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Abstract: 

 

Grassland silage management is generally semi-organised with no conscious attempt to re-use 

wheel ways as with arable fields. The total number of machine passes can be 15 or more with 

normal traffic (NT) systems resulting in potentially large areas of a field suffering from direct 

damage to the crop and soil. Literature suggests there can be grass dry matter yield reductions 

of 5 to 74% under NT through compaction and sward damage, with a mean of 13% in the UK. 

Commercially available grass forage equipment with widths of 3 to 12m set up for controlled 

traffic farming (CTF) could reduce trafficked areas (which is typically 90% to 80% for NT) to 

40% to 13% for CTF. This study compared grass dry matter yield between CTF and NT for a 

three-cut silage system based on a 9m working width in a permanent silage field in the 

southwest of Scotland, UK in 2015. Results showed a 13.5% (0.80 t ha-1) increase in yield for 

CTF for the 2nd and 3rd cuts combined. The CTF trafficked area covered was 57% less than 

the NT system (30.4% compared to 87.4%) over the three silage cuts. An economic analysis 

based on a 13% increase in dry matter yield (for 2- and 3-cut systems) and a reduction in 

trafficked area from 80% (for NT) to between 45% and 15% (for CTF), increased the yield by 

between 0.53 t ha-1 and 1.36 t ha-1 for 2- and 3-cut systems, respectively with an equivalent 

grass value of between £38 ha-1 and £98 ha-1. Introducing CTF for a multi-cut grass silage 

system is cost-effective by increasing yields due to a reduction in compaction and sward 

damage. 
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Introduction 
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Grassland silage management is generally conducted with no conscious attempt to re-use 

wheel ways as often happens with arable fields. Traffic can cause damage to the sward 

(Volden et al., 2002) through soil compaction with increases in bulk density and shear 

strength, together with reductions in porosity (Douglas et al., 1992) and reduced air and water 

permeability (Batey, 2009; Chyba et al., 2014). Generally, as soil moisture increases towards 

field capacity, the more susceptible it is to compaction (Alaoui et al., 2018). Thirty-year 

average data (1981 to 2010) for the UK weather patterns show the greater rainfall at the start 

and the end of the year (Table 1), with March having greater rainfall than February. The 

highest rainfall is in October. Hence, in years with average weather patterns, soil/crop damage 

will more commonly occur as a result of operations during the wetter spring or autumn 

months.  

 

Table 1. Mean monthly total rainfall total (mm) for the UK and SRUC, southwest Scotland 

(1981 to 2010). 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean 

/Total 

UK              

Rainfall 

(mm) 

120 87 93 70 68 69 76 87 94 124 118 117 1125 

SRUC              

Rainfall 

(mm) 

115 81 90 62 70 73 71 83 101 134 118 124 1122 

 

The extent of compaction depends on soil texture, structure and moisture content. Clay loam 

soils have a wide range of moisture contents in the friable range, with silt loams and sandy 

clay loams having smaller friable ranges (Baver et al., 1972). At moisture contents below the 

friable range, soils are described as hard or cemented and are relatively strong, with field 

traffic causing relatively limited soil structural damage (Baver et al., 1972). However, when 

soils are trafficked at moisture contents in the friable range and above, in the plastic range, 

they deform more easily (Batey, 2009). Above the critical moisture content for a particular 

soil, compaction declines because pores are water filled, but severe soil damage may occur 

through soil shear as a result of wheel slip (Raghavan et al., 2012). When soil conditions are 

susceptible to damage caused by field vehicles, the first wheeling causes most of the 

compaction (Batey, 2009) with subsequent incremental effects as the number of passes 

increases (Pagliai et al., 2003).  

 



The total number of machine passes on a field can be 15 or more with normal traffic (NT) 

systems depending on the number of silage cuts. However, these would also include an initial 

spring inorganic fertiliser application followed by a slurry application. If mowing for three 

silage cuts, these will generally be in May, July and August, with associated tedding/raking 

and lifting, along with a number of tractor and trailers each time to cart the silage to the clamp 

(average trailer load 10 t). A further application of slurry would be made following each cut 

of silage. The extent of coverage by field traffic for a forage harvester and a round baler in a 

single operation, in Shropshire, UK, was found to be 63.8% and 63.4% of the field area, 

respectively (Kroulik et al., 2014); hence, with no co-ordination between operations, 

potentially large areas of the field can suffer from soil compaction damage. The area of the 

field suffering from compaction can be determined through measuring the widths of the tyres 

and knowing the paths of vehicles across fields using a GNSS log. 

 

Soil compaction effects on grass silage yields, mainly for UK dairy cattle (could also include 

beef and sheep) have been quantified by several studies in comparison with a non-compacted 

control. Grass yield decreases due to soil compaction in the range 5–74% have been reported 

by Are et al., 2015; Douglas & Crawford, 1991;  Douglas et al., 1992; Frost, 1988a; 

Rasmussen & Møller, 1981; Reintam et al., 2013. Long-term yield decrease for western 

European temperate conditions lie within the range of 5–20% with a mean of 13% (Douglas 

and Crawford, 1993; Frost, 1988a; Hargreaves et al., 2014). Although the largest yield 

decrease took place during the first cut (Frost, 1988a; Hargreaves et al., 2014) for the 

compacted areas, yield may increase significantly for the second cut of these areas. However, 

the total yield for the year was not significantly more for the reduced traffic compared to the 

zero traffic system (Elonen, 1986; Hargreaves et al., 2014). Douglas et al. (1995) conducted 

an eight-year experiment to investigate the effect of zero and reduced ground pressure traffic 

on forage yield compared with a trafficked system in Scotland (ryegrass and clay loam soil). 

Over this period, 14.7% (13.7 t ha-1) and 14.0% (13.1 t ha-1) more dry matter was produced 

with zero traffic and reduced ground pressure systems respectively, than the traffic system, 

with the largest yield decrease generally in the first cut for the trafficked system. This is 

probably related to wet soil conditions due to the amount of rainfall following spring 

application of fertiliser. Traffic with wet soil conditions during cutting also decreased the 

yield of the next cut. 

Douglas & Crawford (1989) and Douglas & Crawford (1991) investigated the relationships 

between the amount of traffic and soil dry bulk density and crop dry matter yield (Figure 1), 



with ‘Amount of Traffic’ (kPa) defined as the product of the number of wheel passes and 

maximum (front axle wheels) tyre/soil contact stress. In relation to rainfall, they found that a 

wet June disadvantaged the swards on the denser soil, but with a dry June there was no 

significant difference in yield between zero traffic and the other compaction treatments. 

 

 

 

 

   

Figure 1. The effect of the amount of traffic, as a product of the number of wheel passes 

and maximum (front axis wheels) tyre/soil contact stress (kPa), applied over two years 

on soil bulk density in upper 120 mm (––) and dry matter yield (- - -) (Douglas & 

Crawford, 1989). 

 

Controlled Traffic Farming (CTF) is a traffic management system where all the field traffic is 

confined to permanent wheel ways across the field. It has the potential to improve forage 

grass yields by as much as 35% (Chamen, 2011). To enable CTF, the track gauges of the 

machines have to be matched. The working widths of the implements also have to be matched 

so that they are equal to, or an integer multiple of, the base module width. The base module is 

the narrowest working width, for example: 6–8 m systems result in approximately 25% of the 

field being trafficked, reducing to approximately 17% for 12 m systems (Chamen, 2011). 

Although CTF systems are becoming accepted for cereal production in the UK currently, with 

approximately 50,000 ha in production (Godwin, 2015), there are no robust data about CTF 

for grassland. 



Frame and Merrilees (1996) suggested that, in practice, silage operations in the field should 

be conducted with the lightest equipment and fewest traffic activities. Frost (1988a) and 

Hakansson et al. (1990) proposed that yield reduction from a field would be decreased if the 

same wheel tracks could be utilised. Kjeldal (2013) and Alvemar et al. (2017) reported that 

CTF is practiced for grass production in Scandinavia, with the most popular module width of 

12 m (trafficked area from 13 to 26%) and mower widths from 6 to 12 m. 

Commercially available equipment 

A wide range of commercially available grassland equipment have been assessed to determine 

its potential suitability to provide a range of CTF systems of different width for grass silage 

production. The aim for each system was to select a combination of machinery that could be 

used with little or no physical modification or impact on field operations. 

CTF systems with common widths ranging from 3 m to 12 m were feasible, with trafficked 

areas ranging from 40% to 13% (Table 2), respectively. Several options were possible, with 

the 5, 9 and 12 m systems leading to the lowest trafficked areas for both grassland and arable 

operations. 

Table 2. Summary of the different CTF systems proposed and their associated tracked 

areas. 
 

Controlled traffic base widths  Trafficked area, % 

Mowing width (m) Other widths (m) Forage system Grass only  

1.5 or 3.0 6.0 & 9.0 Loader wagon 35.9  

     

  Trailed forager 34.3  

3.0 6.0 & 9.0 Self-propelled 40.1  

     

4.0 8.0 Loader wagon 27.7  

     

     

5.0  Loader wagon 21.5  

9.0  Self-propelled 18.2  

12.0  Self-propelled 13.4  

 

 

There are two shortcomings with the 4 and 5 m systems: a) a loader wagon is required and 

these are relatively uncommon in the UK, and b) the mower has heavily loaded wheels 

running on the non-trafficked bed. A 3 m system involves machines with little or no 



modification but requires a tractor with a track gauge of 1.5 m and, because of this narrower 

width, has a greater trafficked area than the wider systems.  

A 9 m system is achievable based on mowers such as that shown in Figure 2a, along with 

standard tedders, swathers, harvesters and dribble bar slurry applicators (Figure 2b). 

Harvesting with this 9 m system relies on delivery from a self-propelled harvester to a rear 

hitch trailer that is swopped on the headland when full. A further reduction in trafficked area 

could be achieved if the gauge of the harvester and other machinery in the operation were 

more closely aligned (Table 2).   

The greatest constraint when introducing a 9 m or any other CTF system is its effect on 

harvesting work rate. Extra discipline and commitment are central to the success of any CTF 

system used for grass forage production. In addition, there is some curtailment of harvest 

work rates (around 10%) associated with forage trailers running along traffic lanes rather than 

taking the shortest route to the harvester or field exit (Peets et al., 2017). 
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b) 

Figure 2 a) Triple gang mower of the type envisaged for a 9 m controlled traffic system 

and b) illustration of the machines and operations involved 
 

Table 2. Machinery assumed for a 9 m controlled traffic system  

Machine Working 

width (m)1 

Operating 

width (m)2 

Tyres on 

principal axle3 

Track 

gauge (m) 

Claas Axion tractor n/a n/a 710/70 R 38 2.0 

Kuhn GMD 9530 triple gang mower 9.13-9.53 9.0   

Claas Volto tedder 10.7 9.0   

Kuhn GA 9531 swather 8.4-9.30 9.0   

Claas Jaguar 980/940 harvester  9.0 710/70 R 42 2.20 

Richard Western silage trailer n/a 9.0 15x22.5 – 18 PR 2.0 

Conor slurry tanker + trailing shoe 9 9.0 560/60 R 22.5 2.04 

Agrisem Vibromulch stubble 

cultivator 

9 9.0   

Dale Eco-Drill 9 9.0   

John Deere 9000 series combine 9.14 9.0 650/75 R 32 2.61 

Grain chaser 2.91 9.0 800/40 R 26.5 2.11 
1 Working width is the actual width the machinery operates 
2 Operating width is the width required for the operation in the field to allow for a 9 m controlled traffic system 
3 Tyres on the axle that creates the widest footprint for the particular machine. 
 

Although previous studies have documented reductions in grassland yield, as a result of 

increased traffic, few of the studies have considered the increased yield across a whole 

grassland silage field due to employing CTF. A comparison of the use of CTF compared to 

NT would quantify the yield increases, with a set working width, across field situations and 

conditions. Also, no studies have attempted to calculate the cost of implementation of CTF in 

relation to the improved margins of increased yields compared to NT. 

The objectives of this work were to: (i) use a 9m wide CTF system for one season of three 

silage cuts in a silage field in the southwest of Scotland, UK to assess the potential increase in 

grass DM yield and (ii) use the values derived to determine the economic value of 

implementing a CTF system for grass production. 

 

Materials and methods 

Experimental site and baseline measurements 

An 8 ha permanent silage perennial ryegrass (Lolium perenne) field (freely drained sandy 

loam soil) at Scotland’s Rural College (SRUC) Dairy Research Farm, Southwest Scotland 

(N55:02:45, W03:35:56) was split into two 3.5 ha areas. Management history of the grass 



sward was the same up to the point the field was split in April 2015. The mean annual air 

temperature for 2015 (9.6oC) was marginally higher than the long-term mean (1981-2010) of 

9.3oC. This was reflected in the mean grass minimum temperature (3.9oC) compared to the 

mean long-term temperature (2.7oC). The total annual rainfall for 2015 (1532mm) was also 

greater than the mean long-term total (1122mm) (Table 1). The warmer and wetter conditions 

than the long-term average, would have helped to promote grass yield at or above an annual 

average amount of 10 t ha-1. 

The layout of each area, within the field, was a rectangle (218 m x 160 m) with one of two 

traffic management treatments imposed: NT and CTF. 

Forty initial measurement points were set up on a grid system across both the treatment areas 

before the first silage cut. Measurements of penetrometer resistance, soil bulk density (0-100 

mm) and visual evaluation of soil structure (VESS) were completed at each sampling point to 

confirm the uniformity of soil properties. Soil samples were also taken from each point to 

assess the variation of phosphorous (P) and potassium (K) levels along with the pH, which 

could contribute to yield differences apart from management during the season. 

 

 

Figure 3. Sampling points across the NT and CTF plots. The area coloured          is a 

brown forest soil of the Holywood association and is imperfectly drained and the area 

coloured          is a brown forest soil of the Holywood association and freely draining. 



 

Field management 

The areas were managed as a three-cut silage system in May, July and August. Silage was 

harvested using a three gang 3m-beam mower (overall working width 9 m (See Figure 2a)).  

Following mowing, the cut grass was spread and allowed to dry for 24 h, then raked into rows 

9m apart. The cut grass was harvested the following day with a forage harvester (width to 

outer edges of wheels, 3.1 m) and two tractor and trailer combinations (tractor wheels outer 

width 3.2 m). The latter ran alongside the harvester (approximately 2 m away) for the NT 

system and along the next set of parallel wheel tracks for the CTF system, thus maintaining a 

9 m separation and providing a trafficked area of 19%. 

Inorganic fertiliser, as urea, was applied at a rate of 60 kg N ha-1 after the first cut. Dairy cow 

slurry was applied twice through the season (May and July, after the silage cuts) at a rate of 

30 m3 ha-1, by tanker and splash plate; the second application in July was applied with a 

narrower application band as a result of the thicker consistency of the slurry. The CTF 

management pattern could only follow one of the wheel tracks and added a further wheeling 

to the original pattern resulting in 30% of the area being tracked.  

A GNSS system with a ±150 mm pass to pass accuracy and sight posts set up at the ends of 

each A-B line, for a manual check on the accuracy, allowed the same wheel tracks to be 

followed in the CTF system. Each field was cut around the headlands three times and then the 

A-B lines completed using the headlands for turning. A GNSS tracked all vehicle movements 

across both treatment fields (NT and CTF) during grassland management. The GNSS systems 

enabled operators to return to the same location in the field repeatedly to within +/- 250 mm 

for the CTF system. The intensity and spatial coverage of traffic across each treatment for 

each operation were identified from the traffic maps. 

Total yield off-takes from both areas were recorded at each harvest by weighing each full 

trailer using a static weighbridge. DM contents were calculated from samples from each 

trailer after it had been weighed. 

Statistical analysis 

Data from the individual sampling points of VESS, P, K, soil resistance and soil bulk density 

were analysed using GenStat version 16 (VSN International, Hemel Hempstead, UK). The 

main treatments of tractor passes and NT compared to CTF were analysed on a randomised 

basis using ANOVA. Any significance was investigated with a student t-test at a level of 

significance of p<0.05. 

 



Results 

Field experiment 

The baseline physical measurements, prior to the silage cuts, taken at the initial 40 sampling 

points in the field grid, showed no significant differences in soil structural conditions between 

the fields. The chemical assessment of the soil at the same sampling points across the two 

separate areas of the field revealed a significant difference (p<0.001) between the NT (13.0 

mgl-1) and CTF (9.5 mgl-1) areas for soil extractable phosphorous (P). However, the 

concentration of P (mg l-1) would indicate that extra P was unlikely to provide any additional 

growth response to grass (PDA, 2011) on either the NT or CTF area. Although, there was 

lower P in the CTF area where there was more free draining soil (Figure 4). The within-field 

variation for P was similar in NT (CV% 21.2) and CTF (CV% 24.0). The soil pH and 

potassium (K) for the sampling points across the two fields gave no significant difference. 

However, there was a greater variation in soil concentration for soil K (mg l-1) (CV% 23.7) 

and P (CV% 22.6) compared to the pH (CV% 4.7). The within-field variation was similar for 

the pH with a CV% of 4.6 for CTF and CV% of 4.8 for NT, with mean pH values for the NT 

and CTF fields of 6.47 and 6.42, respectively. However, there was no pattern to pH values 

across either of the two fields. Again with K, the within-field variation was of a similar value 

for the CTF (mean 96.0 mg l-1 (CV% 21.5)) and NT (mean 107.0 mg l-1 (CV% 26.0)), 

although there was lower K concentrations again for the CTF with the free draining soil 

(Figure 5). 

 



 

Figure 4. Baseline soil analysis phosphorous (P) (mg l-1) results greater (blue circles) and 

less (white circles) than the average value for both fields for the forty grid sampling 

points across the normal traffic (NT) (right) and controlled traffic (CTF) (left) fields. 
 

 



Figure 5. Baseline soil analysis potassium (K) (mg l-1) results greater (blue circles) and less 

(white circles) than the average value for both fields for the forty grid sampling points 

across the normal traffic (NT) (right) and controlled traffic farming (CTF) (left) fields.  

  

The soil compaction assessments (bulk density, soil resistance and VESS) showed no pattern 

of change across either the NT or the CTF fields. Soil compaction increased with vehicle 

passes for both the NT and CTF. This was indicated by a 14.7% (p<0.001) increase in soil 

bulk density for the NT area and 18.2% (p<0.001) for the CTF field between zero and 6+ 

vehicle passes (Table 3). These increases were also reflected in the penetrometer resistance 

with a 48% (p<0.002) increase for the NT field and a 70% (p<0.001) increase for the CTF. 

There were significant increases (p<0.001) in the soil visual evaluation of soil structure VESS 

score between zero and 6+ passes for both the NT and CTF fields. However, although there 

was greater soil structural damage for the CTF 6+ passes compared to the NT, the values 

measured were lower for CTF for cases where there were 4 passes or less (Table 3). 

Table 3. Effect of vehicle passes on soil bulk density – 0 to 100 mm (g cm3), soil 

resistance (penetrometer – 0 to 200 mm) (kPa) and Visual Evaluation of Soil Structure 

(VESS) (Score 1 to 5) (all values average per field). 

 

No of 

passe

s 

Soil Bulk Density  

(kg m-3) 

Soil Resistance  

(kPa) 

VESS 

(Score 1 to 5) 

 NT CTF NT CTF NT CTF 

0 1000 990 (990) 1.35 1.20 (1.24) 1.95 1.90 (1.91) 

2 1080 1070 (1080) 1.51 1.18 (1.24) 2.34 2.47 (2.48) 

4 1130 1120 (1120) 1.71 1.68 (1.66) 3.15 3.09 (3.09) 

6 1140 1130 (1130) 1.79 1.87 (1.87) 3.56 3.60 (3.55) 

6+ 1150 1170 (1180) 1.99 2.04 (1.96) 3.75 3.91 (3.89) 



Figures in brackets are mean values from the same soil type in CTF field (excluding the free draining soil). 

The greatest single increase in bulk density compared to the overall change was the difference 

between zero and 2 passes with a 54% increase for the NT area and a 45% increase in the 

CTF field. The CTF field, with concentrated passes, showed a greater increase in overall soil 

bulk density between the 6 and 6+ passes (23.8%) compared to the NT field (9.1%). 

As expected, there was no significant difference in yield for the NT and CTF treatments 

during the first cut (Table 4) as this was when the CTF practices were initiated. The 2nd 

silage cut gave a 0.30 t ha-1 increase in DM yield for the CTF compared to the NT field 

(p=0.72) and (0.5 t ha-1 (p<0.01)) for the 3rd silage cut compared to the NT. 

 

Table 4. Total Dry Matter (DM) off-take and differences (t ha-1) with the standard error 

of differences of the mean (s.e.d.) from the areas of the field under normal traffic (NT) 

and controlled traffic farming (CTF), (p values in bold indicate significant difference) 

 

Silage cut/Date Field system  Difference s.e.d. p value 

 NT CTF    

1st silage cut/22nd May 5.28 5.43 0.15 0.019 0.27 

2nd silage cut/2nd July 3.58 3.88 0.30 0.007 0.72 

3rd silage cut/10th Sept 2.34 2.84 0.50 0.001 0.01 

2nd+3rd silage cut 5.92 6.72 0.80 0.016 0.05 

Total silage 11.29 12.15 0.96   

 

 

Economic analysis 

The economic analysis followed a similar format to Godwin et al. (2003) for assessing the 

potential for precision farming in cereal production. It considered the direct economic 

advantages from any improvements in forage yield alongside the additional costs of 

implementation, but did not include other less tangible benefits such as the savings in re-

establishment, which was not a requirement in this study. The potential saving in fuel costs 

was conducted using the data in Table 5, which indicated that despite the increase in the total 

distance travelled for CTF (in agreement with Bochtis et al., 2010) by 10% and a reduction in 

the work rate of 2.5%, the fuel consumption per hectare was reduced by 2.16 l ha-1 (27%).  At 

the time of the study, the cost of agricultural diesel was approximately £0.50 l giving a benefit 

of £1.08 ha which, whilst of benefit to the farmer and contractor, are relatively small in 

comparison to the yield benefit. 

 

 Table 5. Results from an AHDB Demonstration Farm in Yorkshire (Peets et al., 2017) 



  Normal Controlled Traffic Farming 

Mower (m) 9 9 

Rake (m) 12 9 

Spreader (m) 24 18 

Harvester (m) 12 9 

Trailer Random Offset one track lane 

Total distance (km ha-1) 5.63 6.17 

Trafficked area 57.4% 23.5% 

Work rate (ha h-1) 12.47 12.15 

Fuel consumption (l ha-1) 7.98 5.82 

Fuel consumption (l t-1) 0.66 0.52 

 

A range of trafficked areas (%) was used in the calculations, as the trafficked area depends 

upon the track gauges, tyre widths and operating widths of the available equipment. This 

information should enable farmers and/or contractors to estimate the benefits of CTF for their 

system, as well as future benefits accruing from appropriate machinery replacement. As the 

cost ha-1 is influenced by the area cut/harvested, the analysis was conducted for a range of 

areas up to 1500 ha cut-1, based upon harvesting rates of 75 ha day-1 (Farmers Weekly, 2016; 

Cottey, 2016 Personal communication) and 20 work-days cutting period-1. The annual 

benefits of CTF were based upon the following assumptions:  

(i) The average yield for 2 and 3 “cut” managed grassland harvest systems in the 

UK is 12 t ha-1 and 16.6 t ha-1 of dry matter respectively, with a value of £72 t-1 

(SRUC, 2016 Personal communication),  

(ii) Normal traffic management covers 80% of the field area, given the trafficked 

area for a single harvest operation of 65% (Kroulík et al., 2014) and during a 

growing season there could be in excess of 11 sets of operations. The value of 

80% selected is higher than the 74% chosen by Alvemar (2014) but more 

conservative than assuming a total trafficked area of 100%.  

(iii) A 13% increase in forage yield from the removal of traffic was assumed, based 

on the most robust UK data of 14.7% (Douglas et al., 1992; Douglas et al., 

1995), 12.1% (Frost, 1988a; Frost, 1988b) and the experimental results shown 

above (13.5%). 

The additional annual cost of CTF over NT farming was estimated for four different levels of 

investment in vehicle guidance systems (Table 6); ranging from low accuracy - manual 

steered - to high accuracy – fully integrated steering. As discussed earlier, it was assumed that 



a farmer or contractor would employ the guidance systems in existing machinery, where 

possible. Further machinery purchases that conformed to the working widths that had been 

decided on farm would be a normal part of a longer-term replacement policy. Therefore, costs 

are only focused on the outlay and use of the guidance systems. The total annual costs were 

comprised of interest rate (4.5%), depreciation (15%), maintenance (5%), an annual RTK 

service fee (where appropriate) and training (£100 year) (Nix, 2015). Figure 6 shows the total 

annual cost for the area harvested in a given “cut”, showing the typical cost ha-1 reduction as 

the harvested area increases. 

  

Table 6. Current typical commercial equipment guidance costs/system. 

Investment Equipment Repeatable 

positioning 

Initial 

Capital 

Cost 

RTK Annual 

Fee 

Total Annual 

Cost 

Level 1 Low accuracy*  

Manual steering  

No £1,500 - £467.5 

Level 2 Low accuracy*  

Assisted steering 

No £5,000 - £1325 

Level 3 High accuracy**  

Assisted Steering 

Yes £10,000 £500 £3050 

Level 4 High accuracy**  

Integrated steering 

Yes £15,000 £500     £4275 

*(+/-150 - 200 mm) These will result in an increased trafficked area due to their inaccuracy and non-repeatable 

positioning. 

**(+/-20 mm) Real Time Kinematic (RTK). 

 

Figure 6 shows that the Level 1 system costs less than £4.68 ha-1 for areas in excess of 100 ha 

and the more expensive Level 4 system, costs £21.38 ha-1 for areas in excess of 200 ha 

reducing to £2.85 ha-1 for areas in excess of 1500 ha. With CTF systems in grassland, it is not 

only the harvester that needs to be equipped with machine guidance systems but also the 

tractors drawing trailers and conducting other field operations. A minimum number of 

guidance systems would be 4, as at harvest there would need to be one system on the 

harvester and 3 further systems installed in three tractors pulling the trailers taking the cut 

silage to the clamp. Adding the data from the individual “curves” in Figure 6 for the number 

and types of systems required at the chosen level of technology and harvested area allows the 

total cost for field operations to be determined (Godwin et al., 2017). For example, should 4 

guidance systems be required, the cost ha-1 year-1 for 4 low accuracy - manually steered 

systems is less than £18.70 for areas in excess of 100 ha harvest-1, while 4 high accuracy 

(RTK) - integrated systems cost less than £85.50 for areas in excess of 200 ha harvest-1, 

reducing to £11.40 for areas greater than 1500 ha harvest-1.  



 

Figure 6.  Annual cost ha-1 of the guidance system for four levels of capital expenditure. 

 

 

 

The yield increases given in Table 7 for the range of trafficked areas were estimated by 

adding the trafficked (Yt) and non – trafficked (Yo) yields given by Eqs. 1-5 below in 

proportion to the trafficked and non-trafficked areas.  

                Yt (t ha-1) = Average forage dry matter yield (t ha-1) 

                 ((Trafficked Area + (1 – Trafficked Area) (1 + Average yield benefit))     (1) 

Yo (t ha-1) = Trafficked yield (t ha-1) x (1 + Average yield benefit)  (2) 

 

Hence for a 2-cut system with an average forage dry matter yield of 12 t ha-1 and a yield 

benefit of 13%, the trafficked yield is: 

               Yt = 12 (t ha-1)/(0.8 + (1 - 0.8)(1 + 0.13)) = 11.70 t ha-1    (3) 

and the non-trafficked yield  

  Yo = 11.70t ha-1 x (1 + 0.13) = 13.22t ha-1      (4) 

 Giving a combined yield Yc (t ha-1) for a 45% trafficked area: 



             Yc = ((0.45 x 11.70) + ((1 - 0.45) x 13.22)) = 12. 53t ha-1    (5) 

Table 7. Estimated yield and yield increase as affected by reductions in the trafficked 

area (%) for 2- and 3-cut systems 

 2 Cuts/season NT yield = 12.0t ha-1 3 Cuts/season NT yield = 16.5t ha-1 

Trafficked 

Area, % 

Yield, t ha-1 Yield increase, t ha-1 Yield, t ha-1 Yield increase, t ha-1 

45 12.53 0.53 17.23 0.73 

35 12.68 0.68 17.44 0.94 

25 12.83 0.83 17.65 1.15 

15 12.99 0.99 17.86 1.36 

 

This data shows that reducing the trafficked area from 80% (normal traffic) to 45% increased 

the yield by 0.53 t ha-1 and 0.73 t ha-1 for 2- and 3-cut systems, respectively. However, if the 

trafficked area were reduced to 15%, the yield benefit will be increased to 0.99 t ha-1 and 1.36 

t ha-1 for the 2- and 3-cut systems, respectively.  

At £72 t-1 these yield increases are worth between £38 ha-1 and £98 ha-1 and agree with the 

benefits from earlier studies (Stewart et al., 1998) when adjusted for retail price inflation 

(Alvemar, 2014). A 1% reduction in the trafficked area increased the benefit of CTF at rates 

between £1.10 ha-1 and £1.50 ha-1 for the 2- and 3-cut systems, respectively.  

 

Comparing the costs and potential benefits (yield and fuel (at £1 ha-1)), the break-even area 

(A) can be estimated as given below: 

A (ha year-1) = Total cost (£ year-1)/Benefit (Yield and Fuel) (£ ha-1)  (6) 

Hence for 4 low accuracy - manually steered systems with a 45% trafficked area, a CTF 

system with 2 cuts/year is: 

A = 4 x £467.5 year-1/(£38 ha-1+£1 ha-1) = 48 ha year-1   (7) 

The breakeven area increases to 438 ha year-1 for 4 high accuracy (RTK) - integrated steering 

systems. For a 35% trafficked area with 3 cuts a year, the break-even area for four low 

accuracy - manually steered systems is 27 ha year-1 increasing to 77 ha year-1 for 4 low 

accuracy/assisted steering systems and 249 ha for 4 high accuracy (RTK) - integrated steering 

systems.  A 3-cut CTF system with a trafficked area of 15% using 4 high accuracy (RTK) – 

integrated steering systems has a break-even area of 173 ha.  

 

Discussion 



 

That there were differences between the soil structure measurements for the zero and six plus 

passes for both CTF and NT was not unexpected, even with the same soil type for the 

majority of the two areas (Figure 3). The greater penetrometer resistance, increased VESS 

score and greater bulk density for both the CTF and NT wheeling areas (six plus) 

demonstrated the effect of a greater amount of traffic and axle pressure. Although there were 

similar total amounts of traffic across the two fields, this was concentrated on a smaller 

wheeled area in the CTF field than in the NT field. It has been shown in previous studies 

(Taylor et al, 1982; Bakker and Davis, 1995) that even a limited number of vehicle passes 

reduced yield. The NT field had a greater coverage of various numbers of vehicle passes than 

the CTF field where the majority of activity was confined to predefined wheel tracks. The 

results from the sampling points for the soil structure agreed with previous work that the first 

one or two passes by a vehicle produced the greatest compaction and subsequent yield 

reductions (Hamza and Anderson, 2005). 

The weather during the growing season for the experimental work was warmer and wetter 

than the long-term average and supported above average silage production. As an estimated 

average for UK silage production is 11.7 t ha-1 and for Northern Ireland (closer in climatic 

conditions to the experimental site) 10.6 t ha-1 (AHDB, 2011). As expected, there was a non-

significant difference in DM yield of 0.15 t ha-1 (p=0.27) between the two field management 

systems for the first silage cut, as the CTF system had not been established prior to this cut 

and hence the same vehicle traffic pattern had been applied to both field areas. The chemical 

and physical assessment of the NT and CTF field areas showed no overall significant 

differences in pH, K, soil bulk density, soil resistance or visual structure (VESS) and, 

although P was greater in the NT field, the levels measured in both fields would not have 

limited grass growth. Increased P and K would have encouraged greater yield for the NT 

field, especially as the more freely draining side of the CTF field had potentially promoted the 

loss of both P and K by soil water drainage. The differences in yield between the two areas 

increased as the CTF management operations were instigated for the 2nd and 3rd silage cuts. 

DM yield of the second and third cuts combined gave a 13.5% (0.80 t ha-1) increase with the 9 

m CTF system compared to the NT (p<0.05), which was very similar to the 13% from the 

literature. The mean rainfall for April and May in 2015 was 85.3 mm which was 19.5 mm  

greater than the long-term mean (65.8 mm) but the yields for the NT and CTF fields were not 

significantly different, inferring no advantage for the more freely draining western side of the 

CTF field. Again, even though the rainfall during the growing period between the first and 



second cut was 29.4 mm greater than the long-term mean, there was no significant difference 

between the yield from the NT and CTF fields, It was only during the third cut that a 

significant difference was seen between the yields as this period had 19.5 mm less 

precipitation than the long-term average. This should have given an advantage to the NT field 

over the CTF field as the former would have retained more moisture as a result of the general 

compaction. In contrast, the CTF had the more freely draining area on the western side which 

would have lost water through drainage much more readily, with less available for growth. As 

2015 was an above average growing season, the differences in yield may have been greater 

than a growing season with less favourable conditions. However, further work would have to 

be done to compare yield differences in further years with different weather conditions to 

confirm this. It has been shown that the amount and date of rainfall, especially after the first 

cut, can affect second cut yields (Douglas, 1997). 

The use of the GNSS guidance systems and details of the working and tyre widths of the 

machinery involved allowed the area covered by the wheelings and the overall distances 

covered by the CTF and NT systems to be calculated. The area covered by the CTF system 

(excluding the second slurry application) was 19.4%, a reduction of 68% compared to the 

coverage of the NT (87.4%) over the whole of the three silage cuts. The greater trafficked 

area for the NT system was mainly as a result of the tractors and trailers moving the cut silage 

to the pits as they always took the shortest route to the field exit or back to the harvester. In 

contrast, the tractor and trailers that collected the cut silage from the CTF field followed the 

next set of wheelings, thus ensuring that a reduced area was covered. The actual area covered 

by the CTF operations was 30.4%, due to the narrower spread of the second slurry 

application. 

The economic analysis of the data used the four levels of investment to allow farmers and 

consultants a range of cost options to choose for implementation of a grassland controlled 

traffic management system. As expected, the reduction in the trafficked areas across grassland 

fields led to an enhanced yield compared with the NT field thus improving the cost margins. 

As these margins are offset against the cost of implementing controlled traffic for a minimum 

of four vehicles (i.e. one harvester and three tractor - trailers to transport the cut silage to the 

clamp), the size of the area harvested has a very dramatic effect in reducing the cost per 

hectare (economies of scale) of the vehicle guidance systems. The break-even points were 

reasonable for UK farm areas, from low level investment on smaller farms, i.e. 50 to 100 ha, 

to larger farmers over 250 ha. 



In the case of contractor harvested systems, a financial agreement would have to be made 

between the farmer and the contractor. Some of the benefit of any additional yield/revenue to 

the farm would have to be offset against the extra cost and operational complexity 

experienced by the contractor. The economic information should permit the benefits, costs 

and break-even areas of individual systems to be estimated and investment choices to be 

made.  

 

Conclusions 

There are suitable ranges of commercially available equipment to enable farmer/contractors to 

design CTF systems with module widths from 3m to 12m. However, a width of 9m appears 

most suitable with current machinery. 

It is possible, within one forage harvesting season, to gain a yield advantage of 13.5% (0.8 t 

ha-1) by introducing a CTF system compared with operating under a normal traffic regime. 

However, this may be dependent on the individual growing season and could be less in 

growing seasons that have less advantageous weather conditions than those experienced 

during the experimental work reported here. Nevertheless, this yield gain and reduction in 

trafficked area with CTF can be achieved by aligning the use of existing equipment and 

operating with vehicle guidance. 

Overall, economic analysis showed that CTF in grass silage production can be cost effective, 

provided the navigation systems selected are based on the size of the operation,. The data also 

provides a basis for negotiation between a farmer and contractor when considering the 

benefits and costs of grass CTF systems. 
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