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Abstract 16 

Salmonid species are highly sensitive to river water temperature. Although long-term river 17 

temperature monitoring is essential for assessing drivers of change in ecological systems, 18 

these data are rarely available from statutory monitoring.  19 

We utilized a 105-year citizen science data set of river water temperature from the River 20 

Spey, North-East Scotland, gathered during the fishing season (April - October) between 21 
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1912 and 2016. As there were gaps in the records we applied generalised additive models to 22 

reconstruct long-term daily river temperature in the fishing season from air temperature, 23 

cumulative air temperature, day length and runoff. For that, continuous hydrometeorological 24 

data have been obtained from statutory monitoring and process-based models.  25 

Long-term warming trends of river temperature, namely an increase of 0.2 K per decade after 26 

1961, have been mostly related to increasing air temperature of the same magnitude. Indirect 27 

impacts of rising air temperatures include less snow accumulation and snow melt as well as 28 

earlier snow melt. The snow free period starts around 2 days earlier per decade throughout 29 

the study period and 7 days earlier per decade after 1965. Consequently, the contribution of 30 

snow melt and its cooling properties to river temperature in spring are declining.  31 

Citizen science delivered a data set that filled a vital knowledge gap in the long-term 32 

historical assessment of river temperatures. Such information provides a robust basis for 33 

future assessments of global change and can help inform decision-makers about the potential 34 

importance of enhancing the resilience of rivers and aquatic ecology to climate change. 35 

Introduction  36 

River water temperature influences many biochemical processes and aquatic ecology (Perkins 37 

et al., 2012; Verbrugge et al., 2012). The growth rate, habitat, life-cycle and reproduction of 38 

salmonid species are influenced by river temperature, either directly or indirectly through its 39 

influence on the oxygen content of water (Jonsson and Jonsson, 2009; Jonsson, 1991; 40 

O’Gorman et al., 2016). High river temperatures increase salmonid vulnerability to diseases 41 

(Carraro et al., 2017). Hence, increasing river temperature affects the suitable thermal habitat 42 

for salmonids (Isaak et al., 2015; Mohseni et al., 2003). In Switzerland, declining brown trout 43 

populations have been attributed to river temperature increases (Hari et al., 2006). In 44 

Scotland, decreasing trends of spring rod catches of Atlantic salmon have been reported 45 



3 

 

(Youngson et al., 2002) and earlier out-migration of smolts has been attributed to increasing 46 

spring river temperature (Langan et al., 2001). 47 

Long-term river temperature monitoring forms a basis for robust estimations of warming 48 

rates (Isaak et al., 2018) and can provide information for catchment managers to support 49 

decision making aimed at increasing resilience to warming river temperatures. Yet, only few 50 

long-term datasets of river temperature from statutory or experimental monitoring exist 51 

(Arora et al., 2016). The longest record described in the scientific literature refers to daily 52 

records of the Danube at Linz, Austria, which began in 1901 (Webb and Nobilis, 1994). Only 53 

few other river temperature records dating back to the 1920s and 1930s are described in the 54 

scientific literature (Fofonova et al., 2016; Kaushal et al., 2010). With the exception of a 55 

study in the Girnock Burn, Scotland, with records dating back to 1968 (Langan et al., 2001), 56 

there is a lack of long-term monitoring of river temperature in the UK (Hannah and Garner, 57 

2015; Jonkers and Sharkey, 2016). 58 

Understanding long-term changes in river temperatures and their drivers of change is 59 

essential to reconstruct historic records and for future projections (Caldwell et al., 2015; 60 

Webb and Walling, 1992). River temperature is mainly controlled by thermal inputs into the 61 

catchment, hydrological conditions, landscape and channel characteristics (Dick et al., 2017; 62 

Jackson et al., 2017b). Observations of global radiation are rare, hence air temperature which 63 

is controlled by global radiation and routinely measured, is widely recognised as a surrogate 64 

variable (Johnson et al., 2014; Koch and Grünewald, 2010). Indirect influences on intra-65 

annual variability of river temperature include precipitation, snowmelt and discharge (Arora 66 

et al., 2016; Merriam et al., 2017; Toffolon and Piccolroaz, 2015). High discharge from snow 67 

melt contributes to cooler river temperatures in spring and early summer (Toffolon and 68 

Piccolroaz, 2015). Low summer stream-flow results in small thermal capacity of the river and 69 

high sensitivity to air temperature (Arora et al., 2016). Due to the strong influence of 70 
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landscape and channel characteristics on river temperature, its relationship with 71 

hydroclimatic variables are site-specific (Chen et al., 2016; Jackson et al., 2017b). Long-term 72 

trends in river temperature are influenced by land cover changes such as urbanisation and loss 73 

of riparian woodland (Isaak et al., 2010; Kaushal et al., 2010). Further influences on river 74 

temperature include thermal discharges, e.g. cooling water from power plants and distilleries 75 

(Baum et al., 2005; Hardenbicker et al., 2017; Koch et al., 2015; Müller et al., 2007).  76 

We investigate a unique long-term record (1912-2016) of river temperatures collected 77 

through citizen science in the River Spey, a major salmonid river in North-East Scotland. The 78 

river is designated as a special area of conservation for Atlantic salmon (Salmo salar) and 79 

Freshwater pearl mussel (Margaritifera margaritifera) that depend on salmon, both of which 80 

are highly sensitive to changes in river temperature (Lopes-Lima et al., 2018). Specifically, 81 

we address two questions (1) Is there evidence for long-term changes in river temperature? 82 

(2) What are the key drivers?  83 

Our analysis of long-term records of river temperature provides a) a robust baseline to assess 84 

future changes in river temperatures; b) relevant insights for ecosystem functioning; and c) 85 

evidence to inform stakeholders of the need for proactive mitigation to protect the 86 

biodiversity and rural economies that depend on healthy and sustainable fish populations.  87 

Materials and Methods 88 

Study area 89 

River temperature data have been investigated at four fishing locations (beats) on the Tulchan 90 

Sporting Estate, River Spey in North-East Scotland (Fig. 1). The fishing beats are located 91 

approximately 20 km downstream of the gauging station Grantown-on-Spey. The model 92 

domain includes the entire catchment area draining to Boat o’ Brig (area approximately 2860 93 
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km
2
). The land cover is characterized by montane habitats, heath, and bog (ca. 63 % in total), 94 

woodland (ca. 18 %), and grassland (ca. 16 %) and only small areas with arable and urban 95 

land use (CEH, 2012). The elevation ranges from 43 m to 1300 m above sea level. 96 

Characteristics of the River Spey catchment are representative of Scotland’s upland and 97 

lowland systems in terms of land cover and management, population and industry. Sporting 98 

estates are an important part of Scotland’s rural economy with revenue from game fishing on 99 

the River Spey exceeding £11 million per year (Butler et al., 2009).  100 

The annual mean air temperature is 5.5°C (standard reference period 1961-1990) with 101 

pronounced seasonality (January mean: 0.2°C, July mean: 11.6 °C). Long-term average 102 

annual precipitation is approximately 1200 mm (standard reference period 1961-1990) with 103 

higher precipitation in winter (January: ca. 125 mm) than in summer (July: ca. 85 mm). 104 

Consequently, discharge is higher in winter than in summer, whereby snow plays a major role 105 

in the regional water balance (Helliwell et al., 1998). 106 

The River Spey has been classed as ‘good’ with respect to its ecological status according to 107 

the European Water Framework Directive and relatively pristine and oligotrophic throughout 108 

(Joint Nature Conservation Committee, 2016). As there are few water quality, 109 

hydromorphological issues or barriers to fish migration in the catchment, the threat of 110 

increasing river temperatures is deemed a significant concern for the future.  111 

 112 

Compilation of a data base of river temperature and explanatory variables River temperature 113 

and water level data were routinely collected by fishing attendants (ghillies) as part of a 114 

unique citizen science exercise. Every morning before fishing commenced, river temperature 115 

data were recorded using mercury thermometers to determine the type of fly required for 116 

fishing and water levels were measured from standard stage posts. It is understood from the 117 
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Estate manager of more than 40 years that the location and methods used for recording river 118 

temperature and level have remained unchanged for the record length. Data have been 119 

recorded in books from 1912 to 2016 and have been transcribed following strict quality 120 

control procedures at The James Hutton Institute. River temperature has been converted from 121 

degree Fahrenheit to degree Celsius, temperature differences have been converted to Kelvin, 122 

and water levels have been converted from feet and inches to metres. The availability of river 123 

temperature data is summarized in the supporting information 1 (Fig. S1.1). The data 124 

availability is highest within the fishing period, mostly between April (week 15) and October 125 

(week 40). Based on the data availability, two time windows covering spring (week 15-week 126 

22) and the entire fishing season (week 15- week 40) in the ten year periods 1926-1935, 127 

1956-1965, 1976-1985 and 2006-2015 have been selected for detailed analysis. 128 

To explore the influences of hydroclimatic drivers on river temperature, we collated a data 129 

base of continuous daily values of meteorological and hydrological variables for the time 130 

period 1926-2015 as limited by data availability.  131 

A data basis of continuous daily hydrometeorological data has been obtained from both 132 

conventional monitoring as well as simulation results. For the time period 1961-2015 daily 133 

air temperature and precipitation values were available for 25 km
2 

grids derived from 134 

observational data by the Met Office (UKCP09 data, period 1961-2015). Values for 135 

subcatchments were derived using area-weighted averages for this period. For earlier years, 136 

air temperature records from the stations are transferred to the subcatchments using 137 

regression models of the form: 138 

                                                                (S1.1) 139 

where                    is the reconstructed daily mean air temperature of the subcatchment, 140 

             is the daily air temperature at the station as calculated as the average of the 141 
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observed minimum and maximum air temperature, c is a coefficient estimated as the intercept 142 

of a fitted linear model between the reconstructed and the observed air temperature with slope 143 

1, and   is the statistical error term.  144 

Precipitation records from the surrounding stations are transferred to the subcatchments using 145 

regression models with zero intercept and slope as the ratio between precipitation of the 146 

subcatchment in the 1960s (obtained from the gridded product) and the station of the form: 147 

                              
                   

              
                 (S1.2) 148 

where                 is the reconstructed daily precipitation of the subcatchment,            149 

is the daily observed precipitation at the meteorological station and 
                   

              
 is the 150 

ratio between precipitation for the subcatchment from the 25 km gridded product and the 151 

observation at the station between 1961 and 1969 for which data availability and quality at 152 

the stations is high. For each subcatchment, the station which corresponded well to the 153 

weighted gridded averages was selected (if data were available). Alternatively, another 154 

station was chosen. Details on the regression models used for reconstructing air temperature 155 

and precipitation are provided in Table S1.1.  156 

A single layer degree-day snow model (Spencer, 2016) has been applied to simulate snow 157 

water equivalent, snow melt and effective precipitation. The model runs on a daily time step 158 

and uses air temperature and precipitation as input variables. The model had been 159 

parameterised by calibration and validation for Met Office snow records and data obtained 160 

through citizen science by the Snow Survey of Great Britain (Spencer et al., 2014). For the 161 

period 1961-2015 we applied the snow model to 5 km * 5 km grids for which meteorological 162 

variables were available and then averaged the results to subcatchments. For the years before 163 

1961 the model was run for subcatchment averages of air temperature and precipitation. 164 
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Catchment runoff was simulated by the conceptual hydrological model TUWmodel (Parajka 165 

et al., 2007). To explicitly account for snow as simulated by the single layer degree-day snow 166 

model, the internal snow routine of TUWmodel was deactivated. The hydrological model was 167 

parameterised by calibrating observed daily discharge from the gauging station upstream of 168 

the fishing beats at Grantown-on-Spey using the Kling-Gupta Efficiency (Gupta et al., 2009) 169 

as objective function. 170 

The parameter values of the calibrated snow and hydrological model are shown in the 171 

supplementary material (Tab. S1.2). The model performance with respect long-term annual 172 

runoff, root mean square error (RMSE), bias, mean absolute error (MAE), Nash-Sutcliffe 173 

Efficiency (NSE, Nash and Sutcliffe, 1970), Nash-Sutcliffe efficiency calculated for natural 174 

logarithms of observed and simulated discharge (NSEln), coefficient of determination (R
2
), 175 

Volume Efficiency (VE, Criss and Winston, 2008) and Kling-Gupta Efficiency (KGE) is 176 

reported in Table 1. We applied this parameter set for the individual subcatchments of the 177 

fishing beats. The model was applied to simulate runoff using both reconstructed (years 178 

1921-1960) and observed meteorological input variables (years 1961-2015). To minimize the 179 

influence of initial conditions on the model results we regarded the first four years of 180 

simulations as warm-up period and did not include these in further analysis.  181 

Statistical analysis 182 

Trends of observed data were only estimated for individual weeks with high data availability 183 

as gaps in the record would introduce a bias on trend estimation, e.g. annual average values 184 

would be underestimated in years with more observations in spring than in summer. To detect 185 

long-term changes in observed river temperatures, the weekly averages for periods with high 186 

availability of river temperature data were compared in terms of central tendency and 187 

variances using the Kruskal-Wallis test and the Levene test (implemented in the R-package 188 

car, Fox et al., 2018) respectively.  189 
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As a basis for long-term trend investigations, river temperature was reconstructed using 190 

generalised additive models (GAMs) which are widely applied to link river temperatures and 191 

hydrometeorological variables (Imholt et al., 2011; Jackson et al., 2018)We reconstructed 192 

continuous daily time series of river temperature in the fishing season (weeks 15-40) of the 193 

years 1925-2016.  194 

As a prerequisite to model river temperature, regression relationships between river 195 

temperature and hydrometeorological variables were investigated. Based on factors 196 

influencing river temperature identified in the literature (Jackson et al., 2017a; Merriam et al., 197 

2017; Mohseni et al., 1998; Toffolon and Piccolroaz, 2015) we considered the variables air 198 

temperature, runoff, precipitation, snow melt, the ratio of snow melt over total runoff and 199 

water levels. Additionally, we investigated the relationships between river temperature and 200 

cumulative air temperature from the beginning of the calendar year and day length. 201 

Antecedent conditions influencing river temperature (see e.g. Koch and Grünewald, 2010; 202 

Mohseni et al., 1998) were considered by analysing the relationship between river 203 

temperature and the moving average of each of these variables over the preceding days, 204 

including the day of river temperature measurements. We chose the number of preceding 205 

days for which the correlation between river temperature and air temperature was highest. In 206 

a next step, GAMs were fitted using the R-package mgcv (Wood, 2018) for data from Beat 207 

D, the fishing period in 1961-2015 was selected as the training period due the high 208 

availability and quality of river temperature records along with observed hydrometeorological 209 

variables for Beat D. At an early stage of the analysis, the model showed a number of 210 

residuals with absolute errors over 3 K. These values were visually checked and 144 211 

implausible river temperature observations (e.g. in case of pronounced increases in river 212 

temperature despite declining air temperature) were removed. A model to predict river 213 

temperature for all fishing beats was selected based on the Akaike information criterion 214 
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(AIC), coefficient of determination (R
2
), and root mean square error (RMSE) in the training 215 

period and the availability and influence of the predictor variables. To evaluate the model 216 

robustness over the entire study period and at all fishing beats the model was then evaluated 217 

for both the training and test period (1925-1960), using reconstructed meteorological 218 

variables) and at all fishing beats also for Kling-Gupta Efficiency (Gupta et al., 2009) and 219 

Nash-Sutcliffe Efficiency (Nash and Sutcliffe, 1970).   220 

Trend analysis and change point analyses were conducted for both the hydrometeorological 221 

variables and modelled river temperatures using the Mann-Kendall trend test and the Pettitt 222 

test for change points of the central tendency in time series using the R-package trend 223 

(Pohlert, 2018). We fitted linear regressions for the entire record where hydrometeorological 224 

variables were available (1925-2015). To account for interannual variability and the influence 225 

of starting and ending year on trend detection, we performed trend and change point analysis 226 

for moving windows of forty year periodsand reported forty-year trends starting in five or 227 

more consecutive years. The modelled river temperatures for the decades 1926-1935, 1956-228 

1965, 1976-1985 and 2006-2015 were compared to the observed values in these data-rich 229 

periods.   230 

Results 231 

Long-term changes in observed river temperature 232 

The raw data at the fishing beats show tendencies of increasing river temperatures and an 233 

earlier warming in spring (Fig. 2). At Beat D, observed weekly river temperature tends to 234 

increase by around 0.02 K per year throughout the record length in weeks 15 and 22 for 235 

which data availability is relatively high. For periods with high data coverage (spring: weeks 236 

15-22 and fishing season: weeks 15-40 in the decades 1926-1935, 1956-1965, 1976-1985 and 237 

2006-2015), weekly river temperatures are shown in Table 2 (mean and maximum values for 238 
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all fishing beats) and Figure 3 (weekly values exemplified for Beat D). Compared to 1926-239 

1935, mean river temperatures in spring in 1976-1985 and 2006-2015 are between 0.2 K and 240 

2.5 K higher. These changes are mostly statistically significant; the magnitude of change 241 

varies between the fishing beats (Tab. 2). The maximum weekly river temperature in spring 242 

increases for all beats by approximately 2 K between the decade 1926-1935 and later periods. 243 

Mean and median river temperature in the typical fishing season (weeks 15-40) and 2006-244 

2015 is significantly higher by up to 2 K than in 1926-1935 at Beats A, B and D. At Beats B 245 

and D significant increases also occur between 1926-1935 and 1976-1985. At Beats A and D, 246 

river temperature is significantly higher in 2006-2015 than in 1976-1985. The direction of 247 

change of maximum river temperature in the fishing season differs between the fishing beats. 248 

Also, there is no consistent spatial pattern in terms of mean values or variance of the fishing 249 

beats in different decades. River temperatures show high temporal variability within the 250 

fishing season with mean values around 5 to 7 °C in April and between 12 and 15 °C in July 251 

and August (Fig. 3c).  252 

The correlation between river temperatures at the different fishing beats is highly positive 253 

(correlation coefficient > 0.85, Tab. S2.1) but differ slightly in magnitude (linear model 254 

intercept between Beat D and other fishing beats between 0.5 and 1.5, linear model slope > 255 

0.90, percent bias < 5 %).  256 

 257 
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 258 

Modelling river temperature from relationships with hydrometeorological 259 

variables 260 

River temperature is positively correlated with air temperature, cumulative air temperature 261 

from beginning of the year and day length, but negatively correlated with precipitation, snow 262 

melt, runoff, the ratio of snowmelt over total runoff and observed water level (Tab. 3). These 263 

relationships are mostly stronger when a moving average over the eight days preceding and 264 

including the day of river temperature observation is considered. For cumulative air 265 

temperature, a moving average of eight days preceding the temperature measurements does 266 

not improve the relationship. For water level the relationship could not be evaluated for eight 267 

day moving averages as continuous records of water level at the fishing beats were not 268 

available. Pronounced relationships exist between the different hydrometeorological 269 

variables, e.g. air temperature is positively correlated with cumulative air temperature and 270 

day length, but negatively correlated with precipitation, snow melt, runoff, snow melt ratio 271 

and water level (Tab. S2.2).  272 

Air temperature is the most important predictor of river temperature, explaining more than 60 273 

% of the variation of river temperature in GAMs (Tab. 4). The model performance improves 274 

when cumulative air temperature and day length are included. Together, air temperature, 275 

cumulative air temperature, and day length account for 78 % of the variation in river 276 

temperature in the training period. Minor improvements of the model performance (reduction 277 

of AIC and increasing coefficient of determination in the training period) are obtained when 278 

runoff, the ratio of snow melt over total runoff, and precipitation are included. Water level is 279 

a variable associated with a statistically significant coefficient in the GAM but only results in 280 

small improvements of the model performance (additional 1 % of the variation in river 281 

temperature explained in the training period). Julian day improves the model performance 282 
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compared to using air temperature alone (explained variance: 81 % compared to 65 %) but 283 

does not improve the model performance when cumulative air temperature and day length are 284 

considered.  285 

To be able to reconstruct daily river temperature from hydrometeorological variables in the 286 

fishing period, we decided to apply a GAM which includes air temperature, cumulative air 287 

temperature, day length, and log-transformed runoff (each averaged over the eight days 288 

preceding the water temperature measurements, model 8 in Tab. 4) for further analysis. The 289 

final model performs satisfactorily at all fishing beats with a coefficient of determination, 290 

Kling-Gupta Efficiency and Nash-Sutcliffe Efficiency mostly above 0.70 and percent bias 291 

below 10 % (Tab. 5). The model residuals are symmetric and approximately normally 292 

distributed, and do not show pronounced seasonality or differences between the years.  293 

Long-term changes in hydrometeorological variables 294 

Air temperature increased especially after 1958 and hence earlier snow melt and less snow 295 

melt during the fishing season are the most pronounced changes in hydrometeorological 296 

variables. Annual precipitation and thus modelled runoff increased, these changes occurred 297 

mostly in winter, while no significant changes occurred in the fishing season.  298 

Mean annual air temperature increases by around 0.008 K year
-1

 for the period 1926-2015 299 

(Fig. 4a). All forty-year periods after 1958 show significant increases of mean annual air 300 

temperature increase by on average 0.023 K year
-1

. Significant upward change points occur in 301 

1931 and 1987 (depending on the forty-year periods for which change points have been 302 

analysed). In the fishing season, air temperature increases by around 0.006 K year
-1

 for the 303 

period 1926-2015 (Fig. 4b) with a significant increase in all forty-year periods after 1958 (on 304 

average by 0.020 K year
-1

). Upward change points of air temperature in the fishing season 305 

occur in 1932 and 1994 depending on the forty-year periods chosen for analysis; 1949 marks 306 
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a downward change point. For the periods with high availability of water temperature 307 

observations at Beat D, significant increases in the mean air temperature in 2006-2015 308 

compared to 1926-1935 occur both in the spring (weeks 15-22) and the entire fishing season 309 

(weeks 15-40, Tab. S.3.1). Furthermore, the cumulative air temperature from the beginning of 310 

the year is significantly higher in period 2006-2015 compared to the other periods 311 

investigated during the fishing season.  312 

Annual precipitation slightly increases over the entire period 1926-2015 and especially in 313 

forty-year periods starting between 1959 and 1973 (around 5.8 mm year
-1

, Fig. 4c). 314 

Precipitation in spring and the fishing season does not show pronounced long-term changes 315 

(Fig. 4d, Tab. S3.1).  316 

Annual modelled runoff slightly increases with significant forty-year trends starting between 317 

1945 and 1972 showing an average increase of 5.33 mm year
-1 

(Fig. 4e). Upward change 318 

points occur in the late 1970s and early 1980s. In the fishing season, runoff does not show 319 

pronounced changes (Fig. 4f, Tab. S3.1). The direction and magnitude of runoff change are 320 

consistent with observed records at Grantown-on-Spey and Boat o’Brig (Tab. S3.2, Fig. 321 

S3.1). In contrast, observed median water levels decrease, e.g. between 1926-1935 and 2006-322 

2015 by 40 cm in spring (Tab. S3.3). Runoff and water levels show relatively high positive 323 

correlations in individual decades (Fig. S3.2 a-i). However, there is a clear tendency for a 324 

decreasing intercept in the relationships between runoff and water levels for individual 325 

decades (i.e. the same runoff resulting in lower water levels in later decades, Fig. S3.2 j).  326 

Snow melt and thus the ratio of snow melt over total natural runoff tends to decline in spring, 327 

the fishing season and annually (Fig. 4g, Tab. S3.1). Averaged over the period 1925-2015 the 328 

snow melt ratio declines by around 0.1 % year
-1

 with most pronounced changes for forty-year 329 
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periods starting between 1958 and 1975 (around 0.2 % year
-1

). A downward change point 330 

occurs in 1984.  331 

Between 1926 and 2015 the snow free period starts on average 0.18 days earlier per year. A 332 

faster shift (0.63 d year
-1

) occurs after 1965, whereby 2001 marks a downward change point 333 

(Fig. 4h).  334 

Long-term changes in modelled river temperature 335 

Modelled river temperatures increase with strongest warming tendencies after 1960 (Fig.5, 336 

Tab. 6). The mean river temperature in spring and the entire fishing season increase by 337 

around 0.006 K year
-1 

and 0.004 K year
-1 

over the period 1926-2015, respectively (Fig. 5a,b). 338 

Significant increasing trends by around 0.024 K year
-1 

(spring) and 0.018 K year
-1 

(entire 339 

fishing season) occur for forty-year periods starting between 1962 and 1970 whereby 1988 340 

marks an upward change point. Significant changes in the maximum river temperature in the 341 

entire fishing season occur for forty-year periods starting between 1958 and 1967 with an 342 

average warming of 0.044 K year
-1 

(Fig. 5d). Hereby, 1953 marks a downward and 1981 an 343 

upward change point. 
 
The comparison of seasonal patterns shows tendencies towards an 344 

earlier warming in spring in later decades (Fig. 5e). The comparison of mean and maximum 345 

values based on weekly averages over spring (weeks 15-22) and the entire fishing season 346 

(weeks 15-40), shows high variability between the decades but only few appreciable 347 

increases from one decade to the next (Tab. 6). The modelled mean and median river 348 

temperatures for both spring and the entire fishing season are around 1.5 K higher compared 349 

to the observations in 1925-1936, but are approximately 0.7 K lower than the values obtained 350 

from the observations in 1976-1985 and 2006-2015. The modelled maximum river 351 

temperature in the spring season is approximately 0.8 K lower than the observation with 352 

stronger differences for maximum values (compare Tab. 2).  353 
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The river temperature model captures the long-term dynamics of the river temperature 354 

observations at all fishing beats (Fig. 6, coefficient of determination > 0.7 in the fishing 355 

season when comparing averages of observations and modelled values for dates when 356 

observations are available). Annual values calculated from modelled daily continuous river 357 

temperatures show different dynamics with less pronounced warming tendencies compared to 358 

annual averages calculated from the records taken at irregular intervals.  359 

Discussion 360 

Influences on river temperature 361 

Intra-annual variability of river temperature is dominated by thermal inputs to the catchment 362 

represented by air temperature, and day length (as additional surrogate for global radiation). 363 

Also heat storage in the catchment (represented by cumulative air temperature) and runoff 364 

influence intra-annual variations in river temperature.  365 

We found air temperature to be the most important predictor of river temperature, which is 366 

consistent with the literature (Jackson et al., 2017a; Kelleher et al., 2012; Rabi et al., 2015). A 367 

higher correlation between river temperature and air temperature averaged over the preceding 368 

eight days, indicates the influence of thermal energy inputs and heat storage in the entire 369 

catchment, as noted by Koch & Grünewald (2010). The role of heat storage in the catchment 370 

is further reflected by the significant relationship of cumulative air temperature on river 371 

temperature also shown by the improved performance of the GAM. Day length shows 372 

positive correlation with river temperature and furthermore improves the GAM. Precipitation, 373 

snow melt, natural runoff as well as the ratio of snow melt over natural runoff reduce river 374 

temperature, which has been observed in various studies (Arora et al., 2016; Bolduc and 375 

Lamoureux, 2018). Lag times in the catchment are evident from hydrometeorological 376 

variables averaged over eight days preceding and including the day of river temperature 377 
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measurements being stronger related to river temperatures than hydroclimatic variables at the 378 

day of river temperature measurement alone (Tab. 3, Tab. 4). The inclusion of water level did 379 

not improve the model performance as its influence is largely confounded with that of natural 380 

runoff. Due to gaps in the observed water level data and the inconsistency in the trend of 381 

water level with runoff, water level was not included in the final generalised additive model. 382 

Julian day, which is often used in statistical river temperature models (Jackson et al., 2017b), 383 

does not improve the model performance when cumulative air temperature and day length are 384 

considered. We argue that Julian day is a surrogate for both the influences of heat storage and 385 

global radiation which are captured by air temperature and day length. However, Julian day 386 

does not account for heat storage dynamics and is therefore not appropriate for long-term 387 

studies covering periods with trends in air temperature. Julian day was therefore excluded 388 

from further analysis. 389 

The variation in river temperature in the training and test period was explained by a GAM 390 

which includes air temperature, cumulative air temperature, day length, and natural runoff as 391 

explanatory variables. The annual and seasonal variations of river temperature are captured 392 

by air temperature, cumulative air temperature and day length. Natural runoff accounts for 393 

short-term variations. As the fishing season includes relatively few days with snow melt, both 394 

snow melt and the ratio of snow melt over total runoff did not influence the model results 395 

substantially. The identification of the explanatory variables was consistent as shown by the 396 

satisfactory model performance at all fishing beats and for both the training and test period.  397 

Long-term changes in river temperature and its drivers 398 

Observed increases in river temperature can be attributed to increasing air temperatures. The 399 

long-term increase of river temperatures of 0.003 K per year averaged over the fishing season 400 

between 1926 and 2015 and around 0.020 K per year after 1961 is in the range of other 401 

studies around the world (e.g. around 0.009 - 0.08 K per year in the United States, Kaushal et 402 
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al., 2010; around 0.007 K per year over a 122 year time series in France, Moatar and 403 

Gailhard, 2006). In our study, the changes are most pronounced in spring, which is consistent 404 

with findings from a 30-year record (1968-1997, Langan et al., 2001) from the Girnock Burn, 405 

North-Eastern Scotland. A direct comparison of observed trends, however, between the two 406 

catchments was not possible due to the gap in data from the River Spey between 1968 and 407 

1997. However, a greater increase in spring water compared to the entire fishing season is 408 

also reflected in the modelled river temperature of our study. Increases of spring river 409 

temperature in our study (0.024 K per year after 1960) correspond well with a 0.03 K 410 

increase per year between 1981 and 2001 as simulated by Jonkers and Sharkey (2016).  411 

Due to the close relationship between air temperature and river temperature, significant long- 412 

term increases in air temperature, especially since the 1960s, are found to drive the increase 413 

in river temperature. Air temperature increases relating to climate change found in the Spey 414 

catchment are consistent with general warming trends for Scotland and the entire United 415 

Kingdom related to global climate change (Kendon et al., 2018; Prior and Perry, 2014). An 416 

upward change point in air temperature in the late 1980s was also observed in other regions 417 

(Gädeke et al., 2017) and has been interpreted as a combination of air temperature cooling 418 

after the El Chichón (Mexico) volcanic eruption in 1982 and thereafter recovery in 419 

combination with anthropogenic warming (Reid et al., 2016). This change point in air 420 

temperature is reflected in a change point in modelled river temperature in our study (mean 421 

value in spring and the entire fishing season) and observed river temperature in Switzerland 422 

(Hari et al., 2006). 423 

When comparing changes between the decades with high data availability, both air and river 424 

temperature in spring are lowest in the period 1926-1935 and comparably high in the periods 425 

1956-1965 and 2006-2015. Consistent with other studies (e.g. Pekarova et al., 2011), over the 426 

entire study period 1926-2015, changes in modelled river temperature (ca. 0.003 K per year 427 
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for the entire study period) are less pronounced than those of air temperature in the fishing 428 

season (ca. 0.001 K per year). After 1961, mean values of both air and modelled river 429 

temperature in the fishing season bothincrease by approximately 0.02 K per year.  430 

Significant changes in snow melt timing and, to a lesser extent, snow melt amount as a 431 

consequence of air temperature increase may furthermore contribute to changes in river 432 

temperature in spring, which is consistent with findings for the Girnock Burn (Langan et al., 433 

2001). Due to relatively few observations during snow melt and the relatively small influence 434 

of snow melt as well as the ratio of snow melt over total natural runoff we decided not to 435 

include snow melt in the final GAM. However, to some extent the earlier snow melt resulting 436 

from high air temperature in winter and spring also explains comparably high river 437 

temperature in spring of 1956-1965 and 2006-2015 compared to 1926-1935 and 1976-1985 438 

(Fig. 3a, Fig. 4h). 439 

Total annual precipitation and natural runoff show increases which mainly occur in the winter 440 

season, but not during the fishing season. Due to increases in air temperature and associated 441 

higher evaporation losses, annual natural runoff increases to a lesser extent than annual 442 

precipitation. The increases in modelled natural runoff are less pronounced in the 443 

observations at Grantown-on-Spey and Boat o’ Brig (Fig. 4e,Tab. S3.2, Fig. S3.1). The 444 

difference between long term changes in modelled and observed runoff can be explained by 445 

abstractions for irrigation, industry and potable use etc. As neither modelled nor observed 446 

runoff shows pronounced changes in the fishing season, changes in observed water levels at 447 

the fishing beats cannot be attributed. Hence, despite the significant influence of discharge on 448 

intra-annual variability of river temperatures, long-term changes in river temperature at the 449 

fishing beats were not influenced by changes in heat capacity related to long-term changes in 450 

discharge.  451 
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It has to be considered that river temperature has been obtained from citizen science 452 

monitoring and is limited to dates when fishing took place at the individual fishing beats, so 453 

records are not evenly distributed in time and this could affect assessments of historic 454 

changes (Gray et al., 2016). We tried to overcome this by focussing the analysis of observed 455 

river temperature on periods with high data coverage for four fishing beats and by trend 456 

analysis of explanatory variables and modelled river temperature for evenly-spaced data 457 

during the fishing season. Differences in the interpretation of long-term changes between the 458 

observed records which contain gaps and the continuous modelled river temperature in the 459 

fishing season can thus either be attributed to sampling bias or uncertainty with respect to the 460 

generalised additive model. The more pronounced differences in the maximum values 461 

compared to mean values indicate the influence of irregular sampling.  462 

Uncertainties  463 

Uncertainties are associated with (i) observations of river temperature data and 464 

hydrometeorological variables, (ii) reconstructing a continuous record of hydroclimatic 465 

variables, (iii) river temperature modelling and (iv) the interpretation of long-term changes.   466 

To minimize the influence of observational uncertainties, the river temperature data were 467 

manually investigated and implausible values resulting from inaccurate recording or 468 

transcribing of data were excluded. Water levels are subject to observational uncertainties as 469 

visible from the disagreement of their long-term tendencies with those of modelled and 470 

observed runoff (Tab. S3.2, S3.3, Fig. S3.1, S3.2). The intercept in the relationship of water 471 

levels with runoff consistently declines over time and thus we assume local changes in river 472 

bed morphology or adjustments of the stage post (accumulation of sediments at the base of 473 

the post) as possible reasons for declining observed water levels. These reasons remain 474 

unsubstantiated, as anecdotal evidence from river managers indicate that the height of the 475 

stage posts have remained unchanged. 476 



21 

 

The reconstruction of daily values of air temperature can be considered credible, whereas the 477 

reconstruction of daily precipitation is subject to larger uncertainties (visible from the 478 

performance of the regression models in Tab. S.1.1). As both air temperature and 479 

precipitation do not show significant change points around 1960 (Fig. 4), we can assume that 480 

reconstructing these variables from nearby stations does not influence their long-term 481 

dynamics. As precipitation is not identified as a significant explanatory variable for river 482 

temperature, the relatively weak performance of the regression model in capturing short term 483 

precipitation dynamics does not directly influence river temperature modelling. However, 484 

uncertainties related to the reconstruction of precipitation and air temperature influence the 485 

results of the snow model and the hydrological model.  486 

The inherent uncertainties related to structure and parameterisation of the snow and the 487 

hydrological model can be considered relatively small. The performance of the hydrological 488 

model can be considered acceptable as the evaluation criteria (Grantown-on-Spey: NSE, 489 

NSEln, R
2
, VE, KGE greater than 0.70; Boat o’ Brig: NSE, NSEln, greater than 0.65 and R

2
, 490 

VE and KGE greater than 0.7) lie within the range reported for lumped hydrological models 491 

in other catchments (e.g. Gädeke et al., 2014; Parajka et al., 2007). Furthermore, the long-492 

term tendencies of modelled runoff are in reasonable agreement with the observations at 493 

Grantown-on-Spey and Boat o’ Brig (Tab. S 3.2, Fig. S 3.1).  494 

Modelling river temperature from hydrometeorological data using GAM models is subject to 495 

uncertainties with respect to interpreting causation from correlation. To address this 496 

uncertainty, explanatory variables with physical relevance for river temperature have been 497 

chosen mostly in consent with other studies. The uncertainty relating to river temperature 498 

modelling can be considered low as the GAM model performs reasonably well in both a 499 

training and a test period (Tab. 5) and captures the long-term dynamics of observed river 500 

temperature when values of the same dates are compared (Fig. 6). As eight-day averages of 501 
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the hydrometeorological variables are considered, the uncertainties in their short-term 502 

dynamics are not affecting modelled river temperature.   503 

The interpretation of long-term changes based on observed river temperatures alone is subject 504 

to uncertainties introduced by irregular sampling as visible for example from the 505 

disagreement of the changes at the different fishing beats (Tab. 2). Hence, a trend 506 

interpretation based on observed values alone can only be recommended for individual weeks 507 

with high data availability (Fig. 2). The bias introduced by irregular sampling with higher 508 

warming tendencies interpreted based on the observations alone rather than the continuous 509 

river temperature in the fishing season is illustrated in Figure 6.   510 

Despite the uncertainties in the data sets and analysis, the overall approach of investigating 511 

long-term changes in river temperature by combining citizen science records and GAM 512 

modelling can be considered robust.  513 

Ecological relevance 514 

Ecological responses to changes in river temperature can vary according to species resilience 515 

and resistance but also, in severe cases, can affect migration, embryonic development, 516 

hatching, emergence, growth, life-history traits, changes in behaviour and physiology and 517 

even local extinction (Jonsson and Jonsson, 2009; Parmesan, 2006). Salmonids can withstand 518 

short-term exposure to river temperatures higher than those needed for longer-term growth or 519 

survival without significant negative effects, however, brown trout (Salmo trutta) are more 520 

sensitive to temperature and acute increases in river temperature than Atlantic Salmon (Salmo 521 

salar)(Webb and Walsh, 2004). Furthermore, freshwater pearl mussels are vulnerable to 522 

temperature changes directly and to temperature effects on salmonid hosts (Lopes-Lima et al., 523 

2017). 524 
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Both observed and modelled river temperatures in the River Spey rarely exceed 19°C which 525 

is the upper feeding threshold for Salmo trutta and below the upper threshold required for 526 

Salmo salar to feed (Elliott and Elliott, 2010). A daily maximum temperature of greater than 527 

24°C was found to be stressful for trout (Jonsson and Jonsson, 2009) and increasing river 528 

temperatures adversely impact spawning and embryo development of trout (Webb and Walsh 529 

(2004). 530 

When these statistics are related to the results in the current study, in general, river 531 

temperature at the fishing beats on the main stem of the River Spey is not, at present, critical 532 

for salmonid species. Yet, higher temperatures might occur both for downstream reaches with 533 

slow flow velocities and salmon spawning areas in the upstream reaches (Jackson et al., 534 

2018, 2017a).   535 

In line with this study, where increasing river temperatures were recorded in spring, Gregory 536 

et al. (2017) found a positive link between Salmo salar parr length and the effect of higher 537 

spring temperatures that are known to influence the metabolic rate of Salmo salar. 538 

Implications for future change and climate change adaptation measures 539 

Our analysis of long-term records of river temperature can provide a robust basis for future 540 

assessments and relevant insights for the ecosystem and rural economy, in terms of sport 541 

fishing and fish farms. 542 

Climate change projections for Scotland assume increasing air temperature and precipitation 543 

shifts from summer to winter (Murphy et al., 2010). Further increases in atmospheric energy 544 

will contribute to warmer river temperatures directly as shown by van Vliet et al. (2016) in a 545 

global study. Indirect influences of changes in air temperature together with changing 546 

precipitation patterns on warmer river temperatures are expected, due to less snow, earlier 547 

snowmelt, and decreasing summer runoff (van Vliet et al., 2013).  548 
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Compared to the previous century, stronger air temperature trends are expected for the future 549 

whereby mostly lower river temperature compared to air temperature trends are expected 550 

(Caldwell et al., 2015; Hardenbicker et al., 2017). Albeit, Gunawardhana & Kazama (2012) 551 

expect differences between trends in air and river temperatures to cease due to increasing 552 

groundwater temperature and thus less cooling influence of groundwater contributions during 553 

summer months. In our study, this is indicated by comparable increases in river temperature 554 

and air temperature from the 1960s onwards.  555 

As river temperature influences salmonid habitat and life cycle, potential global warming 556 

impacts on salmonid populations are highly relevant (Hari et al., 2006; Isaak et al., 2018; 557 

Jonsson and Jonsson, 2009; Young et al., 2017). If current trends continue in the River Spey, 558 

the aquatic life of the entire river network could be affected by rising river temperatures. For 559 

example, under a high emission scenario, Webb and Walsh (2004) modelled a temperature 560 

increase of 2 K by 2080 in the River Dee (a neighbouring catchment to the Spey) that was 561 

sufficient to induce a stressful thermal habitat for brown trout. Nonetheless, emerging 562 

evidence shows that cold water fish are adapting and becoming more resilient to climatic 563 

changes by changing behaviour and seeking cooler refuges in river systems (Isaak et al., 564 

2016; Magoulick and Kobza, 2003). Local implications of these changes on river 565 

temperatures of the River Spey can be estimated for example by scenario assessments using 566 

the model cascade presented in our study to estimate river temperature under projections of 567 

air temperature and precipitation, similar to the approach by Merriam et al. (2017). Increasing 568 

abstraction for agriculture, industry and population should be included in future assessments.   569 

Due to the strong influence of global radiation on river temperature, river managers can 570 

explore a variety of mitigation measures such as tree planting along the riparian corridor, 571 

controlling extraction, and releasing cold water from upstream impoundments (e.g. Dugdale 572 

et al., 2017; Imholt et al., 2013). Planning of measures require deeper understanding of the 573 
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local conditions and should be designed (location, spatial extent, type of vegetation) to 574 

maximise effectiveness (Arora et al., 2018; Garner et al., 2017). For example Jackson et al. 575 

(2017a), found the warmest river temperatures in Scotland were predicted to occur where air 576 

temperatures and elevation were high and where the channels had a north-south orientation. 577 

In these circumstances, woodland planting in the riparian zone was most effective where 578 

channel widths were narrow, the gradient low and where the aspect and orientation of the 579 

river maximises shading by woodland. Measures to mitigate rising river temperature need to 580 

consider effects on fish habitats (Fullerton et al., 2017). Hence, our modelling cascade could 581 

be extended by process-based modelling approaches, such as the model presented by Fabris 582 

et al. (2018), to investigate the potential effects of mitigation measures.  583 

Conclusion and Outlook 584 

To understand long-term changes in river temperature, we investigated a 105-year record 585 

(1912-2016) of river temperature gathered by fishing attendants (ghillies) on the River Spey. 586 

The records indicate warming tendencies, however, due to data gaps it was not possible to 587 

quantitatively assess long-term changes based on the observations alone. Therefore, 588 

continuous daily river temperatures in the fishing season were reconstructed from 589 

explanatory variables (air temperature, cumulative air temperature from beginning of the 590 

year, day length, runoff) using GAMs. Long-term records of air temperature have been 591 

available from weather station records; runoff has been simulated using process-based 592 

models. 593 

Long-term changes of reconstructed water temperatures were found in terms of significant 594 

increases by 0.2 K per decade after 1961 throughout the fishing season and slightly greater 595 

increases in spring. These changes can mostly be attributed to increasing air temperature 596 

which is most pronounced after 1958. Indirect impacts of rising air temperatures include less 597 
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snow accumulation and snow melt as well as an earlier snow melt. The results of the study 598 

can provide a robust basis for future assessments of global change and can help inform 599 

decision-makers about the desirability of enhancing the resilience of rivers and aquatic 600 

ecology to warming. The methods applied can be used to understand long-term changes in 601 

river temperature in other catchments. For example, the catchment-specific drivers behind 602 

increasing river temperature trends in several Scottish catchments over the last thirty years 603 

(Lacout-Bonnamy, 2018) can be investigated using GAMs.  604 

The GAMs produced in this study that explain river temperature from air temperature, 605 

cumulative air temperature, daylength and runoff are suitable for assessments of future 606 

climatic changes and can be combined with process-based modelling approaches, such as to 607 

spatially target mitigation measures. 608 

Our research underlines the value of citizen science for supporting environmental research 609 

which has long been recognised in ecology (e.g. Isaak et al., 2015) and is becoming a more 610 

frequently used approach to increase temporal and spatial coverage of hydrological and water 611 

quality variables (Kampf et al., 2018; Loiselle et al., 2017; Weyhenmeyer et al., 2017).  612 
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Table 1. Performance of the hydrological model at the gauging stations Grantown-on-Spey 

and Boat o’ Brig. Long term mean annual runoff R and evaluation criteria: root-mean-square-

error (RMSE), bias, mean absolute error (MAE), Nash-Sutcliffe Efficiency (NSE), Nash-

Sutcliffe Efficiency calculated for natural logarithms of observed and simulated discharge 

(NSEln), coefficient of determination (R
2
), Volume Efficiency (VE) and Kling-Gupta 

Efficiency (KGE). 

Criterion Optimum Grantown-on-Spey Boat o’ Brig 

 value Calibration 

(1963-1982) 

Validation 

(1983-2012) 

Calibration 

(1963-1982) 

Validation 

(1983-2012) 

R observed 

[mm/a] 

- 648 713 690 745 

R modelled 

[mm/a] 

- 657 794 578 680 

RMSE [mm/d] 0 0.70 0.88 0.85 0.84 

BIAS [mm/d] 0 0.03 0.21 -0.31 -0.20 

MAE [mm/d] 0 0.45 0.56 0.49 0.51 

NSE 1 0.73 0.74 0.67 0.72 

NSEln 1 0.71 0.71 0.66 0.71 

R
2
 1 0.76 0.79 0.72 0.74 

VE 1 0.75 0.71 0.74 0.75 

KGE 1 0.87 0.84 0.77 0.83 

 

 

Table 2. Statistics of weekly observed river temperatures [°C]. Mean, maximum and variance 

of weekly averages in spring (weeks 15-22) and the fishing season (weeks 15-40) for periods 

with high data availability. Symbols for mean and variance denote statistically significant 

differences compared to 1926-1935 (* p ≤ 0.05) and to the respective preceding periods (+ p 

≤ 0.05) based on the Kruskal-Wallis-Test for central tendency and the Levene Test for 

equality of variances. 

Beat Statistic Weeks 1926-1935 1956-1965 1976-1985 2006-2015 

A Mean 15-22 7.8  8.2 10.0*,+ 

Table
Click here to download Table: Tables_revised.docx

http://ees.elsevier.com/stoten/download.aspx?id=2149923&guid=7c69828a-397e-4fc7-9d0d-6b25367ec071&scheme=1


Mean 15-40 10.5  11.3 12.5*,+ 

Maximum 15-22 12.6  15.8 16.5 

Maximum 15-40 17.5  22.2 21.1 

Variance 15-22 5.2  6.2 4.6 

Variance 15-40 9.7  12.6 7.1*,+ 

B Mean 15-22 7.8  9.2* 8.6 

Mean 15-40 10.6  12.0* 12.5* 

Maximum 15-22 12.8  15.9 14.4 

Maximum 15-40 17.8  22.2 19.7 

Variance 15-22 4.9  9.0+ 6.4 

Variance 15-40 9.0  12.3 8.8* 

C Mean 15-22 7.9 9.8* 8.1+ 8.6 

Mean 15-40 10.7  10.8 12.3 

Maximum 15-22 13.1 17.2 14.7 14.8 

Maximum 15-40 23.3  17.8 20.2 

Variance 15-22 5.1 4.1 5.8 6.1 

Variance 15-40 9.6  8.2 9.7 

D Mean 15-22 7.8 9.6* 8.9* 9.7* 

Mean 15-40 10.9  12.2* 12.5* 

Maximum 15-22 13.1 16.4 14.7 15.1 

Maximum 15-40 23.9  23.3 19.3 

Variance 15-22 5.1 4.41 6.6+ 6.1 

Variance 15-40 9.9  12.7 7.8*,+ 

 

 



Table 3. Statistically significant relationships between observed river temperature and the 

covariates air temperature (Ta), cumulative air temperature since beginning of the year 

(Ta,cum), precipitation (P), day length (DL), snow melt (SM), natural runoff (R), snow melt 

ratio (SM/R), water level (W) at fishing beat D for the time period 1961-2015 (considering 

Bonferroni correction for eight covariates p < 0.05/8 (0.00625)). Intercept, slope, coefficient 

of determination (R
2
), F statistic and degree of freedom (DF) of linear models between river 

temperature and covariates of the same day or averaged over a period of 8 days before the 

temperature measurement.  

Variable Moving average 

[days] 

Linear model 

  Intercept Slope R
2
 F Statistic DF 

Ta 1 5.24 0.73 0.61 5022 3160 

8 3.82 0.89 0.74 8909 3160 

Ta,cum 1 9.29 0.003 0.25 1081 3160 

8 9.43 0.003 0.24 1008 3160 

P 8 12.54 -0.23 0.02 62.8 3160 

DL 1 -1.08 0.83 0.20 776.5 3160 

8 -3.71 1.00 0.28 1201 3160 

SM 1 11.93 -1.00 0.04 149 3160 

8 12.04 -1.70 0.10 357 3160 

R 1 14.69 -2.27 0.24 992.9 3160 

8 14.81 -2.23 0.26 1120 3160 

SM/R 1 11.94 -3.23 0.05 180.7 3160 

8 12.15 -7.75 0.15 563.5 3160 



W 1 13.11 -7.58 0.24 987.2 3119 

 

Table 4. General additive models for predicting river temperatures from covariates air 

temperature (Ta), cumulative air temperature since beginning of the year (Ta,cum), day length 

(DL), modelled runoff (R), snow melt (SM), snow melt ratio (SM/R), precipitation (P), water 

level (W), day of year (DOY). Evaluation criteria: Akaike information criterion (AIC), 

coefficient of determination (R
2
), percent bias (PBIAS), root-mean-square-error (RMSE) for 

the training period and in brackets for the test period. Note that 144 river temperature 

observations have been removed as they appeared as outliers. Asterisks denote significant 

coefficients (considering Bonferroni correction for nine covariates p < 0.05/9 (0.0056)) of 

covariates. The final model chosen (model 8) is highlighted in bold and italics.  

I

D 

Covariates and length of smoothing window (days) Performance Training Period 

(Performance Test Period) 

 Ta Ta,cu

m 

DL R 

(log

) 

S

M 

SM/

R 

P W DO

Y 

AIC R
2
 PBIA

S 

RMS

E 

1 1 

* 

        1255

1 

0.65 

(0.7

0) 

0 

(10.5) 

1.93 

(2.06

) 

2 8 

* 

        1251

3 

0.66 

(0.6

9) 

0 

(10.2) 

1.91 

(2.05

) 

3 8 

* 

1 

* 

       1132

3 

0.77 

(0.7

4) 

0    

(6.1) 

1.58 

(1.77

) 

4 8 

* 

8 

* 

       1126

3 

0.78 

(0.7

4) 

0    

(6.0) 

1.56 

(1.77

) 

5 8 

* 

8 

* 

1 

* 

      1048

5 

0.83 

(0.8

2) 

0    

(6.3) 

1.37 

(1.51

) 

6 8 

* 

8 

* 

8 

* 

      1045

3 

0.83 

(0.8

2) 

0         

(6.5) 

1.36 

(1.53

) 

7 8 8 8 1      1023 0.84 0 1.31 



* * * *  8 (0.8

3) 

(6.4) (1.50

) 

8 8 

* 

8 

* 

8 

* 

8 

* 

     1023

1 

0.84 

(0.8

3) 

0 

(6.7) 

1.31 

(1.50

) 

9 8 

* 

8 

* 

8 

* 

8 

* 

1     1023

0 

0.84 

(0.8

3) 

0    

(6.7) 

1.31 

(1.50

) 

1

0 

8 

* 

8 

* 

8 

* 

8 

* 

8     1022

8 

0.84 

(0.8

3) 

0    

(6.7) 

1.31 

(1.50

) 

1

1 

8 

* 

8 

* 

8 

* 

8 

* 

 1    1022

8 

0.84 

(0.8

3) 

0    

(6.7) 

1.31 

(1.50

) 

1

2 

8 

* 

8 

* 

8 

* 

8 

* 

 8    1022

8 

0.84 

(0.8

3) 

0    

(6.7) 

1.31 

(1.50

) 

1

3 

8 

* 

8 

* 

8 

* 
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Table 5. Performance of the chosen GAM (model 8 in Table 4) for river temperature of all 

fishing beats. Evaluation criteria: coefficient of determination R
2
, PBIAS percent bias, RMSE 

root-mean-square-error, KGE Kling-Gupta Efficiency, NSE Nash-Sutcliffe Efficiency, n 

number of data pairs.  

Beat Period 1961-2015 Period 1925-1960 

 R2 PBIA

S 

RMS

E 

KG

E 

NS

E 

n R2 PBIA

S 

RMSE KGE NSE N 

A 0.78 0.8 1.76 0.82 0.78 2394 0.88 9.0 1.46 0.84 0.82 790 

B 0.75 3.7 1.78 0.83 0.74 2060 0.89 9.8 1.44 0.86 0.83 980 

C 0.73 6.1 1.78 0.81 0.68 2964 0.78 4.9 1.47 0.81 0.75 933 

D 0.84 0 1.31 0.88 0.84 3018 0.83 6.7 1.50 0.83 0.79 2006 

 

Table 6. Modelled river temperature [°C] at Beat D based on weekly averages for the spring 

(weeks 15-22) and the entire fishing season (weeks 15-40) in 10-year periods.  

Weeks Statistics 1926-

35 

1936-

45 

1946-

55 

1956-

65 

1966-

75 

1976-

85 

1986-

95 

1995-

06 

2006-

15 

15-22 Mean 8.7 9.4 9.2 9.1 8.8 8.8 9.1 9.5 9.5 

 Maximum 12.4 13.4 12.9 13.6 12.5 14.4 13.8 14.2 14.3 

 Variance 3.6 3.7 4.2 4.2 4.1 4.8 4.5 4.2 4.3 

15-40 Mean 11.7 12.3 12.0 11.7 11.9 11.8 12.0 12.3 12.2 

 Maximum 18.1 17.5 16.9 16.4 18.5 18.4 17.8 18.9 18.2 

 Variance 7.5 6.7 6.9 6.0 7.2 7.8 7.7 7.1 6.9 

 



 

 

Figure 1. Overview of the study region including the monitoring stations: fishing beats (river 

temperature, water level), gauging stations (discharge), weather stations (precipitation and air 

temperature). This figure is available in colour online. 
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Figure 2. Raw data of observed river water temperature (Tw) [°C] at fishing Beat D. a) 

Number of weekly records, b) Weekly mean temperature, c) Water temperature in week 15 

over the record length, d) Water temperature in week 22 over the record length. This figure is 

available in colour online.  

 

 



 

Figure 3. Observed river temperature Tw [°C] as weekly averages at fishing Beat D for 

periods with high data availability: a) spring (weeks 15-22), b) entire fishing season (weeks 

15-40), c) weekly averages for decades. Boxes show 25
th

, 50
th

 (middle line) and 75
th

 

percentile, whiskers show the lowest and highest datum within the 1.5 interquartile range of 

the lower and upper quartile, respectively, and individual points symbolize outliers. Cross 

symbols show mean value. Asterisks indicate significant difference from central tendency of 

water temperature in period 1926-1935 according to the Kruskal-Wallis test (* p ≤ 0.05). This 

figure is available in colour online. 

 



 

Figure 4. Long term changes in hydrometeorological variables: Top row: air temperature Ta 

[°C]: a) annual mean values, b) mean value in the fishing season (week 15-40), second row: 

precipitation P [mm]: c) annual sum, d) sum in the fishing season, third row: natural runoff R 

[mm]: e) annual sum, f) sum in the fishing season, bottom row: snow melt: g) ratio of snow 

melt over total natural runoff (SM / R) on an annual basis, h) last snow melt day in spring. 

Trend interpretation: linear regression over the time period 1926-2015 (orange line indicates 

intercept and slope), windows longer than 5 years with trend over a 40-year record (grey 

polygons indicate average intercept and slope for the windows), upward (purple line) and 

downward (blue line) change point according to the Pettitt test for different 40 year moving 

windows. This figure is available in colour online.   



 

Figure 5. Modelled river temperatureTw: a) mean values in spring (weeks 15-22), b) mean 

values in the fishing season (weeks 15-40), c) maximum values in spring, d) maximum values 

in the fishing season, e) anomalies of weekly averages for decades (weekly average in the 

respective decade minus weekly average over the period 1926-2015). The vertical line marks 

the end of the spring period (weeks 15-22), the inset figure shows weekly averages over the 

period 1926-2015.  

Trend interpretation: linear regression over the time period 1926-2015 (orange line indicates 

intercept and slope), windows longer than 5 years with trend over a 40-year record (grey 

polygons indicate average intercept and slope for the windows), upward (purple line) and 



downward (blue line) change point according to the Pettitt test for different 40 year windows. 

This figure is available in colour online.  

 

 

Figure 6. Observed and modelled river temperature aggregated for the fishing season of 

individual years: a) Beat A, b) Beat B, c) Beat C, d) Beat D. The modelled river temperature 

has been aggregated to averages in the fishing season considering only modelled values for 

which observations were available (observed dates) and for all values in the respective period 

(all dates). The coefficient of determination (R
2
) refers to the aggregated values of the fishing 

season in individual years. 
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