ● ● 

2009 Bush (2) NT 246 649 Saffron (6) 20-Apr 31 0.8941 0.9983 ● ● 

2009 Lanark NS 906 381 Saffron (6) 15-Apr 26 0.0417 0.4983 ● ● 

2009 Dundee NO 303 332 Saffron (6) 24-Apr 31 0.0035 0.0816 ● ● 

 



 

                                                           
a See the Recommended List archive at https://cereals.ahdb.org.uk/varieties/ahdb-recommended-lists.aspx. The varieties Sumo, Haka and Saffron were sown in 2005-2006, 

2007-2008, and 2009, respectively. All three varieties had similar disease resistance ratings. 
b Minimum mean disease incidence at the plot scale (based on the smallest number of quadrats coded “1” out of 576). 
c Maximum mean disease incidence at the plot scale (based on the largest number of quadrats coded “1” out of 576). 
d In this column, X indicates a trial in which only plots for the commercial seed (fungicide applied) treatment were assessed, and that fungicide had been applied prior to the 

disease assessment. These trials were excluded from the analysis of treatment effects.  
e In this column, X indicates a trial in which the range of mean disease incidence at the plot scale was insufficient for spatial analysis. 
f Trial in which the plots designated for the commercial seed (fungicide applied) treatment were fungicide treated after the date of the disease assessment. These plots were 

included in the analysis of treatment effects as extra replicates of the commercial seed (no fungicide applied) treatment. 
g See Figure 1. 
h Trial in which the plots designated for the commercial seed (fungicide applied) treatment were fungicide treated before the date of the disease assessment. These plots were 

excluded from the analysis of treatment effects. 

https://cereals.ahdb.org.uk/varieties/ahdb-recommended-lists.aspx


Table 2  Comparison of treatment effects on disease incidence. 

 Seed source 

 Commercial Farm-saved 

Mean (logit scale) 1.086 1.988 

 SEDa = 0.322 

Mean (incidence scale) 0.615 0.649 

SEMb 0.0881 0.0840 

a standard error of the difference, 17 d.f. 

b standard error of the mean 

 

 

 

 

 



Table 3  Binary power law coefficients from random coefficients model fitted across trials. 

 Coefficient 

 Intercept Slope 

Quadrat grouping Estimate (standard error) Estimate (standard error) 

G4Q 1.166 (0.102) 1.148 (0.016) 

G9Q 1.818 (0.141) 1.215 (0.021) 

G16Q 2.583 (0.213) 1.290 (0.028) 

G36Q 3.433 (0.293) 1.350 (0.036) 
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