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ABSTRACT 23 

Leaf diseases cause major yield losses in winter wheat every year across Europe. 24 

Septoria leaf blotch – STB (Zymoseptoria tritici) is the most serious leaf disease in Northern 25 

Europe, but also yellow rust (Puccinia striiformis) and brown rust (Puccinia triticina) are 26 

known to cause major problems in some regions and seasons. Problems with fungicide 27 

resistance in the populations of Z. tritici have caused concerns for future control options. With 28 

the aim of investigating the differences in azole performances against STB, yellow rust and 29 

brown rust, 40 field trials were carried out during two seasons (2015 and 2016) in 10 different 30 

countries across Europe covering a diversity of climatic zones and agricultural practices. Four 31 

single triazoles (epoxiconazole, prothioconazole, tebuconazole and metconazole) and two 32 

mixtures of azoles (epoxiconazole + metconazole; prothioconazole + tebuconazole) were 33 

tested at full and half rates. Regarding control of yellow rust and brown rust similar control 34 

patterns were seen across Europe and solutions with epoxiconazole and tebuconazole provided 35 

between 80 and 100% control. In contrast lower levels of control and major variations in azole 36 

performances against STB were seen across Europe, with the better of the azoles varying 37 

significantly across the continent. Similarly, the CYP51 mutation frequencies varied greatly 38 

across Europe with a clear pattern of decreasing frequencies from west to east of all 39 

investigated mutations except I381V and A379G. Azoles were most effective against STB 40 

when used as mixtures of epoxiconazole + metconazole or prothioconazole + tebuconazole. 41 

This was especially clear in the western part of Europe with high frequencies of CYP51 42 

mutations D134G, V136C and S524T. Effectiveness of all single azoles decreased from 2015 43 

to 2016 except for tebuconazole and azole mixtures, with the latter showing an increased 44 

advantage. EC50 values for Z.tritici from the trial sites measured for the four azoles involved 45 

could to some extent support the control levels measured at the sites.  Across all trials full 46 
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rates of azole mixtures were best at increasing yields by up to 20%. Single azoles increased 47 

yields between 14 and 18%. Yellow rust gave rise to the highest yield increases.   48 

 49 

Keywords: Triazoles, Europe, Zymoseptoria tritici, CYP51 mutations, EC50, Rust. 50 

 51 

Introduction 52 

Every year severe attacks of leaf diseases in winter wheat give rise to significant 53 

and economically important losses (Oerke, 2006, Jørgensen et al., 2014). This leads to 54 

common use of fungicides in order to keep down the yield loss. Septoria leaf blotch (STB) 55 

caused by Zymoseptoria tritici is seen as the most serious leaf disease in Northern Europe 56 

(Fones & Gurr, 2015), but also yellow rust (Puccinia striiformis) and brown rust (Puccinia 57 

triticina) are known to cause major problems in some regions and seasons (Jørgensen et al., 58 

2014).  59 

Four major modes of Action (MoA) of fungicides are available for management 60 

of leaf diseases in wheat: (1) quinone outside inhibitors (QoI), (2) sterol 14α-demethylation 61 

inhibitors (DMI), in this paper mentioned as azoles, (3) succinate dehydrogenase inhibitors 62 

(SDHI) and (4) multi-site inhibitors. Among these, target site-specific systemic fungicides 63 

such as DMIs and SDHI’s are regarded as the most active (Fraaije et al., 2007).  64 

The DMI fungicides have been authorized for control of leaf diseases since the late 1970s 65 

(Russell, 2005; Lucas et al. 2016 ).  The DMIs consists of azoles, which again represents both 66 

triazoles, the triazolinthione deriviate prothioconazole and the imidazole prochloraz.  Azoles 67 

are still regarded as the core group of fungicides for control of leaf diseases. Depending on 68 

weather, disease pressure and cultivars grown, fungicides, including triazoles are often applied 69 

1-3 times per season. Due to this very common use, resistance to DMIs has evolved in several 70 

fungal plant pathogens (Russell, 2005). Since resistance to QoI fungicides developed, the 71 
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azoles have been seen as the backbone of STB control (Fraaije et al., 2007) and in recent years 72 

major changes in the sensitivity of the populations have been observed across Europe (Dooley 73 

et al., 2016a, Stammler & Semar, 2011).  74 

Resistance against DMIs, unlike most other target specific fungicides, has 75 

resulted not just from single mutations, but several resistance mechanisms have been found to 76 

be involved. Three main resistance mechanisms in agricultural fungi have been described for 77 

DMIs: mutations in the target enzyme CYP51 enzyme, overexpression of the target gene 78 

CYP51 and enhanced efflux activity reducing the accumulation of DMIs in the fungal cell. 79 

The increased resistance of Z. tritici towards DMIs has been associated with all three 80 

mechanisms (Cools & Fraaije, 2013). The large number of CYP51 mutations which have been 81 

discovered during the past 10-15 years in different combinations have been associated with the 82 

most significant changes in sensitivity. The different haplotypes of STB, which have been 83 

identified, are differently affected by different DMIs (Leroux et al., 2007, Cools & Fraaije, 84 

2013).  85 

The changes seen in control of STB have to some extent been shown to be 86 

influenced by specific CYP51 mutations. Furthermore, the patterns of decreasing field 87 

performances have been confirmed by rising EC50 values for several DMIs, especially 88 

tebuconazole and metconazole (Clark, 2006, Fraaije et al., 2007). The level of resistance is 89 

found to be highly influenced by the local risk of STB, intensity of control and the strategies 90 

and fungicides applied. In spite of major shifts occurring in the field effects of other DMIs, 91 

epoxiconazole and prothioconazole were until 2008 reported as being unaffected by mutations 92 

in the CYP51 gene (Stammler et al., 2008). However, recent studies have found the 93 

effectiveness of these two compounds to be decreasing as well (Cools & Fraaije, 2013, Kildea, 94 

2016).  95 
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The very common  CYP51 mutation I381V, which was initially seen to reduce DMI 96 

sensitivity broadly, was in particular seen to affect the field performances of tebuconazole 97 

(Leroux et al., 2007, Lucas et al.,  2016). More recently the CYP51 mutation S524T has 98 

emerged in some western European regions conferring reduced efficacy of the most 99 

commonly used azoles, i.e. prothiconazole and epoxiconazole (Cools & Fraaije, 2013, 100 

Buitrago et al., 2014, Leroux & Walker, 2011).  101 

In the current study the over all aim was to collect an updated dataset of the 102 

efficacy profile of the azoles for control of major wheat diseases across Europe. More 103 

specificly the aims were to: (1) Investigate the field performances of major azoles against the 104 

current Z. tritici, P. striiformis and P. triticina populations across Europe using both single 105 

azoles and azole mixtures. (2) Elucidate the interrelation of azole field performances, in vitro 106 

sensitivity of Z. tritici populations and CYP51 mutation frequencies. (3) Detect indications of 107 

developing trends across Europe. (4) Discuss the optimum available management strategies 108 

based on available data. The project is seen as a follow-up to a previous collaboration in the 109 

EuroWheat group – initiated by activities in the European Network of excellence - ENDURE 110 

(Jørgensen et al., 2014, Anon, 2009).  111 

 112 

2. Materials and method 113 

2.1 Field trial 114 

The project was carried out over the growing seasons of 2015 and 2016 at 115 

different locations across Europe, covering different climate zones and agricultural practices. 116 

A total number of 26 and 14 trials were carried out in 2015 and 2016 respectively. The trials 117 

were carried out by local scientific organisations in Poland, Germany, France, Belgium, 118 

Hungary, Ireland, the UK, Lithuania, Latvia and Denmark. Standard procedures and 119 

assessment methods were applied using a randomized plot design with a minimum plot size of 120 
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10 m
2
 and 3-4 replicates. Moderately susceptible to susceptible cultivars were chosen, which 121 

could provide good levels of attack aimed at having STB, yellow rust or brown rust as the 122 

main disease target. The fungicides were applied with local equipment varying from knapsack 123 

sprayers to self-propelled sprayers using low pressure and water volumes in the range of 150- 124 

250 l/ha. Spraying was carried out at flag leaf emergence at growth stage (BBCH GS) 37-39. 125 

In a few cases a cover spray of a multisite fungicide was also applied early in the season to 126 

keep down early levels of attack, no later than two weeks before the main treatments. 127 

Fungicides were provided by BASF and all products were tested at full and half rates as given 128 

in Table 1.  Detailed trial information is given in supplementary section (S-Tabel 1).  129 

Per cent leaf area attacked by specific diseases was assessed at regular intervals 130 

after applications following EPPO guideline (1/26 (4) (OEPP/EPPO, 2014). Focus was put on 131 

assessments carried out 30-50 days after application (DAA) at growth stage (GS) 73-75. Data 132 

from full and half rate has been presented. In case of epoxiconazole also 66% of full rate has 133 

been included. Except for one trial all trials were carried through to harvest. Grain yields were 134 

measured for each plot and yields were adjusted to 85% dry matter. Grain samples from each 135 

plot were used for dry matter and thousand grain weight (TGW) assessments.  136 

  137 
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Table 1:  Tested protocol across all sites. Fungicide doses (l/ha) and amount of active 138 

ingredient (g/ha) used per treatment. In bracket per cent of full rate (N) is stated. 139 

Trt. No.  Product  l/ha Active ingredient g/ha (% N) 

1 Untreated - - - 

2 

Opus Max 

1.5 

Epoxiconazole (EPX) 

125 (100%) 

3 1 83 (66%) 

4 0.75 62.5 (50%) 

5 
Proline 250 EC 

0.8 
Prothioconazole (PTH) 

200 (100%) 

6 0.4 100 (50%) 

7 
Caramba 90 

1 
Metconazole (MCA) 

90 (100%) 

8 0.5 45 (50%) 

9 
Folicur 250 EW 

1 
Tebuconazole (TCA) 

250 (100%) 

10 0.5 125 (50%) 

11 
Osiris 

3 epoxiconazole + metconazole 

(EPX+MCA) 

113 + 83 (182%) 

12 1.5 56 + 41 (91%) 

13 
Prosaro 250 EC 

1 tebuconazole + prothioconazole 

(TCA + PTH) 

125 + 125 

(112%) 

14 0.5 63 + 63 (56%) 

 140 

2.2 CYP51 mutation frequencies and EC50 values 141 

Leaf samples of STB were collected at GS 65-75 from all sites and forwarded for 142 

to BASF and Epilogic for further characterization.  CYP51 mutation profiling of local Z. tritici 143 

populations was carried out by pyrosequencing and qPCR by BASF (Stammler et al., 2012), 144 

and EC50 values of the four azoles were measured on single pycnidium isolates by EpiLogic in 145 

Munich using the common FRAC protocol (WWW.FRAC). Ten isolates were tested from 146 

most locations for EC50 asssessments. However in 2016 fewer isolates were tested from some 147 

sites due to problems with isolation of spores from poor samples resulting from bad weather 148 

conditions.  149 

All data were collected locally by the subcontractors and forwarded to AU-Flakkebjerg 150 

for further analysis.  151 

 152 

 153 

 154 
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2.3 Statistical analysis 155 

All data on yields were organized in ARM for statistical analysis. Individual trial 156 

data were subjected to analysis of variance, and treatment means were separated at the 95% 157 

probability level using Fishers LSD test. The LSD values presented in Table 8 were calculated 158 

in ARM using the “function summary across trials”. Disease assessments were looked at site 159 

by site and transferred to % control; following this the efficacy was ranked for each site 160 

individually and colour coded to highlight differences. Statistical analysis of % control data 161 

was carried out using RStudio version 1.0.136. LSD values presented in Table 9 were 162 

calculated by Fishers LSD test on average values across trials. One trial (15380-15) contained 163 

only one replication per treatment, which represented average values of subsamples from four 164 

replications per treatment. Thus, in order to attain four replicates for this trial in the dataset, 165 

this value was repeated four times per treatment. In certain cases outliers were removed from 166 

specific trials in order to meet the assumptions of normal distribution and homogeneity of 167 

variance (see table 9). One dataset was asin square root transformed in order to meet the test 168 

assumptions. The presented LSD value was back transformed (see table 9). Statistical analysis 169 

of CYP51 mutation frequencies was not possible since only one sample from each trial was 170 

analysed.  171 

 172 

3. Results 173 

3.1. Field performances 174 

Disease severities and treatment efficacy were highly variable across the 10 175 

countries and 40 trials involved in the project. However, general trends regarding treatment 176 

effects were observed. Only trials with more than 5% attack in untreated plots were included 177 

in the efficacy evaluations. In 25 trials across the two seasons STB developed sufficiently for a 178 

ranking of product performances. Even so, some sites gave a very clear ranking while others 179 
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showed a less clear ranking of the efficacy of the products. A summary of the efficacies is 180 

given for the three diseases in Table 2. For STB and yellow rust efficacy is given for both 1
st
 181 

and 2
nd

 leaf, where 1
st
 leaf represent a preventive effect and 2

nd
 leaf typically represents a more 182 

curative control situation. In 2015, the overall best control of STB was provided by 183 

epoxiconazole or prothioconazole used alone or the co-formulations epoxiconazole + 184 

metconazole and tebuconazole + prothioconazole. This pattern was confirmed in 2016. 185 

However, in 2016 the co-formulations had gained an edge over epoxiconazole and 186 

prothioconazole used alone. 187 

Looking at individual trial data, products performed very diversely (Table 3 & 188 

4). Metconazole gave better curative control of STB in France and Ireland providing high 189 

control (70-90%) compared with other countries (30-70%). The opposite was true of the 190 

curative control of STB by prothioconazole and epoxiconazole; the efficacy of these two 191 

actives was relatively weak (40-60%) compared with higher efficacy (60-90%) in most other 192 

trials. The same tendency was seen in both seasons although it was most pronounced in 2015.  193 

Furthermore, tebuconazole performed very well in Ireland and Belgium (ca. 70–80%), and to 194 

some extent in one French location and one British location (ca. 70 %), whereas this active 195 

performed poorly in all other countries (ca. 50%). Poland stood out due to the high control 196 

effects of all azoles against STB on leaf 1 (80-96%) except Folicur (58-72 %). In 2016, 197 

exceptionally high curative control was also achieved in Poland by all azoles (80-95%) except 198 

tebuconazole, and a similar trend was seen for Lativa and Hungary.  199 

The preventive control of single azoles was more effective than curative control 200 

on average (ca. 10% difference). However, this difference was less pronounced regarding 201 

mixed azoles. Generally, decreased control effects of azoles against STB were seen from 2015 202 

to 2016, except for tebuconazole and the mixture prothioconazole + tebuconazole (Table 2, 203 

Figure 1). As an average of all assessments a clear reduction in per cent control of STB was 204 
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seen for most products when comparing full and half rates (Table 2).   205 

Much less variation in field performances of azoles across locations was found 206 

against yellow rust and brown rust (Suplementary data). Furthermore, the products were 207 

generally much more effective in their control of yellow rust (ca. 80-90%) compared to STB 208 

(ca. 60-70%) in both 2015 and 2016. In 2016 the control of yellow rust was close to 100% in 209 

most cases. Control effects were especially high for epoxiconazole and tebuconazole but also 210 

for the two azole mixtures. Metconazole was the weakest product for control of yellow rust. 211 

The most effective treatments against brown rust were epoxiconazole and the mixture 212 

epoxiconazole+metconazole (>80%), whereas the control from prothioconazole was clearly 213 

inferior (ca. 50%).  214 

 215 

 216 

 217 

Figure 1. . Summary of average STB control from full and half rate of azoles assessed on flag 218 

leaves and 2
nd

 leaves in 21 trials carried out in 2015 and 20 trials of 2016. Control effects are 219 

summarized as average percentage reduction of attack relative to untreated plots.  220 
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Table 2. Average per cent control of septoria tritici blotch (STB), yellow rust (YR) and brown rust (BR) on flag leaves and 2
nd

 leaves in 2015 221 

and 2016. Fisher-LSD values were calculated on avereage values across trials without untreated. Raw data are presented without outliers.  222 

% Control Untr. EPX PTH MCA TCA EPX + MCA TCA + PTH 
  

Disease Year Trials Leaf - 
125 

g/ha 

83 

g/ha 

62,5 

g/ha 

200 

g/ha 

100 

g/ha 

90 

g/ha 

45 

g/ha 

250 

g/ha 

125 

g/ha 

112.5 + 

82.5 g/ha  

56 +  

41,3 g/ha 

125 + 125 

g/ha  

62,5 + 

62,5 g/ha 

LSD-

untr.   

STB 

2015 
8 1 24 71 67 63 71 54 65 50 56 46 79 71 69 54 6,9 

 
13 2 46 68 62 62 61 52 60 51 57 49 79 70 66 56 6,3 * 

2016 
10 1 38 64 65 51 69 53 57 51 57 49 74 66 74 67 8,3 

 
10 2 54 56 55 49 60 43 52 43 49 41 71 62 69 54 8,5 

 

YR 
2015 9 

1 
19 92 82 85 80 72 64 59 89 82 84 83 91 90 7,8 

 
2016 4 14 100 99 99 98 94 84 89 94 95 98 91 99 97 15,7 ** 

BR 
2015 5 

1 
31 83 78 77 54 60 80 70 72 58 86 85 71 64 10,0 *** 

2016 1 6 99 97 85 84 91 77 58 53 45 96 97 89 81 9,8 
 

* One trial (15, 2015) contains only one replicate per treatment. **Data on YR control on 1
st
 leaf, 2016 were asin square root transformed, but 223 

did not meet the assumptions of normal distribution and homogeneous variance. The HSD value is presented in this case as extrapolated from 224 

Tukey’s range test. ***Three ouliers were removed from data on BR control of 2015 (trials 8 and 9). 225 

 226 
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Table 3. Summary of STB control from full rate of azoles assessed on flag leaves in 18 trials 227 

carried out in 2015 and 2016. Control effects are summarized as percentage reduction of attack 228 

relative to untreated plots. The column “untr.” represents per cent attacks in untreated plots. 229 

Colours signify ranking of treatment effects within each trial. Green: best/high effect. Yellow: 230 

medium effect. Orange: low effect. DAA=Days after application and GS=Growth stage at 231 

assessment. 232 

% Control - Z. tritici 

Leaf 1 
- 

1,5 

l/ha 

1  

l/ha 

0,8  

l/ha 

1  

l/ha 

1  

l/ha 

3  

l/ha 

1,5  

l/ha 

1  

l/ha 

Year-Trial-Country GS DAA Untr. EPX  PTH  MCA  TCA EPX +MCA  PTH+TCA 

15-2-DNK 75 47 35,0 76 74 86 56 53 84 77 75 

15-3-DNK 75 47 13,5 57 56 72 56 46 70 52 48 

15-4-DNK 75 43 19,3 65 56 62 48 45 59 52 49 

15-8-POL 75 46 9,7 85 83 79 79 72 83 80 80 

15-10-FRA 75 41 25,9 82 69 85 84 69 95 78 84 

15-14-DEU 75 31 13,3 68 68 67 68 47 70 61 68 

15-22-IRL 85 42 54,2 80 70 72 90 89 93 88 93 

15-25-HUN 75 39 17,5 64 61 50 43 29 80 80 57 

16-1-DNK 75 42 20,8 83 81 76 67 57 91 82 80 

16-2-DNK 75 42 84,0 80 76 70 56 52 90 84 86 

16-3-FRA 75 42 90,6 7 10 8 9 17 26 8 19 

16-4-FRA 71 46 29,6 59 72 71 67 73 76 64 76 

16-5-SCT 57 30 4,3 65 76 71 41 65 76 76 82 

16-7-GRB 76 42 14,0 63 61 56 53 70 67 65 75 

16-9-DEU 73 34 23,7 36 34 61 36 32 46 36 57 

16-10-POL 76 37 12,5 94 94 94 90 58 96 92 93 

16-12-IRL 80  62 83,9 65 71 71 83 89 87 82 74 

16-13-LVA 75 49 15,6 78 59 86 65 46 87 59 84 

Avr. 2015  23,5 71 67 71 65 56 79 71 69 

Avr. 2016  38,0 64 65 69 57 57 74 66 74 
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 240 
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 241 

Table 4. Summary of STB control from full rate of azoles assessed on 2
nd

 leaves in 23 trials 242 

carried out in 2015 and 2016. Control effects are summarized as percentage reduction of attack 243 

relative to untreated plots. The column “untr.” represents per cent attacks in untreated plots. 244 

Colours signify ranking of treatment effects within each trial. Green: best/high effect. Yellow: 245 

medium effect. Orange: low effect. DAA=Days after application and GS=Growth stage at 246 

assessment. 247 

% Control - Z. tritici  

Leaf 2  
- 

1,5 

l/ha 

1  

l/ha 

0,8  

l/ha 

1  

l/ha 

1  

l/ha 

3  

l/ha 

1,5  

l/ha 

1  

l/ha 

Year-Trial-Country GS DAA Untr. EPX  PTH  MCA  TCA EPX +MCA  PTH+TCA 

15-2-DNK 75 47 72,5 76 72 79 62 55 83 76 75 

15-3-DNK 75 46 58,8 60 59 52 45 43 60 51 53 

15-4-DNK 75 43 40,0 75 61 63 47 47 71 58 56 

15-6-POL 75 58 5,3 45 35 59 62 62 69 34 50 

15-8-POL 75 46 17,5 90 87 63 56 62 91 84 65 

15-10-FRA 75 41 79,7 58 57 48 69 57 81 64 72 

15-15-DEU 75 37 30,0 80 33 93 77 50 87 63 73 

15-20-GBR 72 40 55,0 83 83 82 83 75 73 89 67 

15-22-IRL 85 42 74,9 60 25 38 84 69 86 81 77 

15-23-BEL 87 50 35,5 28 46 63 46 72 85 77 74 

15-24-BEL 70 42 28,3 56 38 70 57 58 64 51 66 

15-25-HUN 75 39 45,0 83 83 56 47 11 89 83 58 

15-26-HUN 75 39 50,0 72 72 60 67 70 87 82 75 

16-1-DNK 75 42 42,0 88 87 79 68 57 92 86 81 

16-2-DNK 75 42 97,2 23 21 21 15 18 65 39 51 

16-3-FRA 75 42 94,4 10 9 15 28 31 50 15 35 

16-4-FRA 71 46 94,8 39 39 43 49 42 70 43 53 

16-5-SCT 67 30 6,5 23 38 46 4 23 27 54 65 

16-7-GRB 76 42 47,3 52 36 34 42 44 63 47 58 

16-9-DEU 73 34 49,4 62 50 68 50 37 73 61 72 

16-10-POL 74 29 14,9 95 87 95 82 52 95 85 84 

16-12-IRL 80   62 87,8 48 64 69 78 81 70 79 77 

16-13-LVA 69 29 9,1 86 87 90 91 82 91 87 96 

Avr. 2015  45,6 68 62 61 60 57 79 70 66 

Avr. 2016  54,4 56 55 60 52 49 71 62 69 

  248 

 249 

 250 

  251 
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3.2 Yields 253 

Yield levels and yield increases varied greatly across locations where most sites 254 

still provided yields above 7 tonnes per ha in untreated plots. Most trials gave positive and 255 

significant yield increases from treatments (Table 4).  Higher yield increases were achieved 256 

by treatments in trials dominated by yellow rust (13-42%), than those dominated by STB (7-257 

17%) or brown rust (5-18%).  258 

Overall, full rates of prothioconazole and epoxiconazole as well as the mixtures 259 

tebuconazole + prothioconazole and epoxiconazole + metconazole gave the highest yield 260 

increases of 17-20%, whereas metconazole and tebuconazole treatments resulted in the lowest 261 

yield increases of 14% and 16% respectively. In 2015 prothioconazole and epoxiconazole 262 

yielded similarly to the azole mixtures, however in 2016 all single azoles provided lower and 263 

similar yield increases of around ca. 10% in STB dominated trials, whereas the azole mixtures 264 

epoxiconazole+metconazole and prothioconazole+tebuconazole both out performed single 265 

azoles giving yield increases of ca.15%.  266 

In line with variations seen for efficacy also yield data from STB dominated 267 

trials varied significantly. The Irish trials and one French trial had relatively high yield 268 

increases from tebuconazole, whereas this active gave among the lowest yield increases at the 269 

other locations. Denmark and Germany had similar yield responses from treatments with 270 

epoxiconazole and prothioconazole in line with the azole mixtures. Poland and Hungary were 271 

distinguished by the fact that the single azoles epoxiconazole and/or prothioconazole gave 272 

higher yield increases than the mixtures in 2015. In 2016, however the picture was less varied 273 

among locations, here nearly all locations had clearly higher increases from azole mixtures 274 

than from single azoles. 275 

Yield increases in the 10 yellow rust dominated trials (7 trials in 2015 and 3 276 

trials in 2016) were clearly higher than in other trials reflecting a general excellent control 277 
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from azoles against this disease. In 2015 and 2016 epoxinazole increased yields by 39% and 278 

19% respectively, which was comparable to the yield increases from the two azole mixtures, 279 

which gave increases between 22 and 42% in the two seasons.  280 

Yield increases from the five trials dominated by brown rust provided quite 281 

similar yield responses with the exception of prothioconazole, which provided relatively poor 282 

brown rust control. Together with the azole mixture epoxiconazole + metconazole, 283 

epoxiconazole provided the best yield responses reflecting the best control.    284 



 1 

Table 5. Average yield and yield increase (dt/ha) of septoria tritici blotch (STB), yellow rust (YR) and brown rust (BR) dominated trials. 285 

Average and relative yields of 26 trials of 2015, 13 trials of 2016 and 39 trials from 2015-2016 are presented. Fisher-LSD values were 286 

calculated without untreated. 287 

Yield, 2015-2016 Untr. EPX  PTH  MCA  TCA EPX+MCA  TCA+PTH   

Disease   Year Trials dt/ha 
125 

g/ha 

83 

g/ha 

62,5 

g/ha 

200 

g/ha 

100  

g/ha 

90  

g/ha 

45  

g/ha 

250 

g/ha 

125  

g/ha 

112.5 + 

82.5 g/ha  

56 +  

41,3 g/ha 

125 + 

125 g/ha  

62,5 + 

62,5 g/ha 

LSD - 

untr. 

STB  (dt/ha) 
2015 15 83,6 + 9,2 + 7,6 + 7,1 + 10,1 + 7,6 + 7,3 + 5,8 + 7,0 + 5,2 + 9,7 + 8,7 + 10,4 + 8,0 1,3 

2016 9 70,1 + 7,3 + 7,2 + 5,0 + 7,3 + 5,4 + 6,5 + 4,9 + 6,8 + 5,6 + 11,5 + 8,9 + 10,0 + 6,3 1,3 

YR  (dt/ha) 
2015 7 74,0 + 23,6 + 22,5 + 21,6 + 19,6 + 17,1 + 16,8 + 14,7 + 21,9 + 18,9 + 21,8 + 20,2 + 25,5 + 20,1 2,8 

2016 3 73,1 + 13,7 + 13,0 + 12,8 + 13,2 + 10,4 + 11,8 + 9,3 + 12,7 + 9,6 + 15,8 + 14,7 + 16,4 + 13,2 2,3 

BR  (dt/ha) 
2015 4 83,8 + 13,1 + 12,0 + 9,6 + 5,9 + 4,9 + 9,1 + 6,5 + 9,2 + 9,7 + 12,5 + 10,1 + 8,3 + 6,3 3,6 

2016 1 66,5 + 4,3 + 3,8 + 3,5 + 4,7 + 4,5 + 4,8 + 3,9 + 3,4 + 1,8 + 5,8 + 5,0 + 4,8 + 4,5 3,0 

all trials  
(dt/ha) 

2015  26  
81,0 + 13,7 + 12,3 + 11,4 + 12,1 + 9,8 + 10,2 + 8,3 + 11,4 + 9,7 + 13,5 + 12,1 + 14,2 + 11,1 1,3 

 (rel. Y) 100,0 119,1 117,7 116,8 117,5 114,0 114,7 112,0 116,2 114,1 118,9 117,3 120,2 116,0 1,8 

all trials 
 (dt/ha) 

2016  13  
70,6 + 8,6 + 8,3 + 6,7 + 8,5 + 6,5 + 7,6 + 5,9 + 8,0 + 6,2 + 12,1 + 9,9 + 11,1 + 7,9 1,1 

 (rel. Y) 100,0 114,8 113,9 111,7 114,7 111,2 113,0 110,2 114,4 111,2 120,7 116,6 118,6 113,7 1,8 

all trials 
 (dt/ha) 2015-

2016 
39 

77,6 + 12,2 + 11,0 + 9,9 + 11,0 + 8,8 + 9,3 + 7,5 + 10,5 + 8,6 + 13,1 + 11,4 + 13,2 + 10,1 0,9 

(rel. Y) 100,0 117,7 116,4 115,1 116,6 113,1 114,2 111,4 115,6 113,1 119,5 117,1 119,7 115,2 1,3 
 288 

289 
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3.3 Mutation frequencies and EC50 values in populations of Z. tritici 290 

The analyses of the different Z.tritici populations revealed variable distributions 291 

of CYP51 mutations. Out of the 6 investigated CYP51 mutations, V381V was the most 292 

predominat mutation detected in about 90% of all investigated populations (Table 6). In 2015, 293 

the least frequently detected mutations were V136C and S524T. By 2016, the frequency of 294 

both V136C and S524T had increased on average, while the frequency of A379G had 295 

decreased on average.  296 

V136C was detected with a frequency of 0-34% in 2015 and 0-45% in 2016, with the 297 

highest frequency in the Central UK in 2015 and in Southern France in 2016. In both years, 298 

low frequencies of S524T (below 10%) were detected in all countries except the UK (ca. 30%) 299 

and Ireland (ca. 50%).  300 

Frequencies of mutation A379G were around 10-30% at all locations except 301 

Belgium (0%), the Central UK (0%) and Hungary, where frequencies were around twice as 302 

high as in other locations in 2015. In 2016, the frequency of this mutation in Hungary was 303 

similar to that of other locations. The two mutations D134G and V136A were detected at 304 

comparable frequencies in the medium range at most locations in 2015. The exceptions were 305 

South Poland and Hungary with 0%. Belgium was also an exception, since high frequencies of 306 

above 60 % were detected for both mutations. Ireland also had high frequency of V136A 307 

(73%). In 2016, Latvia and Hungary had exceptionally low frequencies of these two 308 

mutations, while northern France had high frequencies (above 60%) and Ireland, one Danish 309 

location and two British locations had high frequencies of V136A (above 50%). A clear 310 

division could be seen across Europe from west to east regarding all mutation frequencies 311 

except for those of I381V, which was highly prolific at all locations (Figure 2 and 3). 312 

Frequencies of other mutations decreased from west to east except those of A379G for which 313 

the opposite was true.  Furthermore, the data indicated that average frequencies of all 314 
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mutations except A379G had increased during the trial period. Specific maps on CYP51 315 

mutations can be found on WWW.eurowheat.au.dk and examples from 2 mutations are 316 

given in Figure 3. 317 

EC50 values for the four azoles showed similarly major variation across the 318 

different localities. In both 2015 and 2016 Ireland and the UK had relatively high values for all 319 

4 azoles although Ireland had moderate EC50 values for tebuconazole in 2015 and also low 320 

values in 2016, which is in accordance with the relatively better performances from this 321 

product.  In the northern part of France data from both 2015 and 2016 showed good sensitivity 322 

to both metconazole and tebuconazole. This was less pronounced in Southern France when 323 

assessed in 2016. Belgium similarly stood out by having the lowest EC50 values for both 324 

metconazole and tebuconazole among all the locations in 2015. 325 

Hungary had low EC50 values for all azoles in both seasons, with tebuconazole having 326 

the highest value in line with results also found in Latvia in 2016. In Poland a similar pattern 327 

was revealed, but Z. tritici populations were generally about half as sensitive here as in 328 

Hungary. Denmark and Germany had overall similarly intermediate EC50 values in 2015. No 329 

data exist from Germany in 2016, as the pycnidia were empty for spores when incubated. In 330 

2016 Irish and UK isolates had EC50 values beyond one for epoxiconazole, and also for 331 

prothioconazole the values were at the higher scale.    332 

  333 

http://www.eurowheat.au.dk/
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Table 6. Frequency of CYP51 mutations (%) in 2015 and 2016 based on leaf samples from 334 

untreated plots collected at GS 65-75 and EC50 values for 4 main azoles.  Green: no 335 

mutation/low EC50. Yellow: low frequency/medium EC50. Orange: Medium 336 

frequency/medium to high EC50. Red: High frequency/high EC50. NA= no data available. 337 

  Frequencies of mutations (%) in 2015   EC50 (mg/l) 

Country Trial I381V V136A D134G A379G V136C S524T 
  

EPX MCA TCA 
PTH-

desthio  

DNK, E  2 91 28 17 30 0 2   0,15 0,17 4,67 0,03 

DNK, E 3 89 43 37 14 21 1   0,28 0,13 2,11 0,04 

DNK, S 4 95 52 47 19 0 1   0,29 0,13 1,26 0,07 

DEU, N 12 98 24 22 16 18 8   0,45 0,26 2,84 0,09 

DEU, S 14 98 29 22 34 0 8   0,21 0,17 3,86 0,03 

FRA, M 10 89 47 40 10 0 3   0,16 0,07 1,76 0,04 

GRB, N 19 100 48 33 16 14 34   0,99 0,41 2,74 0,23 

GRB, S 21 97 35 15 14 20 30   0,55 0,53 5,97 0,1 

GRB, M 16 NA NA NA NA NA NA   0,66 0,53 4,75 0,14 

GRB, M 20 100 38 33 0 34 29   0,57 0,39 5,43 0,11 

IRL, E 22 88 73 33 27 22 51   0,82 0,46 2,37 0,18 

BEL, W 24 94 64 62 0 28 6   0,31 0,1 0,37 0,09 

POL, MW 6 96 44 39 28 22 4   NA NA NA NA 

POL, S 8 94 10 0 13 11 2   0,13 0,08 3,84 0,02 

HUN, SE 25 76 0 0 50 0 0   0,05 0,05 1,61 0,01 

HUN, SE 26 95 0 0 73 0 0   0,05 0,06 2,82 0,01 

Avr.   93,3 35,7 26,7 22,9 12,7 11,9   0,4 0,2 3,1 0,1 

 338 
    Frequencies of mutations (%) in 2016    EC50 (mg/l)  

Country Trial I381V V136A D134G A379G V136C S524T   EPX MCA TCA 
PTH-

desthio  

DNK, E  1 92 33 21 33 12 4 
 

0,76 0,85 4,58 0,01 

DNK, E  2 92 54 49 19 25 5 
 

0,29 0,21 2,71 0,08 

FRA, N 3 91 68 66 0 30 3 
 

0,34 0,10 0,61 0,09 

FRA, S 4 78 38 15 28 45 9 
 

0,16 0,14 3,29 0,05 

DEU, SE 9 94 37 28 20 16 7 
 

NA NA NA NA 

GRB, E 6 100 46 39 17 31 25 
 

1,01 0,79 4,63 0,31 

GRB, N 5 95 52 25 14 28 45 
 

1,01 0,68 7,71 0,13 

GRB, M 7 99 57 47 22 26 20 
 

0,96 0,64 4,20 0,16 

IRL, E 12 95 86 33 14 14 56 
 

1,17 0,60 0,99 0,26 

POL, S 10/11 94 20 15 14 15 3 
 

0,65 0,15 3,50 0,17 

LVA, M 13 99 11 0 21 0 0 
 

0,10 0,09 4,23 0,02 

HUN, MN 14 95 0 0 34 0 0 
 

0,08 0,08 1,25 0,01 

Avr.   93,7 41,8 28,2 19,7 20,2 14,8   0,6 0,4 3,4 0,1 

 339 

 340 



 4 

Figure 2. Mutation frequencies across Europe (%) in 2015 and 2016. Frequencies in the 341 

interval 0-5 % are green, 6-20 % yellow, 21-50 % orange and 51-100 % red. Data from both 342 

years are included for comparable trial locations. The year is indicated at the side of individual 343 

heat maps. Danish data is presented as average frequencies in three trials in 2015 and two 344 

trials in 2016. Data from Hungary represents average frequencies of two trials in 2015 ad one 345 

trial in 2016.  346 
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Figure 3. Frequency of two CYP51 mutations (%) A) I381V B) S524T in 2016. Data is based 351 

on leaf samples from untreated plots collected at GS 65-75. Examples of data presented on the 352 

www.EUROWHEAT.AU.DK  platform.  353 

 354 

4. Discussion 355 

The DMI group of fungicides has been authorized for control of leaf diseases 356 

since the late 1970s, and these fungicides are still regarded as the most important option for 357 

control of leaf diseases of wheat. DMIs provide significant control of three of the most 358 

damaging diseases in wheat; yellow rust, brown rust and STB.  Today most control strategies 359 

in Europe still rely upon the continued effectiveness of DMIs, which still account for 360 

approximately 50% of the fungicide input in European wheat production (McDougall, 2015). 361 

In the present study the field performances of four of the most used azoles were tested across 362 

Europe for their field efficacy. Data collected from 26 trials carried out in 2015 and 2016 363 

confirmed that azoles tested at full rates still provide significant effects (typically 50-70%) on 364 

STB, but major variations in field performances were found across Europe partly related to 365 

A)

 

B)

 

http://www.eurowheat.au.dk/
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changes having occurred in the sensitivity of Z.tritici. Reduction in field control from single 366 

azoles have been seen in recent years (AHDB, 2016, Kildea, 2016), and a similar trend was 367 

seen looking at data from 2015 and 2016 in this project.  Mixtures of azoles proved to provide 368 

better and more stable control across all countries.  Part of the better control from mixtures can 369 

be seen as a dose effect particularly from the full rate of epoxiconazole + metconazole, which 370 

contain 184% active in total, but even at equivalent rates the mixtures out performed the 371 

performace of the single azoles. A dose effect was seen for all tested solutions when full and 372 

half rates were compared, and differences were in most situations significantly different.  373 

Similarly a lower control was seen on the 2
nd

 leaf representing a more curative control 374 

compared with control on 1
st
 leaf representing a preventive control. These later results are also 375 

in accordance with results from other investigations from the UK and Ireland (ADHB, 2016).    376 

The performances of azoles against STB varied significantly across Europe. 377 

Variability was also identified in patterns of CYP51 mutation profiles and in isolate sensitivity 378 

to azoles measured as EC50 values in in vitro tests. Overall, epoxiconazole and 379 

prothioconazole together with the co-formulations gave the best control of STB, with the co-380 

formulations showing higher control (5-15 % point better) than the two single azoles in 2016. 381 

The overall effect of metconazole and tebuconazole was seen as inferior against STB, 382 

allthough not consistent for all countries.   383 

A clear pattern could be seen across Europe of increasing mutation frequencies 384 

from North/-West to South/-East, with the two exceptions of I381V and A379G. Brunner et al. 385 

(Brunner et al., 2008) proposed that resistance inducing CYP51 mutations emerged locally 386 

perhaps in the UK or Denmark, from where it spread eastward due to the prevailing wind 387 

direction from west to east. The gradient across Europe could support this diverse pattern of 388 

CYP51 mutations; however it can not be ruled out that the variable CYP51 profiles of Z. tritici 389 
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populations across Europe could also be a result of variation in disease intensity and the 390 

intensity and diversity of fungicide use patterns.  391 

Results from Germany and Denmark having high to moderate field effects were 392 

in line with this overall average pattern from the whole investigation. Furthermore these 393 

countries/locations had quite similar mutation frequency profiles and intermediate EC50 394 

values. Ireland and the UK had unique profiles with high frequencies of S524T and the highest 395 

EC50 values for all four azoles. This confirms other findings in which the mutation S524T in 396 

combination with several other mutations (V137F or V136A) has been found to reduce the 397 

sensitivity to commonly used azoles like prothioconazole and epoxiconazole (Leroux et al., 398 

2007, Fraaije et al., 2007, Leroux & Walker, 2011).  399 

Unlike in other locations, metconazole gave high control effects in France, Ireland and 400 

Belgium. In the case of France and Belgium these findings were supported by low EC50 values 401 

for this active, but the same could not be said for Ireland.  402 

Belgium had high proportions of D134G and good performance from 403 

tebuconazole, which confirms other findings where haplotypes carrying D134G have been 404 

found to be more sensitive to tebuconazole. One of the French sites similarly had very low 405 

EC50 for tebuconazole, which again supports the relatively good control from tebuconazole in 406 

the French trials.   407 

Hungary differed distinctly from all other locations as this country only had few 408 

mutations (I381V and A379C) and low EC50 values for all four azoles indicating a more 409 

sensitive population, which again reflects a less intensive use of azoles in this country. 410 

However, control effects of azoles against STB were not as high at this location as could be 411 

expected from the mutation profile and low EC50 values (29-64% for the single azoles in 412 

2015). Ireland represented another example of low correlation between mutation freq 413 
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uencies/EC50 values and field performances of azoles. Here most azoles had quite high control 414 

effects against STB (65-90% for the single azoles) in spite of the high frequencies of all six 415 

investigated mutations and high EC50 values of azoles, with the exception of tebuconazole in 416 

2016. Similar examples of poor links between field effects, mutation frequencies and in vitro 417 

sensitivity of local Z. tritici populations were seen in other studies (Stammler et al., 2008). 418 

These findings suggest that other factors such as timing of applications and weather conditions 419 

might under certain circumstances also be very important for the level of STB control 420 

achieved (Strobel et al., 2016)   421 

Over the past 15 years a significant number of mutations in the CYP51 gene, which 422 

confer resistance against DMIs, have emerged and been documented (Cools & Fraaije, 2013). 423 

The mutations in the Z. tritici populations occur in combinations and the mutations described 424 

in this paper reflect the overall dominance of certain mutations but do not indicate how 425 

specific haplotypes are composed. Homology studies (Mullins JGL et al., 2011) and 426 

heterologous expression of mutated Z. tritici CYP51 genes (Cools et al., 2010) have verified 427 

that it is often specific combinations of alterations, which play a role on the sensitivity of 428 

specific DMIs, rather than the individual alterations. This again can explain that there is not 429 

always a clear link at specific sites between the CYP51 genes occuring and the efficacy seen 430 

from specific azoles. Even so several of the specific CYP51 genotypes are known to have 431 

variable impacts on particular DMIs (Cools & Fraaije, 2013, Leroux & Walker, 2011), for 432 

example, tebuconazole positively selects for the I381V mutation but selects negatively for the 433 

V136A mutation.  434 

The Western European population of Z. tritici does now widely contain the CYP51 435 

mutations V136A and D134G, which have been selected following widespread use of 436 

epoxiconazole and prothioconazole. Isolates with these mutations remain sensitive to 437 

difenoconazole and tebuconazole (Leroux & Walker, 2011). Studies have shown that different 438 
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cross resistance patterns exist for several DMIs; one group consists of cyproconazole, 439 

epoxiconazole and prothioconazole and another group consists of difenoconazole, 440 

tebuconazole and metconazole (Buitrago et al., 2014). These findings point towards the 441 

direction of applying differentially selecting azoles as possible anti-resistance tactics, while 442 

maintaining STB control at an acceptable level (Cools & Fraaije, 2008).  The control benefit 443 

from using azole mixtures has also been documented in this investigation, where mixtures 444 

particularly in 2016 outperformed single azoles.  445 

The data in this study indicate a trend of decreasing performances against STB from all 446 

single azoles going from 2015 to 2016, except for tebuconazole where performance seems to 447 

have improved compared with historic data (Clark, 2006). The performances of single azoles 448 

decreased more than those of the mixtures. The two included azole mixtures gave more stable 449 

STB control assessed both curatively and preventatively, which also led to higher yield 450 

increases than the individual azoles used alone. This was seen in both years but was more 451 

pronounced in 2016 than in 2015. During this period, an overall shift towards higher mutation 452 

frequencies was also seen. In 2016 the UK and Irish locations also reached EC50 values for 453 

epoxicoanzole above one ppm, whereas locations in Hungary and Latvia still showed very low 454 

EC50 values (0.01 ppm). Since mutation frequencies increased generally, it is most likely that 455 

mixed azoles had an increased advantage as a result of their broader control of the different 456 

haplotypes. A study by Heick et al. (Heick et al., 2017) similarly showed that frequencies of 457 

CYP51 mutations D134G, V136A/C and 524T increased in Danish and Swedish Z. tritici 458 

populations from 2015 to 2016. It was also shown in this study, that mixtures of azoles 459 

provide an important measure which can help to reduce the selection for specific CYP51 460 

mutations in the Z. tritici populations (Heick et al. 2017). Furthermore, an Irish study (Dooley 461 

et al., 2016b) also found that the mixture epoxiconazole + metconazole more effectively 462 

controlled STB than any of the azoles used alone.  One drawback could be that azole mixtures 463 
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will increase the selection for new combined CYP51 mutations, which can be hard to control 464 

from all known azoles currently on the market.  In fact isolates carrying combinations of 465 

alterations conferring lab resistance to all the most widely used azoles have emerged (Cools et 466 

al., 2011), raising concerns that combining azoles might not be a sustainable development. 467 

However, data is so far inconclusive and further work in this area need to be done. It is also 468 

important to note that in commercial situations azoles and azole mixtures will generally be 469 

used in combination with different MoA for the control of a range of diseases and for 470 

resistance management purposes.   471 

Yellow rust and brown rust were the main diseases in 10 trials in 2015 and 5 472 

trials in 2016. Relatively little variation across countries was seen regarding the performances 473 

of azoles against these diseases compared with variation in control of STB. This very likely 474 

reflects that no major changes in sensitivity to rust diseases to DMIs have been detected over 475 

the years. In accordance with earlier investigation DMIs are well known for their good control 476 

of rust diseases even when applied at low rates (Jørgensen & Nielsen, 1994). Epoxiconazole 477 

and tebuconazole gave consistently high control of both rust diseases. Prothioconazole was 478 

slightly inferior while metconazole generally provided least control. Overall, the highest yield 479 

responses were measured in trials with significant attacks of yellow rust.  The generally high 480 

control of rust diseases is in line with other studies showing that only minor levels of 481 

resistance to DMI have developed in the rust fungi; levels which are only seen to have no or  482 

limited effect on field performances (Stammler et al., 2009). Although increasing problems 483 

with yellow rust been seen in recent years the availability of wheat cultivars with high levels 484 

of resistance against yellow rust and brown rust still plays a major role in the low prevalence 485 

and severity of these diseases (Singh et al., 2016, Hovmøller et al., 2016). This generally helps 486 

to reduce the need to spray against these diseases. Although fungicides resistance development 487 

can not be ruled out in rust populations (Oliver, 2014), so far a relatively lower selection 488 
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pressure in the rust populations has helped to maintain a high proportion of azole-sensitivity in 489 

the rust populations.  490 

In summary the presented data confirm that azoles still play an important role in 491 

disease management in wheat; this includes control of both rust disease and STB.  Although 492 

cross resistance is described for this group of fungicides, the data presented verify a major 493 

variation in the efficacy profile of single azoles for control of STB across Europe. The trial 494 

results showed a clear benefit from mixing DMIs as a means of stabilizing STB control. The 495 

future control of STB relies heavily on having a selection of azoles available to apply azole 496 

mixtures, but azoles are also important as mixing partners for other fungicides with different 497 

modes of action, like SDHIs. Both of these two mixing strategies are important in order to 498 

achieve good and reliable disease control as well as options for applying an anti-resistance 499 

strategy. Although fungicides are essential for disease management; a sustainable control 500 

strategy also relies on farmers growing the most resistant cultivars to minimize the need for 501 

chemical control.   502 
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 595 

 596 

 597 

HIGHLIGHTS 598 
- Azoles perform diversely against Septoria tritici blotch across Europe.  599 

-  Wester European countries tend to have higher CYP51 mutation frequencies, higher EC50 600 

values, and lower field performances of azoles than Easter European countries.  601 

- Azole mixtures are more effective against Septoria tritici bloch than azoles used alone. 602 

- CYP51 mutation frequencies and EC50 values have increased and triazole performances 603 

have decreased across Europe on average from 2015 to 2016.   604 

-Azoles provide high control of yellow rust and brown rust. Metconazole is inferior on yellow 605 

rust and prothioconazole on brown rust. 606 

-Best azoles increase yields by 17-20% from a single treatment.  607 

 608 

  609 
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Supplementary data:  610 

Table S2: Summary of yellow rust control from full rate of azoles assessed on 1st leaf in 13 611 

trials carried out in 2015 and 2016. Control effects are summarized as percentage reduction of 612 

attack relative to untreated plots. The column “untr.” represents attacks in untreated plots. 613 

Colours signify ranking of treatment effects within trials. Green: high effect. Yellow: medium 614 

effect. Orange: low effect. DAA=Days after application and GS=Growth stage at assessment. 615 

% Control of P. striiformis 

 Leaf 1 - 2015-16 
- 

1,5 

l/ha 

1  

l/ha 

0,8  

l/ha 

1  

l/ha 

1  

l/ha 

3  

l/ha 

1,5  

l/ha 

1  

l/ha 

Year-Trial-

Contry 
GS DAA Untr. EPX PTH  MCA  TCA  EPX+MCA  PTH+TCA 

15-1-DNK 65 35 53,8 97 94 84 70 95 95 91 90 

15-11-DEU 71 36 5,4 96 39 70 35 100 76 70 96 

15-12-DEU 69 37 8,3 89 88 90 63 93 93 83 98 

15-13-DEU 69 37 8,5 89 94 86 80 97 90 88 95 

15-17-GBR 65 33 12,5 74 48 36 42 68 54 52 64 

15-19-GBR 59 28 19,8 93 92 85 82 93 90 87 96 

15-23-BEL 65 34 28,5 95 91 92 88 96 91 95 93 

15-25-HUN 75 39 7,5 99 96 92 66 76 73 80 96 

15-26-HUN 83-85 49 22,5 97 98 82 48 83 89 100 88 

16-1-DNK 75 42 16,0 100 100 95 86 100 100 100 99 

16-5-SCT 64-69 30 8,3 100 100 100 58 82 100 70 100 

16-6-GBR 73 36 28,8 100 100 98 100 100 100 100 100 

16-9-DEU 55 22 2,9 99 94 97 91 96 93 95 98 

Average 2015 18,5 92,2 82,2 79,8 63,8 89,0 83,5 82,9 90,7 

Average 2016 14,0 99,7 98,6 97,5 83,7 94,4 98,2 91,2 99,4 

Average Total 17,1 94,5 87,3 85,2 69,9 90,7 88,0 85,4 93,3 

  616 

 617 

 618 

 619 

 620 

 621 

 622 

 623 

 624 
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Table S3: Summary of brown rust control from full rate of azoles assessed on 1st leaf in 6 625 

trials carried out in 2015 and 2016. Control effects are summarized as percentage reduction of 626 

attack relative to untreated plots. The column “untr.” represents attacks in untreated plots. 627 

Colours signify ranking of treatment effects for each trial. Green: high/best effect. Yellow: 628 

medium effect. Orange: low effect. DAA=Days after application and GS=Growth stage at 629 

assessment. 630 

% Control of P. triticina  

Leaf 1 - 2015/16  
- 

1,5 

l/ha 

1  

l/ha 

0,8  

l/ha 

1  

l/ha 

1  

l/ha 

3  

l/ha 

1,5  

l/ha 

1  

l/ha 

Year-Trial-

Contry 
GS DAA Untr. EPX PTH  MCA  TCA  EPX+MCA  PTH+TCA 

15-8-POL 75 46 3,0 87 80 58 82 62 87 77 68 

15-9-POL 75 46 5,3 87 79 49 82 58 87 81 63 

15-18-GBR 75 43 48,0 97 98 35 79 88 94 98 85 

15-21-GBR 75 42 62,8 93 80 55 80 79 89 89 72 

15-26-HUN 83-85 49 35,0 54 54 73 79 75 75 82 68 

16-11-POL 75-77 39 6,2 99 97 84 77 53 96 97 89 

Average 2015 30,8 83,5 78,2 54,0 80,4 72,4 86,3 85,4 71,2 

Avrerage Total 26,7 86,1 81,3 59,0 79,8 69,1 87,9 87,3 74,1 

 631 

 632 

 633 

 634 

 635 

 636 

 637 

 638 

 639 

 640 

 641 

 642 

 643 

 644 

 645 

 646 

 647 

 648 

 649 

 650 

 651 

 652 
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Table S1. Detailed experimental background information on all trials in 2015. Abbreviations: “ Rep.”: replications; “Lat.”: lattitude in 

decimal degrees; “Long.”: Longitude in decimal degrees; “App. date”: application date; “App. GS”; “App. equip.”: application equipment.  

Trial 

2015 

Target 

disease 
Country Location Variety 

Harvest 

plot area 

(m2) 
Rep. Lat. Long. 

Harvest 

date 

Sowing 

date 

App. 

date 

App. 

GS 
Precrop Nozzle type 

Pressure 

(bar) 

Volume 

water 

(l/ha) 

1 YR Denmark Flakkebjerg Substance 22,50 4 55,33 11,39 17-08-15 29-09-14 20-05-15 33-37 OSR teejet9504 2,4 150 

2 STB Denmark Flakkebjerg Hereford 22,50 4 55,32 11,39 14-08-15 05-09-14 20-05-15 37-39 OSR teejet9504 2,4 150 

3 BR Denmark Flakkebjerg Mariboss 22,50 4 55,32 11,37 19-08-15 09-09-14 22-05-15  37-39 OSR teejet9504 2,4 150 

4 BR Denmark Holeby Mariboss 18,50 4 54,71 11,54 22-08-15 20-09-14 22-05-15  37-39 OSR       

5 BR Lithuania Dotnuva Magnifik 20,00 4 55,41 23,87 11-08-15 18-09-14 08-06-15   Pea HAR ISOLD-02-110 2,5 300 

6 STB Poland Nagradowice Astoria 12,00 4 52,32 17,15 15-07-15 15.09.14 29-04-15 37 OSR TEEJet XR 11003 2,5 200 

7 YR Poland Nagradowice Astoria 12,00 4 52,32 17,16 15-07-15 15.09.14 29-04-15 37 OSR TEEJet XR 11003 2,5 200 

8 STB Poland 
Łany 

Wielkie 
Zyta 15,00 4 50,28 18,56 04-08-15 05.10.14 11-05-15 37 OSR TEEJet XR 11003 0,2 300 

9 BR Poland 
Łany 

Wielkie 
Turnia 15,00 4 50,28 18,55 03-08-15 05.10.14 11-05-15 37 OSR TEEJet XR 11003 0,2 300 

10 STB France Boigneville Pakito 12,25 3 48,34 2,37 17-07-15 15-10-14 07-05-15 39 Horsebean 
LECHLER ; verte Cal. 

015 
2.8  218 

11 STB Germany Sickte JB Asano 30,00 4 52,08 10,65 03-08-15 14-10-14 13-05-15 37 OSR ID 120 02 4,0 300 

12 YR Germany Lafferde JB Asano 30,00 4 52,23 10,24 04-08-15 08-10-14 11-05-15 37 W wheat ID 120 02 4,0 300 

13 BR Germany Evensen  JB Asano 30,00 4 52,58 9,53 06-08-15   11-05-15 37 W wheat ID 120 02 4,0 300 

14 STB Germany 
Fraunberg 

Bavaria 
JB Asano 18,00 4 48,35 11,97 22-07-15 13-10-14 18-05-15 41 Clover AW 11002 2,5 200 

15 YR Germany 
Weihensteph

an Bavaria 
JB Asano 13,13 4* 48,40 11,72 06-08-15 10-10-14 18-05-15   Horsebean AIR-MIX 11003  2,5 300 

16 STB UK Terrington Santiago 40,00 4 52,67 0,29 10-09-15 30-11-14 21-05-15 39 OSR F02/110 2 200 

17 YR UK Terrington Kielder 40,00 4 52,79 0,28 29-08-15 26-11-14 14-05-15 37 OSR F02/110 2 200 

18 BR UK Terrington Crusoe 40,00 4 52,79 0,28 29-08-15 26-11-14 28-05-15 43 OSR F02/110 2 200 

19 STB UK 
Berwick 

upon Tweed 
Solstice 20,40 4 55,67 -2,03 06-09-15 22-09-14 19-05-15 Mix OSR FLAFAN                                             3 200 

 

 

 



 17 

Trial 

2015 

Target 

disease 
Country Location Variety 

Harvest 

plot area 

(m2) 

Rep. Lat. Long. 
Harvest 

date 

Sowing 

date 

App. 

date 

App. 

GS 
Precrop Nozzle type 

Pressure 

(bar) 

Volume 

water 

(l/ha) 

20 YR UK Caythorpe Cordiale 20,40 4 53,07 -0,55 24-08-15 02-10-14 14-05-15 39 S barley FLAFAN                                             3 200 

21 BR UK Wye 
KWS 

Santiago 
18,00 4 51,25 -1,25 08-08-15 20-10-14 26-05-15 39 S beans FLAFAN                                             1,4 204 

22 STB Ireland Carlow Cordiale 23,00 4 52,86 -6,91 17-08-15 01-10-14 22-05-15 39 W Oats Teejet 110 03 2 220 

23 YR Belgium Donmartin JB Asano 19,00 4 50,62 5,36 03.08.15 02-10-14 13-05-15 39 Potato                    Teejet HR 110 1.6  200 

24 BR Belgium Braffe KWS Ozon 19,00 4 50,54 3,57 06-08-15 23-10-14 12-05-15 39 Potato                     Teejet HR 110 1.6  200 

25 STB Hungary Szeged GK Körös 10,00 4 46,29 20,10 07-07-15 08-10-14 23-04-15 37-39 Pea  Lechler "IS 80-04"  3,5 200 

26 BR Hungary Szeged GK Petur                       10,00 4 46,29 20,10 07-07-15 08-10-14 23-04-15 37-39 Pea  Lechler "IS 80-04"  3,5 200 

*Yield data has 4 replications, but disease severity data consists of one number per treatment representing an average of subsamples from all replication per treatment. 
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Table S2. Detailed experimental background information on all trials in 2016. Abbreviations: “ Rep.”: replications; “Lat.”: lattitude in 

decimal degrees; “Long.”: Longitude in decimal degrees; “App. date”: application date; “App. GS”; “App. equip.”: application equipment.  

Trial 

2016 

Target 

path. 
Country Location Variety 

Harvest 

plot area  

(m²) 

Rep. Lat. Long. 
Harvest 

date 

Sowing 

date 

App. 

date 

App. 

GS 
Precrop Nozzle type 

Pressure 

(BAR) 

 Volume 

water 

(l/ha) 

1 YR Denmark Flakkebjerg Ambition 22,5 4 55,32 11,39 11-08-16 15-09-15 23-05-16 37 OSR Minidrift 2,4 200 

2 STB Denmark Horsens Hereford 18,1 3 55,86 9,76 17-08-16 22-09-15 26-05-16 37 W OSR Flat fan 1,7 200 

3 STB France Aubigny Selekt 11,6 3 47,40 2,46 26-07-16 30-09-15 09-05-16 38 OSR LECHLER 2,5 206 

4 STB France Bergerac Sy Moisson 11,6 3 44,85 0,52 30-06-16 28-10-15 11-04-16 37 Grain corn LECHLER 2,8 196 

5 STB Scotland East Lothian Myriad 19.8 4 55,90 -2,84 07-09-16 29-09-15 01-06-16 39 W OSR Lurmark FF 02F80 2.0 220 

6 YR UK Cambridge Solistice 18,0 4 52,24 0,10 16-08-16 03-10-15 19-05-16 39 W Bean ARINDH 03 2.0 200 

7 STB UK Rosemaund Santiago 18,1 4 52,08 -2,73 13-08-16 27-09-15 20-05-16 39 S beans 03F110       2,5 200 

8 STB Germany Büddenstedt Biscay 10,0 4 52,15 11,03 09-08-16 30-10-15 25-05-16 39 Sugar beet ID 120 02 4,0 300 

9 STB Germany Fraunberg JB Asano 18,0 4 48,34 11,98 28-07-16 13-10-15 11-05-16 37 Woat AM11002 2,5 200 

10 STB Poland Sosnicowice Fidelius 15,0 4 50,27 18,55 16-08-16 05-10-15 18-05-16 39 S OSR FLAFAN 2,0 200 

11 BR Poland Lany Wilkie Turnia 15,0 4 50,28 18,56 04-08-16 03-10-15 19-05-16 37-39      W OSR FLAFAN 2,0 200 

12 STB Ireland Teagasc Cordiale 20,0 4 52,86 -6,94 09-08-16 07-10-15 23-05-16 39 W Oats Teejet 110 03 Flat Fan 2,0 220 

13 STB Latvia Peterlauki Zentos 21,0 4 56,54 23,73 08-08-16 09-30-15 17-05-16 37 W OSR COHOSW 3,0 250 

14 STB Hungary Martonvásár MV Nádor - 4 47,18 18,49 - 20-10-15 10-05-16 49 Maize albuz cvi-twin 11002 4,0 250 
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