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Abstract: 22 

Aims We studied the effects of mixing rice straw and hairy vetch plant residues in a subtropical paddy 23 

soil, on subsequent carbon (C) and nitrogen (N) dynamics.  24 

Methods Using a theoretical framework, we designed two groups of experiments (involving equal 25 

amounts of residual C or N addition, referred to as either C or N treatments). Each experiment included 26 

mixed residues of rice straw and hairy vetch at different mixing ratios. Soils together with residues 27 

were incubated at 25℃ under waterlogged conditions for 100 days. Greenhouse gas (GHG) emissions 28 

and available C and N fractions were measured continuously.  29 

Results Both C and N treatments affected soil C and N dynamics, and these dynamics were 30 

quantitatively dependent on residue C/N ratios. The effect of residue mixtures on C and N dynamics 31 

could not be predicted from single residues, since there were non-additive effects of residue mixtures. 32 

Synergistic effects were generally more frequent than antagonistic effects. Residue mixtures tended to 33 

enhance CO2 and CH4 emissions in both C and N treatments but decreased N2O emissions in the N 34 

treatment. In the N treatment, dissolved organic C (DOC), dissolved organic N (DON), and microbial 35 

biomass C (MBC) concentrations increased. DOC and DON concentrations decreased in the C 36 

treatment. Residue mixtures enhanced the global warming potentials (GWP) of greenhouse gases 37 

(GHG) emitted from soil by non-additive synergistic effects. The C/N ratio of residue mixtures affected 38 

the non-additive responses of soil C and N dynamics, for example mixtures with a C/N ratio of 25 had 39 

higher CO2 emissions and DOC concentrations than those with a C/N ratio of 35 as a consequence of 40 

non-additive effects, however, CH4 emissions and MBC concentrations were higher in mixtures with a 41 

C/N ratio of 35 than in mixtures with a C/N ration of 25.  42 

Conclusions These results indicated that non-additive effects can impact soil C and N dynamics and 43 

mailto:Bob.Rees@sruc.ac.uk


that residue C/N ratios play an important role in influencing non-additive effects. Applying a single 44 

residue to paddy soils may be  better than residue mixtures from a GHG mitigation perspective.   45 

Key words: Residue mixtures, C/N ratio, Soil C and N dynamics, Non-additive response, Paddy soil 46 

Introduction 47 

Rice straw and green manure applications are important practices for managing soil fertility in the 48 

South of China. They can regulate soil carbon (C) and nitrogen (N) cycling, affect plant growth and 49 

change microbial community structure (Ma et al. 2009; Hansen et al. 2017). Previous research on rice 50 

straw and green manure applications alone have identified factors that influence the decomposition rate, 51 

such as C/N ratio (Huang et al. 2004), chemical composition (Redin et al. 2014), amount of input 52 

(Kimura et al. 2004), and soil properties (Wang et al. 2013). Nowadays, it is normal practice to return 53 

rice straw and green manures together to paddy fields. Consequently, it is valuable and necessary to 54 

study the mixtures of rice and green manure residues in order to understand the factors affecting 55 

decomposition processes.  56 

 Previous research has shown that residue mixtures may have additive or non-additive effects on 57 

decomposition processes, and that non-additive effects predominate (Hättenschwiler et al. 2005; Chen 58 

et al. 2015, 2017). An additive effect implies that there is no interaction between the constituent 59 

residues during decomposition. Accordingly, the decomposition processes of the residue mixture, e.g. 60 

decomposition rate, can be predicted from the decomposition rates of individual components of residue 61 

mixture. A non-additive effect occurs when there are interactions between the component residues, 62 

which either stimulate (i.e. synergistic) or inhibit (i.e. antagonistic) the decomposition processes in the 63 

residue mixture leading to differences from predictions based on the decomposition of the constituent 64 

residues (Chen et al. 2017). It can be unreliable to predict the decomposition of residue mixtures from 65 

knowledge of the decomposition of single residue components.  66 

Although Hättenschwiler et al. (2005) have reviewed three plausible mechanisms for  67 

non-additive effects on C and N dynamics (i.e. the nutrient transfer theory, the effects of specific 68 

compounds theory and the improved micro-environmental conditions and trophic levels theory), the 69 

mechanisms of this process remain unclear (Gartner and Cardon, 2004; Makkonen et al. 2013; Chen et 70 

al. 2017). Tardif and Shipley (2015) suggested that all mechanisms of non-additive effects stem from 71 

the chemical or structural differences of residues in the mixture rather than their taxonomic identity. 72 

Various chemical components released from residue mixtures can impact on microbial growth and 73 

activity in different ways, ultimately affecting the decomposition process positively or negatively 74 

(Sinsabaugh et al. 2002). Recent studies on the decomposition of residue mixtures have indicated that 75 

variations in chemical characteristics can influence the effects of residue-mixing on soil C and N 76 

cycling (Lecerf et al. 2011; Chen et al. 2017). However, very few studies have focused on how specific 77 

chemical characteristics (such as the C/N ratio) of the residue mixture can affect C and N dynamics in 78 

the decomposition process, which is important for revealing the mechanism of residue-mixing effects 79 

(Bonanomi et al. 2010). 80 

The primary objective of this study was to assess the effects of incorporation of rice straw and 81 

green manure (hairy vetch) mixtures on soil C and N dynamics, and to evaluate residue mixing-effects 82 

as influenced by the C/N ratio of residues in the mixture. Laboratory incubation experiments (applying 83 

equal amounts of residual C and N, respectively) with rice straw, hairy vetch and their mixtures were 84 

conducted to answer a set of research questions: (1) does the type or composition of crop residues 85 

affect soil C and N dynamics? (2) if yes, does the C/N ratio correlate with decomposition processes? (3) 86 



do non-additive effects (synergistic and antagonistic effects) on soil C and N dynamics occur? and, (4) 87 

does the C/N ratio influence non-additive responses of soil C and N dynamics in residue mixtures?  88 

Material and methods  89 

Soil and residues 90 

Soil was collected from an experimental site managed by the National Engineering and 91 

Technology Research Center for Red Soil Improvement in Fengcheng, Jiangxi Province, China 92 

(N28◦07′, E115◦56′ and altitude 25.4 m). The soil is derived from quaternary parent materials, with a 93 

pH of 5.2 and a texture of 70.1% sand, 27.1% silt, and 2.8% clay in the upper layer (0-20 cm). Other 94 

soil properties were as follows: soil organic C (SOC) 24.3 g kg
-1

, total N (TN) 2.3 g kg
-1

, mineral N 95 

(Nmin) 71.5 mg kg
-1

. In early April 2015, soil at depths of 0～20 cm was collected from ten locations in 96 

a paddy field along an “S” shaped transect. All soil samples were mixed thoroughly, air dried, crushed, 97 

passed through a 2-mm sieve, cleared of visible roots and stones, and stored in sealed containers before 98 

pre-incubation.  99 

At the same location as the soil, aboveground biomass of the rice straw (Oryza sativa L., hereafter 100 

abbreviated as RS) and green manure (hairy vetch, Vicia villosa roth L., hereafter abbreviated as GM) 101 

residues were collected from ten points, then dried in a fan oven at 60 °C for 24 h, ground and sieved to 102 

particle size < 1mm, and stored in sealed containers. 103 

Incubation experiment 104 

The air-dried paddy soil was rewetted to 60% water holding capacity and pre-incubated at 25 °C 105 

for 10 days in dark so as to activate the soil microbes (Wang et al. 2013). After pre-incubation, the soil 106 

(200.0 g equivalent dry-weight) was placed in a plastic basin and amended with residues. It was then 107 

hand-mixed thoroughly and placed in 500 ml culture-flasks.  108 

There were two treatment groups in this experiments; the C and N groups, and each group 109 

included five treatments: control (no residues) (CK); hairy vetch alone (C1 or N1); hairy vetch and rice 110 

straw added together with a residual C/N ratio of 25 (C2 or N2); hairy vetch and rice straw added 111 

together with a residual C/N ratio of 35 (C3 or N3); and rice straw alone (C4 or N4). The amounts of C 112 

and N in the residues added to soil were 164.5 mg pot
-1

 and 11.9 mg pot
-1

 for the C treatments and the 113 

N treatments, respectively. A C/N ratio of 25 has been identified as optimal for microbial 114 

decomposition of residues (Parnas, 1976; Ndegwa and Thompson, 2000). The C/N ratio of 35 was 115 

almost equal to that of mixture of the rice straw and hairy vetch applied in the fields. The amount of 116 

hairy vetch added to the soil was double that normally returned to fields. Thirty-three replicates of each 117 

treatment were prepared. Detailed information describing the different mixtures is provided in Table 1. 118 

Distilled water was added to each flask to maintain a 2-cm depth of water above the soil surface (1:1 119 

water/dried soil w/w). All flasks were sealed by a rubber septum and incubated at 25 °C in a growth 120 

chamber in the dark. During the experiment, each flask was opened to allow gas exchange for 30 min 121 

after sampling. The water depth was kept constant by adding water to flasks every 5 days. Three 122 

randomly selected replicates of each treatment were destructively sampled at 1, 3, 5, 10, 15, 20, 30, 45, 123 

60, 75 and 100 days after incubation for analysis of soil chemical and microbial properties.  124 

The emissions of CO2, CH4, and N2O were measured at 1, 3, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 125 

55, 60, 65, 70, 75, 80, 85, 90, 95 and 100 days after the start of the incubation. To do this, a 20 ml gas 126 

sample was collected from each flask with a plastic syringe and was then was injected into an 127 

evacuated 12 ml glass vial fitted with rubber stoppers to subsequently measure CO2, CH4, and N2O 128 



concentrations. All gas samples were analyzed within 24 h after sampling. 129 

Residues and soil C and N characteristics analyses 130 

The total C and N content of crop residues and physicochemical properties of the soil were 131 

determined according to the Chinese Soil Society guidelines (Lu, 2000). Dissolved organic C (DOC), 132 

total dissolved N (TDN), microbial biomass C (MBC), microbial biomass N (MBN) and mineral N 133 

(Nmin: NH4
+-N and NO3

−-N) in the incubated soil were measured. Sixty g fresh-weight of soil was 134 

extracted with 120 ml double distilled water (Wang et al. 2013), the extraction was passed through 135 

0.45-μm filter paper and analyzed using a TOC/N analyzer (Aanalytikjena, Multi N/C 2100, Germany) 136 

and an autoanalyzer (SEAL AutoAnalyzer3, Germany). Dissolved organic N (DON) was calculated as 137 

the difference between TDN and the inorganic N. MBC and MBN were estimated by the 138 

chloroform-fumigation extraction method (Brookes et al. 1985; Davidson et al. 1989). Nmin was 139 

determined using an autoanalyzer.  140 

Concentrations of CO2, CH4 and N2O in the gas samples were measured using a gas 141 

chromatograph equipped with flame ionization (FID) and electron capture detectors (ECD) (Agilent 142 

7890A, USA). 143 

Data analysis and statistics 144 

Emissions of CO2, CH4, or N2O were calculated using the formula E1:  145 

𝐹(𝑋) =
(𝐴−𝐵)×𝑉×𝑀×273×1000

22.4×𝑚×𝑡×(273+𝑇)
        (E1) 146 

where F(X) is the emission flux of X gas (mg X kg
-1

 d
-1

); where A and B stands for X concentration (X 147 

Air
-1

, mol×10
-6

 mol
-1

) in the samples collected at the beginning and at the end, respectively; V is the 148 

volume of gas in pot (L); M is the molar mass of X (g mol
-1

); t is the number of days in its sampling 149 

interval; m is the weight of dry-soil and T is mean temperature (°C) in pot, 273 is absolute temperature 150 

(K) and 22.4 is the molar volume of gas under standardized state (L mol
-1

). 151 

Cumulative emissions of CO2, CH4, or N2O was computed using formula E2 (Chen et al. 2015): 152 

𝐶𝑡′ = 𝐶𝑡 +
𝐹𝑡+𝐹

𝑡′

2
× (𝑡′ − 𝑡)          (E2) 153 

where Ct´ and Ct are gas accumulation (mg kg
-1

) at t´ and t, respectively; Ft´ and Ft are the emissions 154 

(mg kg
-1

 d
-1

) at t´ and t; t and t´ are the sampling time and the next sampling time after t (d). 155 

The Global warming potentials (GWPs, mg CO2 equivalents kg
-1

) of different treatments were 156 

calculated using formula E3: 157 

GWP = CO2 + CH4 × 25 + N2O × 298   (E3) 158 

based on a 100-year time frame, the GWP coefficients of CH4 and N2O are 25 and 298, respectively, 159 

when the GWP value of CO2 is assumed to be 1 (Forster et al. 2007). 160 

To determine whether the residue-mixing effects (RME) on soil C and N occurred, the following 161 

equation (E4) was used (Hoorens et al. 2003): 162 

𝑅𝑀𝐸 = (
𝑂𝐵𝑆 value

𝐸𝑋𝑃 value
)-1               (E4) 163 

where OBS is the measured value of a soil C or N transformation (e.g., soil CO2/CH4/N2O emission, 164 

dynamics of DOC, DON etc.), and EXP was calculated by averaging the results of the respective single 165 

residue treatments according to the following equation E5 (Meier and Bowman, 2010): 166 

EXP value= ∑ 𝑅𝑠
𝑖+1 i/S                    (E5) 167 

where Ri is the soil response when residue i was added alone, and S is the total number of types in the 168 



residue mixtures. Significant differences between RME and zero indicate that non-additive effects 169 

occur. The strongest synergistic effects would lead to the greatest positive departure from zero and the 170 

strongest antagonistic effects would lead to the greatest negative departure from zero. 171 

Analogous to the calculation of the N2O emission factor in IPCC (2000), we defined the CO2-C or 172 

CH4-C emissions per unit C amendment and N2O–N emissions per unit N amendment as an emission 173 

fraction (EF) and calculated the EF for residue amendments using equations E6 and E7 (Huang et al. 174 

2004):  175 

EFCO2 or CH4 = [(ΣCO2 or CH4_T - ΣCO2 or CH4_C)/TC] × 100%     (E6) 176 

EFN2O = [(ΣN2O _T - ΣN2O _C)/TN] × 100%                     (E7) 177 

where ΣCO2 or CH4_T and ΣN2O _T are cumulative CO2-C or CH4-C and N2O-N emitted from 178 

residue-treated soils, respectively; ΣCO2 or CH4_C and ΣN2O _C are cumulative CO2-C or CH4-C and 179 

N2O-N emitted from control (no residue), respectively; TC and TN are the content of residue C and N, 180 

respectively.  181 

The differences in soil CO2, CH4, N2O fluxes, DOC, DON, MBC, MBN, Nmin concentrations 182 

among different treatments and groups (equal C and equal N) were tested by a two-way ANOVA. 183 

One-way ANOVA followed by Duncan’s multiple comparisons were used for evaluating the statistical 184 

differences in soil C and N between treatments. This analysis was used to test the differences in soil 185 

CO2, CH4, N2O fluxes, DOC, DON, MBC, MBN, Nmin concentrations between different treatments and 186 

incubation times. A paired t-test was used to assess significant differences in CO2, CH4 and N2O 187 

concentrations between treated and untreated flasks (no soil), and whether the residue-mixing effect 188 

differed significantly from zero (Bonanomi et al. 2010). Regression analysis was conducted to examine 189 

the relationships between residue C/N ratios and CO2, CH4 and N2O emissions with DOC, DON, MBC, 190 

MBN, Nmin concentrations (Huang et al. 2004). All statistical analyses were conducted using SAS 8.0 191 

with a significance level of P < 0.05. 192 

Results 193 

Dynamics of greenhouse gas (GHG) fluxes and soil C and N concentrations during residues 194 

decomposition 195 

The incorporation of crop residues had an immediate effect on the emissions of CO2, and N2O 196 

(Fig. 1). The CO2 fluxes from all residue-treated soils showed similar patterns, with emissions 197 

increasing to a peak after about one week and then decreasing steadily during the incubation period. 198 

However, in the N treatments, e.g. N2, N3 and N4, there was a secondary peak after about the 40
th

 day. 199 

Residue amendment also increased CH4 fluxes. Net emission of CH4 wasn’t detected in the initial stage, 200 

but reached a peak in the N treatments (especially in N3 and N4). The emissions of CH4 were distinctly 201 

different in the C and N treatments over the first 40 days, with a general rise in emissions in the C 202 

treatments, but in the N treatments following and initial increase in emissions, there was a sharp 203 

decline at around day 40. In contrast to CO2 and CH4 fluxes residue amendment decreased N2O fluxes, 204 

especially after 60 days. The N2O fluxes from residue-treated soils in the 2 treatments showed a similar 205 

pattern, with an initial decrease followed by more stable emissions during the period between day 20 to 206 

40, and then increasing to a plateau beyond day 40.  207 

Soil C and N concentrations in control and residue-treated soils are shown in Fig. 2. In general, 208 

residues amendment increased DOC, DON, MBC and MBN concentrations, where the C/N ratio was 209 

≤35 (including C1, C2, C3, N1, N2 and N3) but where the C/N was 63 (C4 and N4) Nmin 210 

concentrations decreased, compared with the control. Supplementary information (Table S1) describes 211 



the average concentrations of C and N on all sampling dates, and an ANOVA analysis shows that there 212 

were significant differences in DOC, DON and Nmin among residue C/N ratio. The two-way ANOVA 213 

also showed that there were significant differences in the GHG fluxes and soil chemistries between 214 

litter treatments and incubation times (Table 2). 215 

The effects of residue C/N ratio on GHG emission fractions and soil C and N concentrations  216 

A two-way ANOVA showed that there were significant differences in GHG emissions between 217 

residues and C/N ratios (Table S1). Here, we used the gas emission fractions (EF) rather than the 218 

cumulative gas emissions since was able to better reflect GHG emission potentials during residues 219 

decomposition (IPCC, 2000). Values of the EFC (EF in the C treatment) and EFN (EF in the N treatment) 220 

indicated that each gas EF in the C and N treatments was not a constant, but dependent on the residue’s 221 

C/N ratio (Fig. 3). The CO2 EF in the N treatment was negatively related to residue C/N ratio, but not 222 

correlated in the C treatment. Interestingly, in the two treatments, the quadratic curve fitted well with 223 

the relationship between the CH4 EF and residue C/N ratio, indicating that there was an optimal C/N 224 

ratio which could cause the largest CH4 EF. The N2O EF in the C and N treatments were always 225 

negatively related to residue C/N ratio. 226 

At the end of incubation, simple fitting curve could intuitively describe the tendency of soil C and 227 

N concentrations and the residue C/N ratio to affect GHG emissions (Fig. 4). In particular, although the 228 

MBC concentration could be modelled well by a quadratic function, the DOC, DON, MBN and Nmin 229 

concentrations in C treatments were negatively correlated with residue C/N ratio. However, in N 230 

treatments, the DOC and DON concentrations fitted a quadratic curve well, and the MBC concentration 231 

was positively correlated with the residue C/N ratio but MBN and Nmin were negatively associated to 232 

residue C/N ratio.  233 

Residue-mixing effects on greenhouse gas emissions and soil C and N concentrations  234 

The bivariate relationship between observed and expected values showed that non-additive effects 235 

were more frequent than additive effects throughout the incubation period (Fig. 5, 88 cases for CO2 and 236 

N2O in total; 68 cases for CH4 in total; 44 cases for DOC, DON, MBC, MBN and Nmin in total). For 237 

CO2, CH4, N2O, DOC, DON and MBC, 51.1%, 85.3%, 71.6%, 70.5%, 63.6% and 61.4% of cases 238 

showed non-additive effects, and 53.3%, 53.4%, 50.8%, 51.2%, 51.6% and 66.7% were synergistic 239 

respectively; while for MBN and Nmin, 72.7% and 54.5% of cases showed additive effects, respectively. 240 

Throughout the incubation period, the average strength of residue-mixing effects for CO2, CH4, 241 

N2O, DOC, DON, MBC, MBN and Nmin in the residue mixture treatments are presented in Fig. 6. The 242 

results showed that residue mixtures significantly increased CO2 and CH4 fluxes by 3.6% and 14.2% in 243 

the C treatment, 6.1% and 13.3% in the N treatments, and decreased N2O fluxes by 3.9% in the N 244 

treatment. Interestingly, residue mixtures decreased DOC and DON in the C trial but increased them in 245 

the N treatment. 246 

Relationship of residue mixtures C/N ratio and residue-mixing effects   247 

The relationships between the residue mixture C/N ratios and the strength of residue-mixing 248 

effects was demonstrated by non-additive effects on cumulative GHG emissions, global warming 249 

potentials (GWP) and the final soil C and N concentrations (Fig. 7). For example, non-additive 250 

synergistic effects were observed in three of the four residue mixtures for soil CO2 (C2, N2 and N3), 251 

CH4 (C3, N2 and N3) and N2O (C1, C2 and C3) emissions, were found in all residue mixtures for GWP, 252 

and for soil DOC, DON and MBC concentrations in all of the N treatments; two synergistic effects and 253 



two antagonistic effects were found for soil Nmin. In general, synergistic effects were more frequent 254 

than antagonistic effects within residue mixtures on soil C and N dynamics (Fig. 7).  255 

A two-way ANOVA (Table 3) also showed that there were significant differences in 256 

residue-mixing effects between residue C/N ratios and treatments. Combined with the observations in 257 

Fig. 7, marked differences in residue-mixing effects on soil C and N fluxes between the C and N 258 

treatments were found, indicating that more non-additive synergistic effects occurred in the N treatment. 259 

Significant differences in residue-mixing effects were apparent between C/N ratios of 25 and 35, 260 

showing that non-additive effects tended to be synergistic for CO2 and N2O at a C/N ratio of 25, and for 261 

CH4 and MBC at C/N 35. However, the C/N ratio of residue mixtures had slight residue-mixing effects 262 

on GWP (Table 3).  263 

Discussion 264 

Effects of residues amendment on soil C and N dynamics 265 

 In this study, marked effects on soil C and N dynamics were found in soil treated with single or 266 

mixed residues (Figs. 1, 2 and Table S1). It could be seen from the control that the paddy soil was a 267 

“source” of CO2, CH4 and N2O (Fig. 1a, b, c and Table S1), and that residue application dramatically 268 

enhanced CO2 and CH4 but inhibited N2O emissions. Similar results have been reported in other paddy 269 

soils (Ma et al. 2009; Liu et al. 2014; Ye and Horwath, 2017). The enhanced emissions may be due to 270 

the increased soil microbial biomass and the growth of particular methanogenic populations after 271 

residues incorporation, which often stimulated CO2 and CH4 emissions (Lou et al. 2004; Conrad and 272 

Klose, 2006). In addition, anaerobic decomposition of residues does not only supply methanogenic 273 

substrates but also reduces the soil oxidation-reduction potential (Eh) which may favor CH4 production 274 

(Cai et al. 1997; Ma et al. 2009). Kludze et al. (1993) found that soil would not emit CH4 until its Eh 275 

was less than -150 mV, which might be the reason why there was no net CH4 emission at the initial 276 

stage of incubation. The decreased N2O emission might be ascribed to the development of a more 277 

anaerobic environment in the presence of residues (Cai et al. 1997; Ma et al. 2009), which decreased 278 

the substrate (nitrate nitrogen) for denitrification and favored full reduction of N2O to N2.  279 

Residues decomposition can form dissolved organic matter (DOM) in natural and farmland 280 

ecosystems (Kalbitz et al. 2000; Zhu et al. 2014). However, some studies have claimed that residue 281 

application did not dramatically enhance soil DOM concentrations, because of the vulnerability of 282 

DOM released from residues which could be decomposed and utilized in the short time (Jiang et al. 283 

2013). Hagedorn et al. (2004) reported that about 70% of DOM was extracted from soil old organic 284 

matter pools, and any methods that activate the soil C and N pool could increase soil DOM 285 

concentrations. In our study, the application of single or mixed residue also increased soil DOC, DON 286 

and MBC concentrations compared to the control (Fig. 2 and Table S1). Thus, it is reasonable to 287 

conclude that residue application could activate the soil organic C or N pool and increase the soil 288 

microbial community in a subtropical paddy soil. 289 

Soil Nmin concentrations were significantly higher in C1, C2, C3, N1, N2 and N3 treatments but 290 

lower in C4 and N4 treatments than that in the control (Fig. 2 and Table S1). When soil N is deficient 291 

and limits microbial growth, the residue N content would play an important role in controlling the 292 

decomposition process, and determining the balance between N mineralization and immobilization 293 

(Recous et al. 1995; Jensen et al. 2005). The enhanced Nmin concentrations in the C1, C2 and C3 294 

treatments may have been due to the relatively higher initial residue N content compared to C4, leading 295 

to a higher availability of N for soil microbial decomposers and resulting in more inorganic N 296 



production. However, although there were equal amounts of residue N in each treatment of N group, 297 

significant differences of soil Nmin concentrations were observed. This result could be interpreted by the 298 

coupling C and N cycles in which the C content of residues determined the balance between 299 

mineralization and immobilization (Soussana and Lemaire, 2014).  300 

Responses of soil C and N dynamics to residue C/N ratio and mixing effects  301 

Residue C/N ratios influenced soil C and N dynamics (Huang et al. 2004). Particularly, for the 302 

CO2 emission fraction (EF), different relationships between residue C/N ratio and the CO2 EF were 303 

found in the two experiments (Fig. 3), indicating that residues C or N content could change the effects 304 

of C/N ratio on CO2 emission. Huang et al. (2004) reported that residues producing more DOM could 305 

result in higher CO2 emissions, because of the vulnerability of DOM to bio-mineralization. Our study 306 

also found a positive and significant relationship between DOM (including DOC and DON) and CO2 307 

emissions (Table S2). Residues with a lower C/N ratio or with a higher C content would produce more 308 

DOM (Heal et al. 1997; Mungai and Motavalli, 2006), leading to an enhancement of CO2 emissions. 309 

However, in all treatments the relationship between residue C/N ratio and the two GHG (CH4 and N2O) 310 

EFs showed similar responses (Fig. 3), indicating that residue C/N ratios might control production. 311 

This is partly supported by Ding et al. (2004) and Huang et al. (2004) who reported that soil CH4 and 312 

N2O emissions were altered by soil DOM and Nmin, and Table S2 also confirmed this relationship. 313 

Application of residues with a lower C/N ratio or with a higher C content, leading to more DOM, 314 

would result in more anoxic conditions which are favorable for methanogenesis (Baggs and Blum, 315 

2004). Moreover, Krüger and Frenzel (2003) reported that any agricultural treatments enhancing the N 316 

level would increase the community of CH4 oxidizing bacteria and hence decrease CH4 emissions. 317 

These results indicate that higher DOM and lower Nmin concentrations would result in the highest CH4 318 

emission, which could explain the observed relationships between C/N ratio and CH4 EF (Fig. 3). Heal 319 

et al. (1997) explained that residues with a lower C/N ratio decomposed more rapidly and released 320 

more Nmin, and consequently produced more substrate for N2O production by denitrification (Huang et 321 

al. 2004).  322 

For soil C and N concentrations, our observations are generally consistent with previous studies 323 

suggesting DOC, DON, MBN and Nmin are negatively correlated to residue C/N ratio under equal 324 

amounts of residue or C, because lower C/N ratio residues always have more N, and are more easily 325 

decomposed (Huang et al. 2004; Rousk and Bååth, 2007; Marschner et al. 2015; Ye and Horwath, 326 

2017). However, the C/N ratio-dependent MBC content curve showed that there was an optimum C/N 327 

ratio for the microbial biomass. This may be partly explained by the non-additive synergistic effects of 328 

mixtures (Abouelenien et al. 2014; Chen et al. 2017). Furthermore, the processes of change rules of 329 

DOC, DON and MBC were strongly influenced by residue C/N ratio in N treatments but these were 330 

different from the C treatments. This difference may arise from: a) the different C and N contents: the 331 

effect of residues with higher C content can be greater than that with a lower C/N ratio and lower C 332 

content; and b) the different non-additive effects: there were more non-additive synergistic effects in 333 

the N treatments than that in the C treatments (Fig. 7). 334 

Many studies have shown that effects of mixed residues can not be summarized from the 335 

component species because of the existence of interactive effects (Gartner and Cardon 2004; 336 

Hättenschwiler et al. 2005; Chen et al. 2017). Our results confirmed the predominance of non-additive 337 

effects that arose from residue mixtures influencing soil C and N dynamics (Fig. 5). Overall, for CO2, 338 

CH4, DOC, DON and MBC release or turnover (Fig. 5a, b, d, e and f), synergistic effects were far more 339 

frequent than antagonistic effects, which indicated that residue mixtures were more likely to increase 340 



these five processes by non-additive effects. Abouelenien et al. (2014) reported that residue mixtures 341 

usually had a more balanced nutrient composition, which would provide a more suitable habitat for 342 

microorganisms, leading to a higher soil respiration and mineralization. However, Fig. 6 showed 343 

different non-additive effects on DOC and DON in the two main treatments. Residue mixtures 344 

probably inhibited the two processes in the C treatment while they were promoted in the N treatment, 345 

with an indication that the quantity of C and N in residue mixtures influences the non-additive effects.  346 

Previous information showed that synergistic effects on nutrient release from residue mixtures 347 

were predominant (Gartner and Cardon 2004; Lecerf et al. 2011). These observations imply that 348 

residue mixtures are more beneficial to improve soil microbial activity than a single residues (Nayono 349 

et al. 2010; Abouelenien et al. 2014), probably resulting in enhanced C mineralization and a lower Eh, 350 

which wuold favor CH4 production but inhibit N2O emissions (Lou et al. 2004; Ma et al. 2009), which 351 

is consistent with our results. However, our results also provided some contrasts with  recent studies. 352 

For instance, Chen et al. (2017) reported that residue-mixing effects on MBN and Nmin were 353 

non-additives and reported antagonistic effects on the MBC, whereas our work showed the reverse. 354 

These differences may result from: (a) different species of residues used in the incubation; and (b) 355 

different quantities of C or N in residues used in incubation.  356 

In present study, the strength of residue-mixing effects on CO2, CH4, DOC, DON and MBC were 357 

controlled to a large extent by the residue mixture’s C/N ratio (Table 3, Fig.7). Residue mixtures with a 358 

C/N ratio of 25 would have higher CO2 emissions and DOC content than those with a C/N ratio of 35, 359 

but lower CH4 emissions and MBC contents (Fig. 7). The possible reasons may be: (a) compared to 360 

residue mixtures with a C/N ratio of 35, microbial populations in mixtures with a C/N ratio of 25 are 361 

more likely to have increased access to N pools which in turn will enable soil C mineralization by 362 

non-additive processes; (b) the chemical heterogeneity of residue mixtures with C/N ratios of 25 and 35 363 

may be different, causing different non-additive effects on soil C and N processes (Harguindeguy et al. 364 

2008); and (c) residue mixtures with a C/N ratio of 35 could increase synergistic effects by creating the 365 

optimum conditions for the hydrolysis-acidogenic phase of microorganism growth and reproduction 366 

(Nurliyana et al. 2015). Residues mixtures generally increased the net GHG emissions from soils as a 367 

result of impacts on CO2, CH4 and N2O emissions.  The C3 and N3 treatments were associated with 368 

the lowest overall GWP mostly as a consequence of the low rates of CO2 or N2O emissions occurring 369 

and the high residue C/N ratio.  However, future research should explore these explanations by 370 

designing experiments with more C/N ratios to establish wider relationships between residue mixtures 371 

and soil C and N dynamics.    372 

Conclusions  373 

Equal amounts of residue C or N application increased paddy soil CO2 and CH4 emissions, GWP 374 

and DOC, DON and MBC concentrations, whilst inhibiting N2O emissions. Most of these changes, 375 

including MBN and Nmin, were quantitatively dependent on residue C/N ratio or their absolute C and N 376 

contents. Additionally, non-additive (synergistic and antagonistic) effects of residue mixtures on soil C 377 

and N dynamics occurred frequently; in particular, synergistic effects were more frequent than 378 

antagonistic effects. Residue mixtures generally enhanced the GWP of greenhouse gases emitted from 379 

soil by non-additive synergistic effects. Therefore, non-additive effects impact soil C and N dynamics 380 

and residue C/N ratio may play an important role in influencing non-additive effects through 381 

mechanisms such as priming on soil C and N dynamics. Application of a single residue to paddy soils 382 

may be better than residue mixtures from a GHG mitigation perspective. 383 
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Table 2 Two-way ANOVA for CO2, CH4 and N2O fluxes, DOC, DON, MBC, MBN and Nmin between 514 

different treatments and incubation times. DOC, dissolved organic carbon; DON, dissolved organic 515 

nitrogen; MBC, microbial biomass carbon; MBN, microbial biomass nitrogen; Nmin, mineral nitrogen. 516 

Sources SS df F P 

%CO2     

Treatments  49699.20 7 252.13 <0.0001 

Incubation time 12392.11 21 337.06 <0.0001 

Treatments × Incubation time 25307.47 147 24.52 <0.0001 

%CH4
a
     

Treatments  418.48 7 2339.98 <0.0001 

Incubation time 69.60 16 170.26 <0.0001 

Treatments × Incubation time 279.24 112 97.59 <0.0001 

%N2O     

Treatments  4.72 7 155.00 <0.0001 

Incubation time 98.01 21 1072.26 <0.0001 

Treatments × Incubation time 19.56 147 30.57 <0.0001 

%DOC     

Treatments  139107.96 7 228.19 <0.0001 

Incubation time 131851.08 10 151.40 <0.0001 

Treatments × Incubation time 111398.07 70 18.27 <0.0001 

%DON     

Treatments  17599.49 7 375.08 <0.0001 

Incubation time 14630.41 10 218.26 <0.0001 

Treatments × Incubation time 11932.62 70 25.43 <0.0001 

%MBC     

Treatments  170959.98 7 259.08 <0.0001 

Incubation time 2165695.68 10 2297.40 <0.0001 

Treatments × Incubation time 149650.97 70 22.68 <0.0001 

%MBN     

Treatments  8185.52 7 107.54 <0.0001 

Incubation time 56987.60 10 524.08 <0.0001 

Treatments × Incubation time 5128.26 70 6.74 <0.0001 

%Nmin     

Treatments  180902.64 7 539.48 <0.0001 

Incubation time 538260.26 10 1123.63 <0.0001 

Treatments × Incubation time 65196.60 70 19.44 <0.0001 

a 
Temporal dynamics in CH4 fluxes was analyzed when all treatments emitted methane.     517 
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 525 

Table 3 Two-way ANOVA of the interaction between treatments and C/N ratios on the strength of 526 

residue-mixing effects for cumulative CO2, CH4 and N2O emissions, GWP, DOC, DON, MBC, MBN 527 

and Nmin concentrations at the end of the incubation. GWP, global warming potentials; DOC, dissolved 528 

organic carbon; DON, dissolved organic nitrogen; MBC, microbial biomass carbon; MBN, microbial 529 

biomass nitrogen; Nmin, mineral nitrogen.  530 

Sources SS df F P 

%CO2     

C/N ratio (R) 0.0126 1 29.66 0.0001 

Treatment (T) 0.0097 1 22.75 0.0005 

R × T 0.0000 1 0.01 0.9395 

%CH4     

C/N ratio (R) 0.1252 1 155.35 <0.0001 

Treatment (T) 0.0524 1 65.01 <0.0001 

R × T 0.1489 1 184.70 <0.0001 

%N2O     

C/N ratio (R) 0.0252 1 2.50 0.1395 

Treatment (T) 0.0005 1 122.40 <0.0001 

R × T 0.0223 1 108.25 <0.0001 

%GWP     

C/N ratio (R) 0.0034 1 2.84 0.1179 

Treatment (T) 0.0027 1 2.24 0.1602 

R × T 0.0148 1 12.32 0.0043 

%DOC     

C/N ratio (R) 0.0367 1 108.28 <0.0001 

Treatment (T) 0.1204 1 355.40 <0.0001 

R × T 0.0015 1 4.42 0.0573 

%DON     

C/N ratio (R) 0.0003 1 0.06 0.00151 

Treatment (T) 0.0122 1 2.47 <0.0001 

R × T 0.1325 1 26.93 0.0766 

%MBC     

C/N ratio (R) 0.0008 1 5.97 0.0491 

Treatment (T) 0.0002 1 0.91 0.0048 

R × T 0.0033 1 16.62 0.4441 

%MBN     

C/N ratio (R) 0.0031 1 3.49 0.0862 

Treatment (T) 0.0102 1 11.62 0.0052 

R × T 0.0091 1 10.36 0.0074 

%Nmin     

C/N ratio (R) 0.0003 1 1.04 0.3278 

Treatment (T) 0.0014 1 5.69 0.0344 

R × T 0.0094 1 38.12 <0.0001 
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Figure legends 534 

 535 

Fig. 1 Emissions of CO2 (a), CH4 (b) and N2O (c) under different residue treatments. CK, control; C1, 536 

C2, C3 and C4, with equal amounts of C and at different C/N ratios; N1, N2, N3 and N4, with equal 537 

amounts of N and at different C/N ratios. The vertical bars represent standard error (n=3).  538 

 539 

Fig. 2 Concentrations of soil DOC (a), DON (b), Nmin (c), MBC (d) and MBN (e) under different 540 

residue treatments. DOC, dissolved organic carbon; DON, dissolved organic nitrogen; MBC, microbial 541 

biomass carbon; MBN, microbial biomass nitrogen; Nmin, mineral nitrogen; CK, control; C1, C2, C3 542 

and C4, with equal amounts of C and at different C/N ratios; N1, N2, N3 and N4, with equal amounts 543 

of N and at different C/N ratios. The vertical bars represent standard error (n=3). 544 

 545 

Fig. 3 Dependence of CO2 (a), CH4 (b) and N2O (c) emission fractions on residue C/N ratio. EFC: CO2, 546 

CH4 or N2O emission fraction in the equal C treatments; EFN: CO2, CH4 or N2O emission fraction in 547 

the equal N treatments.  548 

 549 

Fig. 4 Dependence of DOC (a), DON (b), MBC (c), MBN (d) and Nmin (e) on residue C/N ratio. DOC, 550 

dissolved organic carbon; DON, dissolved organic nitrogen; MBC, microbial biomass carbon; MBN, 551 

microbial biomass nitrogen; Nmin, mineral nitrogen. 552 

 553 

Fig. 5 Observed vs expected values of CO2 (a), CH4 (b), N2O (c) fluxes, DOC (d), DON (e), MBC (f), 554 

MBN (g) and Nmin (h) concentrations in the residue mixture treatments across the whole incubation 555 

time. Red symbols are indicative of statistically significant non-additive effects, and black symbols 556 

imply additive effects. DOC, dissolved organic carbon; DON, dissolved organic nitrogen; MBC, 557 

microbial biomass carbon; MBN, microbial biomass nitrogen; Nmin, mineral nitrogen. 558 

 559 

Fig. 6 Average values of the strength of residue-mixing effects for CO2, CH4 and N2O fluxes, DOC, 560 



DON, MBC, MBN and Nmin concentrations in C (a) and N (b) treatments throughout the incubation 561 

period. DOC, dissolved organic carbon; DON, dissolved organic nitrogen; MBC, microbial biomass 562 

carbon; MBN, microbial biomass nitrogen; Nmin, mineral nitrogen. * indicates that the difference 563 

between zero and non-additive effect is significant (P<0.05); n.s. = no significant. 564 

 565 

Fig. 7 Relationship between treatments and the strength of residue-mixing effects for cumulative CO2 566 

(a), CH4 (b) and N2O (c) emissions, GWP (d), DOC (e), DON (f), MBC (g), MBN (h) and Nmin (i) 567 

concentrations at the end of the incubation. The point positively departs from zero level meaning 568 

synergistic effects, negatively departs from zero level meaning antagonistic effects. GWP, global 569 

warming potentials, DOC, dissolved organic carbon; DON, dissolved organic nitrogen; MBC, 570 

microbial biomass carbon; MBN, microbial biomass nitrogen; Nmin, mineral nitrogen. 571 

 572 

 573 

 574 

Table S1 Changes in cumulative CO2, CH4 and N2O emissions, DOC, DON, MBC, MBN and Nmin 575 

concentrations under application residue and two-way ANOVA of the interaction between treatments 576 

and C/N ratios on cumulative CO2, CH4 and N2O emissions, DOC, DON, MBC, MBN and Nmin 577 

concentrations. The averages followed by the same letter in the same column are not significantly 578 

different (Duncan’s test, P < 0.05), “-” indicates that CO2, CH4, N2O, DOC, DON, MBC, MBN and 579 

Nmin were not significantly affected by treatments, trial, or their interaction at the P < 0.05 level. DOC, 580 



dissolved organic carbon; DON, dissolved organic nitrogen; MBC, microbial biomass carbon; MBN, 581 

microbial biomass nitrogen; Nmin, mineral nitrogen 582 

Treatment C/N ratio 
CO2 

(mg kg
-1
) 

CH4 

(mg kg
-1

) 

N2O 

(μg kg
-1
) 

GWP 

(mg CO2  

equivalents 

kg
-1

) 

DOC 

(mg kg
-1
) 

DON 

(mg kg
-1

) 

MBC 

(mg kg
-1
) 

MBN 

(mg kg
-1
) 

Nmin 

(mg kg
-1
) 

Equal C CK 874.54 c 2.70 c 46.85 a 956.04 d 108.81 d 25.17 d 430.90 d  64.66 cd 222.07 d 

 C1 1175.82 a  25.35 b 39.03 b 1821.07 b 131.43 ab 44.17 a 476.19 a 73.84 a 279.04 a 

 C2 1159.24 a 25.32 b 35.94 c 1802.83 b 126.60 bc 38.24 b 449.15 c 68.06 b 250.37 b 

 C3 1075.18 b 33.72 a 35.74 c 1928.82 a 123.57 c 35.59 c 460.64 b 66.62 bc 241.80 c 

 C4 1073.33 b 24.68 b 31.29 d 1699.65 c 133.90 a 35.41 c 460.61 b 62.74 d 213.77 e 

           

Equal N CK 874.54 e 2.70 e 46.85 a 956.04 e 108.81 e 25.17 c 430.90 c  64.66 b 222.07 d 

 N1 1175.82 d 25.25 d 39.03 b 1821.07 d 131.43 d 44.17 b 476.19 b 73.84 a 279.04 a 

 N2 1421.01 c 60.916 c 35.01 c 2954.35 c 144.50 c  45.23 ab 480.35 b 73.92 a 248.83 b 

 N3 1674.67 b 111.25 b 29.14 d 4464.59 b 160.99 b 47.56 a 497.58 a 77.12 a 233.57 c 

 N4 2279.25 a 219.62 a 25.53 e  777.43 a 174.61 a 45.97 ab 499.06 a 76.30 a 196.43 e 

           

Two-way ANOVA Treatment (T) <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 -<0.0001 - 

 C/N ratio (R) <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0193 - - <0.0001 

 T×R <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0004 - - - 

 583 


