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Abstract—With the upcoming shift from single-core to multi-
core COTS processors for safety critical products such as avionics,
railway or space computer subsystems, the safety critical industry
is facing a trade-off in terms of performance versus predictability.

In multi-core processors, concurrent accesses to shared hard-
ware resources are generating inter-task or inter-application tim-
ing interference, breaking the timing isolation principles required
by the standards for such critical software. Several solutions have
been proposed in the literature to control or regulate these timing
interference, but most of these solutions require to perform some
level of profiling, monitoring or dimensioning.

As time-critical software is running on top of Real Time
Operating Systems (ROTS), classical profiling techniques relying
on interrupts, multi-threading, or OS modules are either not
available or prohibited for predictability, safety or security
reasons.

In this paper we present METrICS, a measurement envi-
ronment for multi-core time-critical systems running on top of
the industry-standard PikeOS RTOS. Our framework proposes
an accurate real-time runtime and resource usage measurement
while having a negligible impact on timing behaviour, allowing
us to fully observe and characterize timing interference.

Beyond being able to characterize timing interference, we
evaluated METrICS in term of accuracy of the timing and
resource usage measurements, intrusiveness both in term of
timing and impact on the legacy code. We also present a portfolio
of the kind of measurements METrICS provides.

I. INTRODUCTION

For the last decades, industries from the safety-critical do-
main have been using Commercial Off-The-Shelf (COTS) pro-
cessors despite their inherent runtime variability. To guarantee
hard real-time constraints in such systems, designers massively
relied on resource over-provisioning, time and memory space
partitioning, and disabling the features responsible for runtime
variability.

The demand for cheaper equipment and more stringent
SWaP (Size Weight and Power) constraints [5] makes the shift
from from single-core to multi-core COTS processor for safety
critical products appealing. But, as a consequence, the industry
is facing an even larger trade-off in term of performance versus
predictability [23], [27].

On a multi-core processor, different pieces of software
will be executed on different cores at the same time. Such
software will, even if they are completely independent, com-
pete electronically to use the shared hardware resources of the

processor architecture, causing concurrent accesses to the same
hardware.

On the hardware resources side, concurrent accesses are
arbitrated, introducing inter-task or inter-application jitter de-
fined as timing interference [15]. These interference are
breaking the timing isolation principles required by the stan-
dards [19], [20], [30] of time-critical software.

The literature [14] proposes several Deterministic Platform
Solutions to tackle this problem, including control solutions
[9], [15], [12], [22], [21] aiming at completely preventing such
timing interference and regulation solutions [31], [37], [24]
reducing the amount of interference below a harmful level.

However, most of these solutions (especially regulation
solutions) require to accurately measure either task runtime
or some particular hardware resource loads using performance
hardware counters [32].

On one hand, some of these solutions are only prototyped
in bare-metal, neglecting the timing interference that would
have been caused by the operating system itself. However, in
a safety critical context, the applications are usually driven by
data coming from sensor devices issuing some I/O accesses.
To be able to deal with concurrent I/O accesses, the RTOS
is introducing some software locks. As a consequence, these
locks take a significant part of the timing interference and
neglecting them might not be relevant in such a context.
Running without an operating system also means the absence
of a global scheduler that would allow to easily run concurrent
applications. Therefore, these bare-metal models are restricted
to single applications able to exploit intra-partition parallelism
with a single task running in parallel on several cores. A
different inter-partition parallelism scheme with different tasks
running concurrently on different cores would imply embed-
ding some scheduling facility inside the application itself.

On the other hand some solutions are relying on the RTOS
to perform these controls/regulations. Doing so introduces a
bias in time measurement caused by the associated system
call that might itself introduce a lock (especially when several
tasks try to use the same service concurrently). It also prevents
us from performing the timing measurement on the operating
system itself: how could one rely on a system call to measure
the time taken by such a call, or the absence of locks within
it?

In the classical Linux world, several techniques or solutions
exists to measure timing and perform resource profiling such as



gprof [11], valgrind [28], atom [10] or oprofile [25]. However,
as detailed in the next section, these solutions rely on features
that are not available or prohibited for hard real-time systems.

As a consequence, the challenge is to provide a way to
1) perform an accurate real-time runtime and resource usage
measurement, 2) with a negligible impact on timing behavior,
3) running outside of the operating system (avoiding system
calls) to be able to profile the RTOS as well as the running
applications.

Ideally, the toolset should be able to provide some of the
information previously available only with a JTAG probe [13],
but without requiring the hardware devices, nor the associated
skills, making the information available to every software
programmer.

In this paper we introduce METrICS: a Measurement
Environment for Multi-Core Time Critical Systems running
on top of the PikeOS [1] RTOS from SYSGO. This tool is
intended to help safety-critical software and system developers
to evaluate their design choices in terms of performance and
predictability. We evaluate the impact of METrICS in term
of accuracy and intrusiveness and provide some examples of
usage to extract timing-interference related information.

The paper is organized as follows: In Section II we detail
the challenges of runtime and activity measurements for time
critical software. In Section III we present the software archi-
tecture of METrICS, our proposed measurement environment
and in Section IV we furthermore detail how it operates.

Evaluation starts with Section V, analyzing the accuracy
and intrusiveness of METrICS both in terms of source code
and timing. In Section VI, we provide an example of MET-
rICS usage to evaluate different deployments of a multi-core
application, measuring communication overhead due to timing
interference. In Section VII we explain how we deal with the
large number of experiments required to explore all possible
configuration of previous use-case, justifying the need for
automatic instrumentation and statistical processing. Finally,
in Section VIII, we detail the associated GUI we developed as
a support for analysis and interpretation of the results obtained
with METrICS.

II. CHALLENGES TO REAL-TIME MEASUREMENT

Performance monitoring and profiling tools have been ex-
isting for a long time to help the programmers with debugging
their systems, optimizing their applications, or identifying
bottlenecks. A wide variety of generic tools exists for non-
RTOS systems [36] such as gprof [11], valgrind [28], or
atom [10]. These tools rely on either OS features such as
multi-threading, interrupts or timers, or either on pseudo-
automatic code instrumentation to collect the required timing
information.

In a real-time operating system, such features are either
not available (with enforced static scheduling), restricted or
prohibited due to their impacts on time determinism (such as
the impact of interrupts on WCET). This is especially true for
safety critical software that is constrained by drastic limitations
due to the safety standards [19], [20], [30].

Beyond this limitation, if collecting timing information is
enough to observe timing interference, it is not sufficient to

regulate the shared resource usage that causes interference due
to resource contention. As a consequence collecting resource
usage information is as critical as collecting timing informa-
tion.

Generic tools such as oprofile [25] specialize in collect-
ing such information by gathering the Performance Monitor
Counters that are usually only available in privileged mode.
The claim is that oprofile is low-overhead and non-obtrusive,
and it is true from a non-RTOS point of view: Both the
monitored application and the kernel remain untouched thanks
to a dedicated kernel module. Also, the overhead mainly
depends on the interrupt-based sampling frequency.

In RTOS systems, features like modular kernels do not
exist, and using interrupt-based sampling is not an option for
systems based on static scheduling. Such systems are relying
on micro-kernels and modularity is even prohibited for safety
and security reasons. Also ”low-overhead” does not have the
same meaning for large scale systems running minutes to
hour-long applications where a cost of tens of milliseconds
is negligible and for periodic safety critical systems that are
likely to have tasks deadlines in the order of 10 millisecond
or less.

Furthermore, dealing with timing interference forces us
to perform measurement at function-call or system-call level,
where even a cost of tens of microseconds might not be
acceptable.

Also, resource contentions (the main sources for timing
interference) only occur at specific moments in time, during
the cycles when an arbitration occurs. As a consequence,
measurement and overheads have to be evaluated at cycle level.

Finally, if sampling techniques are very efficient for best
effort applications, such techniques can be very troublesome
for safety critical applications that focuses on how the worst
case should behave. The sampling just acts as a filter that could
filter out the worst case.

III. METRICS SOFTWARE ARCHITECTURE

METrICS consists of several components appearing in
Figure 1. The brown parts in the figure correspond to, from
bottom to the top, the selected embedded computer architecture
and the PikeOS operating system above the platform support
package (PSP) corresponding to the board. The blue parts
correspond to the running applications we wish to monitor,
each in their own partition.

Finally the green parts in Figure 1 are the core components
of the METrICS environment and are described below:

A. The METrICS Library

The METrICS library is meant to be linked with the
running applications to provide them with an access to the
measurement probes API, allowing the collection of time and
resource access information. The library contains: 1) the instru-
mented system call layer; 2) the application instrumentation
interface; 3) the user-level interface to the instrumentation
kernel driver; and 4) the user-level interface to the collector.

Syscall instrumentation layer: the instrumentation of
system calls of some PikeOS personalities (e.g. the APEX
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Fig. 1. Architecture of the METrICS measurement tool

system calls in case of ARINC-653 applications) automatically
inserts measurement probes before and after every system
call. It especially allows us to determine communication times
for the intra-partition and inter-partition communications that
relies on such system calls, and that can be a significant part
of the application running time.

Application instrumentation: besides the syscall-level
instrumentation, we provide the ability to manually insert
measurement probes directly in applications. This is achieved
by adding a pair of functions (metrics_probe_begin()
and metrics_probe_end()) around the section of the
code to be monitored. Upon execution, these functions collect
the highest precision time-base counter available (usually cor-
responding to the number of elapsed CPU cycles since booting)
and the PMC registers of the current core. The later function is
also responsible for sending the monitored data to the collector.

B. The Hardware Monitor Kernel Driver

On most hardware architectures, the access to hardware
performance monitor counters (PMC) requires supervisor-level
privileges. Also on all supported hardware targets, the config-
uration of these registers to select the events that should be
counted does require these privileges. As PikeOS legitimately
prevents applications from getting such privileges, it was
necessary to develop a kernel driver (a new feature since
PikeOS 4.0) allowing us to select the PMC we wish to collect
on the target.

The services provided by our driver are: 1) selecting
the hardware events monitored by the hardware performance
counters of local processor core; 2) starting the counters; 3)
stopping the counters.

The user interface for these services, implemented in the
library, uses the regular ioctl calls provided by PikeOS for
drivers. For each core of the ARMv8 Juno board, about 50
events can be selected for 6 different counters. For each e6500
PowerPC core of the NXP QorIQ, about 250 events can be
selected for 6 counters.

C. The Collector

The collector is implemented as a native PikeOS partition
which role is: 1) to define a shared memory space where each
instrumented application will save its collected measurements;

2) to configure specific measurement scenarios (like selection
of events via the driver); 3) to launch the measurement cam-
paign (relying on PikeOS scheduling schemes); 4) to transfer
the content of the shared memory to the host computer, either
at the end of the measurement campaign (preferred to keep
time intrusiveness level low) or during the run (to allow huge
data collection).

In case of a failure (e.g. a deadline miss, or an unexpected
timeout that is causing the application to stop), the collector
also transfer the current memory content, allowing us to
perform a post-mortem analysis and debugging.

IV. METRICS INTERNAL OPERATION

As introduced in Section I, our measurement environment
has to provide the user with accurate runtime and resource
usage measurements while minimizing both the intrusiveness
and the adherence to the hardware.

A. Intrusiveness Trade-off

A major challenge in performance monitoring tools is
its intrusiveness in the system it monitors. We distinguish
execution time intrusiveness and code intrusiveness. The
former limits the accuracy of the measurement due to the
monitoring overhead, whereas the latter requires an effort from
the developer to instrument the code of either the application
or the RTOS.

Automated instrumentation tools commonly suffer from a
trade-off between measurement granularity (from process level
down to instruction level), time intrusiveness, and code intru-
siveness. Enhancing one usually have a detrimental impact on
the other two. In METrICS we chose to focus on minimizing
timing intrusiveness, due to the fact that 1) we focus on time-
critical and safety-critical applications where time determinism
is of prime concern and 2) our major objective is the ability to
characterize timing interference, and correlate them to shared
hardware usage.

To minimize time intrusiveness, we used several devel-
opment techniques that make METrICS as light as possible
during the execution of the application under test.

Firstly, all initialization and external communications were
implemented in the Collector and run outside of the operational
scheduling. We configured the time-base and hardware per-
formance counter registers to be used in user-space, avoiding
time-consuming context switches associated with protected
mode. Time-base and PMC accesses are performed in inline
assembly code to minimize latency. Finally, the shared memory
containing the sample collection is mapped into the memory
of the processes to avoid accesses trough system calls.

B. Scheduling Policies minimizing Time Intrusiveness

In order to minimize the runtime intrusiveness on appli-
cation code, the collector is executed outside of the oper-
ational scheduling. We distinguish three scheduling phases
in the course of a measurement campaign implemented with
”scheduling schemes” in PikeOS:

• SCHED BOOT during which only PikeOS and the
collector are running in time partition 0 (always



schedulable) of PikeOS. During this scheduling phase,
the collector performs the initialization of the mea-
surement campaign, preparing the shared memory and
the PMC of each core. Once the initialization is
completed, the collector shifts to the MONITORING
scheme.

• MONITORING during which the time-critical ap-
plication partitions are scheduled according to their
unmodified deployment scheme, using the collector’s
shared memory to store their collected measurements.
During this scheme, the collector remains blocked on
a semaphore from the application to notify for the
end of the execution, and is therefore not schedulable.
Upon receiving this notification, the collector shifts
back to the SCHED BOOT scheme.

• SCHED BOOT during which again only PikeOS
and the collector are running. During this phase,
the collector performs the transfer of the collected
measurements to the host using the MUXA protocol
of PikeOS.

Using such a set of scheduling schemes allows us to min-
imize the time intrusiveness of the measurement environment
regarding the applications. Indeed, all MUXA communica-
tions, system calls to the driver, and the collector itself are
not running at the same time as the time-critical applications.
It is therefore not necessary to dedicate a time slot for the
collector, and the original static schedule of the application
remains unchanged.

C. Transmission of collected measurements to the host

At the end of the execution the collector is responsible for
transmitting the collected data to the host. This transmission is
performed using the MUXA service provided by PikeOS [1].
This service offers multiplexed channels of communication be-
tween the target and host computers, for debug and monitoring
purposes. It offers abstraction of the hardware communication
link.

To avoid the regular issues with transmitting binary data
through this channel (endianess issue, control/command is-
sues), we transmit this data directly in ASCII format as the
content of a comma-separated-value (CSV) file. Each sample
contains information about timestamps, hardware performance
counters, as well as task ID, core ID and probe ID.

We dedicated a MUXA channel for this communication
(channel 4, port 1506) initially doing MUXA over UART.
However we quickly reached the maximum throughput of the
UART controller, so we had to switch to MUXA over Ethernet.
The implication is that PikeOS has to support the Ethernet
controller of the target board, and that one of the Ethernet
ports has to be dedicated to MUXA (which itself is able to
multiplex).

On the host side, a driving script is performing a telnet
connection to the MUXA server to dump the collected data
directly in a corresponding CSV file upon reception.

V. EVALUATING METRICS ACCURACY AND
INTRUSIVENESS

The METrICS environment allows us to collect various
measurements during the execution of safety critical applica-
tions, including execution time distribution and shared hard-
ware resource access information. Rather than only extracting
minimum, average and maximum values, the METrICS tool
suite extracts the whole distribution of each measured data,
allowing us to study the correlations between runtime and
hardware resource usage.

The METrICS environment has currently been ported to the
PikeOS 4.0, 4.1 and 4.2 RTOS, to the 32-bit NXP QorIQ P4080
[6] based on PowerPC e500mc, to the 64-bit NXP QorIQ
T2080 [29] based on PowerPC e6500, to the 64-bit ARMv8
Juno Board [4] based on ARM Cortex A72 and ARM Cortex
A53, as well as to simulation environments such as QEMU
[7] or ARM FVP [3].

This Section will evaluate METrICS in terms of accuracy,
precision and intrusiveness. Next sections will present an
example of METrICS usage and focus more on the ability
to correlate timings and resource usage, as well as its ability
to perform timing interference characterization.

A. Selection of time measurement mediums

To be able to perform fine-grain timing, we need to
rely on some kind of time measuring instrument. This time
measurement medium could be either external, provided by
any of the layers of the operating system or directly provided
by the target processor as part of the instruction set.

The kind of events we wish to accurately measure includes
complex functional chains (up to several seconds in avionics),
runtime of individual tasks (with deadlines typically in the
order of a few hundreds of milliseconds) or time spend in
system calls (typically in the order of microseconds).

Each measuring medium relies on a software or a hardware
mechanism that itself has a working period, thus limiting
the obtainable precision to no less than this period. Also,
each of these mediums actually consumes time to perform a
measurement, making it impossible to accurately measure time
below this measurement time overhead.

Additionally, for multi-core processors, clocks are not
necessarily synchronous between all cores, introducing the
concept of inter-core clock offset. If this offset does not remain
constant (which could be the case if not connected to the same
quartz oscillator (or clock PLL) or if the core is subject to
dynamic frequency scaling), then it additionally introduce the
concept of clock drift.

Using the APEX (avionic) personality of PikeOS, the oper-
ating system provides two system calls allowing us to measure
time: p4_get_time() is provided directly by the PikeOS
kernel, and returns the system time since boot in nanoseconds.
GET_TIME() is provided by the APEX personality, and
returns the system clock time, that is common to all processors.

However, being system calls, these time measurement
mediums involve at least a context switch from the task to
the operating system, and may involve switch(es) to privilege
mode(s), depending on how the OS is handling system calls.



The expected overhead for such switches is more than 1000
CPU cycles, and relying on such calls for time measurement
will simply prevent us to measure short events such as context
switches and system calls themselves.

On the other hand, both the ARM-v8 and PowerPC ISA are
providing low-level time measurement mediums. For instance,
the e500mc/e6500 PowerPC provide two special registers that
can be read with the mfspr assembly instruction: The time
base register is a 64-bit register, set to 0 at board reset
and incremented at the Platform Clock frequency, which is
provided by a different PLL than the core clock frequency. The
time base is thus 16 to 64 times slower than the Core clock
frequency, 48 being a common prescaler ratio. An advantage
of the time base is that it corresponds to a global system
clock, synchronized on all cores. The alternate time
base register is a 64-bit register, also set at 0 upon reset, that
increments at every core clock cycle. No specific guarantees
are provided in the documentation about it being synchronous
in all the cores.

B. Evaluation of time measurement mediums

The resolution of time measurement mediums are provided
in their respective documentation. To evaluate the overhead of
the above-mentioned mediums, we set up experiments using
each medium twice in a row. The time offset between the
two measurements is an upper bound of the time overhead.
Each measurement pair was performed 180000 times to ensure
that each overhead is not subject to variability. The results
evaluated on a 1.8 GHz e6500-based NXP T2080 with PikeOS
4.1 are summarized in Table I.

TABLE I. RESOLUTION (PERIOD) AND OVERHEAD

medium layer period frequency overhead
p4 get time() kernel 1 ns n/a 240 ns
GET TIME() APEX 10 ms n/a 10 ms
time base register 48 cycles 37.5 MHz 1.67 ns
alt. time base register 1 cycle 1.8 GHz 1.67 ns

As expected, system-call-based mediums have a much
higher overhead than special-register-based mediums. The
APEX version is clocked with the Time Partition tick, used
to define application time windows. Such a low resolution
medium has a huge impact on overhead, making it impractical
for fine grain timing.

Both special register mediums exhibit a 3 cycles (1.67ns)
overhead, the alternate time base version providing
a much better precision. For this reason, we chose this time
measurement medium as the preferred method of measurement
for METrICS.

With regards to timing offset between cores, only the
alternate time base does not provide a null offset
guarantee. We measured this offset against the synchronized
time base and evaluated it being below 200ns for core 0
with respect to the other cores, and within the measurement
precision between cores other than core 0. If a very high
precision for inter-core measurements is necessary, the method
we used for this evaluation can also be used for calibration at
boot.

Finally, none of the mediums showed a measurable drift
among the 180000 runs.

C. Evaluation of a complete METrICS probe

A METrICS probe involves: 1) retrieving the timing in-
formation thanks to the core-dedicated special registers; 2)
retrieving the performance monitor counters, again through
direct register access; 3) retrieving thread-specific information
from the OS (thread and partition identifiers, core number); and
4) storing the collected information into the shared memory.

The intrusiveness of a METrICS probe in the source code is
quite low, just adding a function call at the begin and the end of
the code sequence to be monitored. Also, all the APEX system
calls are automatically instrumented, requiring no further code
modification. To do so, we overloaded the APEX function
definitions with identical functions surrounded with our probes.

We also measured the intrusiveness in term of timing of
a complete METrICS probe by performing successive calls to
metrics probe the same way we did in previous section. Figure
2 presents the completion time results of such a probe, sorted
over 180000 runs.

Fig. 2. Completion time of a METrICS probe over 180000 runs

The probing time varies from 85ns up to 392ns. For 97%
of the runs the overhead is below 110ns. For 2.998% of the
runs it is between 110ns and 191ns. And for 0.002% of the
cases, it is above 191ns and up to 392ns.

More precisely, the first three steps of a METrICS probe
are quite stable with ∼25ns to retrieve both the timing and
the performance monitor counters, and ∼20ns to retrieve the
thread-specific information. The dominant part corresponds to
the storage in the shared memory, varying from 40ns to 347ns,
probably because of cache effects.

As a consequence, the proposed measurement mechanisms
presents a very limited overhead, and the highest achievable
precision. Indeed the latency added by the full measurement
probe remains in most cases shorter than the sole time mea-
surement provided by the RTOS, and we used the fastest clock
available in the target processor.

The next evaluation section will provide an example of
usage of these METrICS probes for an example application.

VI. EXAMPLE OF METRICS USAGE

In this section, we provide an example of METrICS us-
age to evaluate how different multi-core deployments of a
simple avionic-like application react with regards to timing
interference. The goal would be to evaluate which of these
deployments is less sensitive to timing interference.



The experiments conducted in this section were performed
with METrICS running on top of PikeOS 4.1 on a 4-core
PowerPC-based NXP T2080 hardware target. The application
is running with the PikeOS ARINC-653 personality commonly
used in the context of avionic applications.

A. Evaluated Application

We evaluated an in-house application: eDRON (embedded
Directed Rotodrone Operated Network), that is guiding a
fleet composed of four quadricopter drones along a preset
flight route. The purpose of this application is to mimic
a representative behaviour of an avionic application, while
exercising classical ARINC-653 communication services and
proposing several multi-core deployment options. The software
architecture of eDRON is presented in Figure 3.
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Fig. 3. Software architecture of the eDRON application

This application is composed of six ARINC-653 partitions.
The first one sets up the preset flight route for all the drones,
the last one displays all the drone positions, and each of the
four remaining partitions is dedicated to pilot a particular
drone. These later partitions are composed of 7 tasks, with
most of the computation being performed in the four engine
control tasks, each being dedicated to control the velocity for
one of the four engine of a drone, so that it follows the preset
route.

When mapping such an application on a multi-core pro-
cessor, we first need to decide what will run in parallel.
The application offers two obvious parallelization schemes:
inter-partition parallelism where each core will deal with a
single drone, running the velocity control tasks sequentially
for each drone; and the intra-partition parallelism where
each core will focus on one particular engine, dealing with
each drone sequentially and running all sequential tasks on
core 0. Some other parallelization options are available: for
example parallelizing along the pipeline, or performing loop-
level parallelization of the tasks, but those are beyond the
scope of this paper as they require deeper modifications of
the application.

These two deployments have advantages and drawbacks:
The Amdahl’s law [2] may limit the performance of the intra-
partition version, while the inter-partition version will benefit
from the Gustafson’s law [17], running independent applica-
tions in parallel. However, with regards to timing interference,
the intra-partition version offers a white-box context where the
partition scheduling can limit the level of interference between
known tasks. The inter-partition parallelism on the other hand
corresponds to a black-box context where no easy control is

possible to limit the interference level of another independent
application.

B. Deployment evaluation

To evaluate the eDRON application with METrICS, we
instrumented each task appearing in Figure 3 by adding a
pair of begin / end probes around each task and partition. We
then measured task runtimes while executing the application
on one of the cores (single-core version), and later compared
the results with both parallel deployments.

Note that while the full application is expected to be
faster on a multi-core deployment, at the level of each task /
partition, the runtime is only expected to vary due to possible
timing interference. As a consequence, we expect to observe
a slowdown at task level for the parallel versions.

Table II compares the runtime variability of a single Drone
partition for three different deployments: a sequential / single-
core deployment, and the deployments presented above with
inter-partition or intra-partition parallelism.

TABLE II. EVALUATING DEPLOYMENT IMPACT ON RUNTIME AND
VARIABILITY OF ONE DRONE PARTITION

parallelism runtime (ms)
min 25% median 75% max

none 16.75 16.76 16.76 16.76 19.56
inter-partition 16.91 16.98 16.99 17.02 33.92
intra-partition 55.17 55.18 55.18 55.19 55.31

As expected, the single-core version is the deployment
exhibiting the less variability with runtimes between 16 and
20ms, with a total execution time of 80ms to sequentially run
the 4 drones. The multi-core deployment with inter-partition
parallelism has similar lower bound and quartiles, but a much
larger (x1.7) upper bound around 34ms. The deployment with
intra-partition parallelism exhibits close to no variability, but
with much larger runtimes of 55ms (x2.8).

We furthermore studied this later version as the increased
minimum runtime was suspicious. We figured out that the extra
runtime was spent during the system calls performing inter-
task communications.

C. Communication evaluation

Within the eDRON application, data communication is
performed through the ARINC-653 system call layer. This
API, corresponding to the PikeOS APEX personality, allows
us to perform both intra-partition communication and inter-
partition communication using either buffer-based or fifo-based
communication services as illustrated in Table III.

TABLE III. ARINC-653 COMMUNICATION SERVICES

level type write / read
intra buffer DISPLAY BLACKBOARD()

READ BLACKBOARD()
intra fifo SEND BUFFER()

RECEIVE BUFFER()
inter buffer WRITE SAMPLING MESSAGE()

READ SAMPLING MESSAGE()
inter fifo SEND QUEUING MESSAGE()

RECEIVE QUEUING MESSAGE()



METrICS allowed us, thanks to the instrumented system
call layer to automatically collect runtime information relative
to these communication services during the experiments we
ran to build Table II.

The results corresponding to the deployment with inter-
partition parallelism, that will serve as a reference, are pre-
sented as boxplots [34] in Figure 4 for both inter and intra
partition communication results. The results corresponding
to the deployment with intra-partition parallelism will later
appear in Figure 5.
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Fig. 4. Measurements of inter-partition communication (top) and intra-
partition communication services (bottom) for the deployment with inter-
partition parallelism

Intra-partition communications are much more costly than
inter-partition communication for the deployment with inter-
partition parallelism, especially for the receiving functions.
This is expected, as running tasks sequentially introduces
waiting time for communication receivers.
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Fig. 5. Measurements of inter-partition communication (top) and intra-
partition communication services (bottom) for the deployment with intra-
partition parallelism

Figure 5 presents the communication time for the

deployment with intra-partition parallelism. However, to
be able to represent intra-partition communication times,
we had to distinguish some outlier results. We therefore
added a specific inset for both RECEIVER BUFFER and
READ BLACKBOARD outliers with communication time
above 36.9ms (36 965 107 ns).

Such high communication times occurs in 25% of the
runs for READ BLACKBOARD and in 49% of the runs
for RECEIVE BUFFER. With such a high occurrence rate,
they are clearly responsible for the low performance of the
deployment with intra-partition parallelism.

Further studying this strange timing behaviour, we figured
out than the runtime of these system calls was mostly equal
to their timeout value (The ARINC-653 layer specifies com-
munication with timeouts). Strangely, the communication that
reached their timeout were successful as well. Increasing the
timeout value or reducing the data size did not decrease the
phenomenon, but setting infinite timeout fixed the issue.

We reported this strange behaviour to SYSGO and this
issue is now fixed in the latest 4.2 version of the RTOS.

D. Conclusion

Even tough the identified bug did not really allowed us
to figure out which of the multi-core deployment is best
with regards to interference, we have a proof of concept that
METrICS can be used for such a study, and further can be
used to identify software bugs with regards to timing.

In the next section, we will evaluate the number of total
experiments that would be required to perform a full charac-
terization of several deployments of the eDRON application
while varying both the hardware target configuration and the
application memory footprint.

VII. DEALING WITH THE DESIGN SPACE AND
AUTOMATION

A full characterization of a selection of multicore deploy-
ment of the eDRON application would require a number of
experiments described in Table IV. It tests four deployment
options including the three presented in previous section; three
different options for the application memory footprint (fitting
in L1 cache, in L2 cache or not fitting in caches); and whether
or not to flush all caches between time partitions (a common
practice in avionics to reduce variability).

TABLE IV. NUMBER OF RUNS FOR A FULL CHARACTERIZATION

Application deployments 4
Buffer size 3
Cache Policies 2
Hardware Counter Selection C2

41
Number of iterations 1000
TOTAL RUNS 19.68 million

The target PowerPC architecture provides a selection of
about 250 hardware events that could be measured with per-
formance monitor registers. Among those events, we identified
a set of 41 events related to the shared hardware resource the
cores may compete on. Both the e6500 PowerPC architecture
and the ARM-v8 architecture propose 6 performance monitor



counters, meaning that testing all possible pairs of counters
would require C2

41/6 different configurations.

As shown in Table IV, this represents a large number of
experiments to run, and some form of automation is desirable.
Therefore we developed a series of Python scripts running
on the host computer to automate all aspects of running
a series of experiments: selecting the right executable file
for booting the target by tftp, rebooting the board using a
debug probe, providing the collector with the right set of
hardware counters to use, receiving the results with a telnet
connection to the MUXA server, and storing the CSV file
in a directory named after the experiment configuration and
date. This automation infrastructure allows us to perform large
measurement campaigns by iterating on the steps presented in
figure 6 without frequent user supervision.
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Fig. 6. Host-side automation server, performing 1) selection of target
executable and test configuration 2) configuration of hardware counters to
use 3) collection of measurements and 4) storage of result files.

Such experimental campaigns generate a rather large
amount of raw data, making the direct analysis quite difficult.
In the next section, we present the visualization tools we
developed to assist the analysis.

VIII. SUPPORT FOR ANALYSIS

Considering the large amount of data collected in the
experiments of previous sections (over 110GB of data collected
over 14 cumulative days of runtime), it would be great to also
fully automatize the data mining, allowing us to analyze the
collected results. This is however far beyond the scope of this
paper.

With METrICS we aim at providing means to perform
an expert-driven analysis. In such a context, we developed a
GUI providing different ways of visualizing the collected data.
In this section, we will present a portfolio of the available
visualizations.

A. Underlying visualization technology

As the purpose of METrICS is to collect the full distribu-
tion of events (rather than only minimum / maximum values)
to study correlations between timing and shared hardware
resource contention, we need the same kind of visualizations
as the ones used in the statistics domain.

As we are manipulating gigabyte-large datasets, a major
concern for data mining is scalability. Some other important

features will be rendering speed and interactivity, to ease the
expert analysis.

In the domain of data science and big data, academic
research usually often on Python language coupled with numpy
[35] and pandas [26] for data analysis, coupled with matplotlib
[18] and jupyter [33] for visualization.

An alternative for online and interactive data visualization
is to rely on dedicated javascript libraries such as d3.js [8]
or google charts [16]. These libraries render charts as SVG
(Scalable Vector Graphics) which enable the user to interact
with each element of the chart, typically with zooming or
filtering ability.

Data visualization in METrICS involves both charts with
millions of points (usually scatterplots) as well as charts with
much fewer points (e.g. boxplots) but many filtering options.
As a consequence, we opted for two different rendering
options: pandas coupled with matplotlib for rendering static
large-scale charts, and pandas coupled with d3.js for rendering
interactively filterable data. All these visualization are bundled
into a single custom Qt-based GUI using the pyside Python
binding: xTRACT visualizer (expert Timing and Resource
Access Counting Trace visualizer).

B. Visualization related to user probes

User probes are typically used to monitor task runtime and
resource usage. Such information allow us to build up classical
Gantt charts, effectively showing what is running in parallel,
but it does not help to focus on the runtime variation caused
by timing interference.

To better visualize runtime variability, we build for each
user probe an histogram showing the distribution of observed
runtimes during the successive runs, as depicted in Figure 7.

Fig. 7. Histogram of the drone partition runtime as appearing in xTRACT
visualizer

The x-axis corresponds to the observed duration while
the y-axis indicates how many time each runtime has been
observed. The best (shortest) runtime appears on the left,
the worst (longest) observed execution time on the right, the
median value being identified with a black dot.

We also added colored vertical bar markers, corresponding
from left to right on Figure 7 to the best case in terms of
runtime, to the median, to the first iteration of the application
(that frequently behave quite differently) and finally to the
worst case execution time observed.

To figure out correlations between runtime and hardware
resource access, we also build histograms with the collected
Performance Monitor Counter data, as shown in Figures 8 and
9.

In these two figures, the colored vertical bar markers still
correspond to the best, worst, median and first iteration case



with regards to runtime. In these figures, the x-axis corresponds
to the number of accesses to a particular hardware resource. In
8, accesses seems to somewhat correlate with execution times,
whereas it is not the case for 9.

Fig. 8. Histogram of correlating resource accesses (L2 read cache accesses)
as appearing in xTRACT visualizer

Fig. 9. Histogram of not correlating resource accesses (issued store instruc-
tions) as appearing in xTRACT visualizer

Potential correlations could be better observed with scat-
terplots such as the one appearing in Figure 10.

Fig. 10. Scatterplot showing linear correlation between runtime and L2 read
cache accesses as appearing in xTRACT visualizer

Scatterplots allow to easily identify linear correlations.
Each point of the scatterplot indicates that a particular run
has been observed with a number of resource accesses equal
to the value on the x-axis, and an observed runtime equal to
the value on the y-axis.

If the points approximate a straight line, there is a linear
correlation. In Figure 10 most of the points are on a line except
the one corresponding to the first iteration that we highlighted
with a specific symbol, confirming the correlation.

Another option could be to identify correlation among per-
formance monitor counters to eliminate redundant information
provided by correlated hardware resources (like the obvious
redundant information of L1 cache misses versus L2 cache
accesses) to reduce the experimental design space.

C. Visualization related to the instrumented syscalls

We also rendered various charts related to the probes
automatically inserted around system calls.

These renderings allow the expert user to split the runtime
into the classical user time (time really spent in the application)
and the system time (time spent in the operating system to
deal with the application I/O). Alternatively it can be used to
observe the usage of kernel locks in system calls.
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Fig. 11. Visualizing ARINC-653 syscalls in ENGINE R1 task with xTRACT
visualizer

For instance, the top charts of Figure 11 shows the repar-
tition of APEX system calls in the ENGINE R1 task of the
eDRON application running on the 6-core Juno board ARM-
v8 architecture. The x-axis corresponds to the time, and a
gap can be observed between the SEND BUFFER and the
SET EVENT system calls despite being called sequentially.
This is due to the fact that the application is no more schedu-
lable during system calls, and therefore at least two time-
consuming context switches occur between the two function
calls.

The bottom part of Figure 11 shows with boxplots the
variability of the execution time of APEX system calls for
different runs of the ENGINE R1 task, actually showing that
the RTOS is also affected by timing interference.

IX. CONCLUSION AND FUTURE WORKS

With the foreseen shift to mutli-core architectures in the
time- and safety-critical domain, dealing with the timing
interference issue inherent to multi-core processors becomes
of prime concern.

Several solutions have been proposed in the literature
[14], but quantitative evaluations are mostly missing. In this
paper, we have presented METrICS, a toolsuite dedicated to
perform fine-grain time and resource access measurements in
safety critical systems, allowing to actually measure timing
interference and search for the causes of these interference.

We evaluated METrICS in terms of timing intrusiveness,
code intrusiveness and accuracy, and obtained cycle-level
precision with an overall overhead similar to regular RTOS
system calls to obtain just the timing information.

Beyond the layer running on top of PikeOS on the target
system, METrICS is also a host-side server than can automati-
cally drive large-scale test campaigns, and xTRACT visualizer,
a GUI that can help the expert to analyze collected results.

A next step for us would be to use METrICS to perform a
quantitative evaluation of the Deterministic Platform Solutions
presented in the DPS survey [14], that aim at either controlling
or regulating interference.
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