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ABSTRACT 

The statistical evaluation of probabilistic disease forecasts often involves calculation of 

metrics defined conditionally on disease status, such as sensitivity and specificity. However, for 

the purpose of disease management decision making, metrics defined conditionally on the result 

of the forecast – predictive values – are also important, although less frequently reported. In this 

context, the application of scoring rules in the evaluation of probabilistic disease forecasts is 

discussed. An index of separation with application in the evaluation of probabilistic disease 

forecasts, described in the clinical literature, is also considered and its relation to scoring rules 

illustrated. Scoring rules provide a principled basis for the evaluation of probabilistic forecasts 

used in plant disease management. In particular, the decomposition of scoring rules into 

interpretable components is an advantageous feature of their application in the evaluation of 

disease forecasts. 

Additional keywords: Brier score, divergence score, resolution, reliability, uncertainty, PSEP, 

expected mutual information, G
2
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The evaluation of a predictive system in disease management is not a single procedure (Gent 

et al. 2011, 2013). Initially, during the development of such a system, evaluation is largely based 

on the calculation of metrics that characterize the accuracy of predictions. Then, during 

implementation, evaluation of a system includes assessment of its uptake by users, and of its 

application to provide predictions that contribute to a current disease management decision 

process. Such direct application in decision making often decreases over time, giving way to 

indirect application as users gain and deploy their enhanced understanding of disease 

management in the pathosystem of concern. Assessment of this contribution to disease 

management decision making via user education may also be counted as part of the evaluation 

process for a system. And for developers, an awareness of the attributes of predictive systems 

regarded by users as successful – in terms both of uptake and application and of contribution to 

an enhanced understanding of disease management – may help to guide progress towards the 

next generation of systems.  

These facets of evaluation are not independent. If a system produces predictions that are 

insufficiently accurate for use in a decision process, its uptake and application will be low and its 

impact on understanding of disease management in the pathosystem of concern will be 

negligible. Thus the foundation of a successful system is the accuracy of its predictions. It is this 

aspect of forecast evaluation that is the focus of the analysis presented here. In particular, we are 

concerned with predictions that take the form of probability forecasts, and methods used for 

evaluation of the accuracy of such forecasts (Broeker 2012).  

Predictive systems in disease management are often based on the provision of probability 

forecasts, although in practice such forecasts are not typically issued in probabilistic terms. The 

same is true in clinical diagnosis (Graf et al. 1999). In both cases, operational classification of 
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subjects (i.e., crops or patients) is often based on the assessment of risk relative to a threshold, 

and the resulting forecast issued as ‘intervention required’ (i.e., risk threshold exceeded) or as 

‘intervention not required’ (risk threshold not exceeded). Thus it is left implicit that predictive 

systems are imperfect and that the forecasts issued in these terms are probabilistic and should be 

interpreted in the context of the system’s previously-characterized accuracy metrics. In practice, 

it is of course hard to tell whether interpretation is always nuanced in this way. Note that we 

must rely on previously-characterized metrics because the classification of subjects in a disease 

management process may lead to an intervention made with the aim of changing the (predicted) 

outcome; therefore it is difficult to evaluate performance when a predictive system is operational 

(Hughes et al. 2017).  

For meteorological applications, in contrast, probability forecasts are often communicated in 

explicitly probabilistic terms (e.g., “70% chance of rain tomorrow”); and while users may choose 

to take mitigating action on the basis of such a forecast, the available actions do not include 

interventions that can change the outcome in terms of the actual weather that occurs. Either it 

rains, or it does not rain, regardless. Thus for meteorological probability forecasts, it is possible 

to undertake evaluation on the basis of comparison of the forecast weather to the corresponding 

actual weather. An important methodology used by meteorologists for the evaluation of 

probability forecasts in this way is the calculation of a scoring rule. It is convenient to think of 

the use of a scoring rule as a way of attaching a score to probability forecasts in order to provide 

a quantitative assessment of the success of the predictive system (Broeker 2012).  

The analysis presented here provides a phytopathological perspective on the application of 

scoring rules, in particular the Brier score (Brier 1950) and the divergence score (Weijs et al. 

2010), for evaluation of probabilistic disease forecasts. An index of separation proposed in the 
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clinical literature for the evaluation of probabilistic disease forecasts (Altman and Royston 2000) 

is also considered in this context. Thus we are concerned here with the evaluation of probabilistic 

forecasts on the basis of predictive values (probabilities defined conditionally on the result of the 

forecast) rather than the calculation of sensitivity and specificity (probabilities defined 

conditionally on the disease status). The decomposition of scoring rules into interpretable 

components (uncertainty, resolution, reliability) is discussed. The analysis is supported by 

numerical examples based on phytopathological data sets from the literature.  

ANALYSIS   

The phytopathological setting. It is not our purpose here to give an account of the 

experimental and analytical work that underpins development of the evidential basis for 

predictive systems providing probability forecasts for crop disease management. Detailed 

explanatory descriptions of such work (for two-forecast-category systems), including 

identification of risk factors, statistical modelling of disease risk, construction of a receiver 

operating characteristic (ROC) curve, choice of an appropriate risk threshold, and determination 

of the corresponding accuracy metrics defined conditionally on disease status (i.e., sensitivity 

and specificity) can be found in, for example, Yuen et al. (1996) and Twengström et al. (1998) 

(from a study of Sclerotinia stem rot in Sweden) or De Wolf et al. (2003) and Madden (2006) 

(from a study of Fusarium head blight in the U.S.A.). 

The context for the analysis to be described here is provided by Bayesian updating (e.g., Yuen 

and Hughes 2002, Madden 2006). The starting point is a prior probability, Pr(oj), which is 

updated to a posterior probability, Pr(oj|fi), by use of a predictor that incorporates evidence 

related to risk factors (as in the examples referred to above). Thus the Bayesian posterior 

probabilities – also referred to as predictive values (see Table 1 in Madden 2006) – are metrics 
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defined conditionally on the result of the forecast. Here, we discuss the situation in which there 

are two outcome categories oj for the actual status of a crop, with j = 1 denoting the control (no 

disease) category and j = 2 denoting the case (disease) category. The number of forecast 

categories is not limited to two by the analysis described, although in practice many predictive 

systems providing probability forecasts for crop disease management use two forecast categories 

fi, with i = 1 denoting here the ‘best’ forecast (intervention not required) and i = 2 the ‘worst’ 

forecast (intervention required). This is not restrictive if the decision process in question presents 

only two alternative courses of action. In the equivalent clinical situation, it is not unusual to 

have up to four or five forecast categories (diagnosis-related groups, DRGs), in which case the 

category for the worst forecast would be (using the present notation) the fi indexed by the largest 

i.  

Now we have some notation, we can write the ROC-based metrics (for a two-forecast-

category system) sensitivity and specificity as, respectively, Pr(f2|o2) and Pr(f1|o1). Sensitivity is 

the proportion of cases with an ‘intervention required’ forecast (the true positive proportion, 

TPP), and specificity is the proportion of controls with an ‘intervention not required’ forecast 

(the true negative proportion, TNP). These accuracy metrics, respectively characterizing the 

proportion of actual epidemics correctly predicted and the proportion of actual non-epidemics 

correctly predicted, are widely cited in the evaluation of probabilistic disease forecasts with two 

forecast categories. In essence, they summarize the evidence related to disease risk factors as 

provided by a predictive system, independent of the prior probability.  

While it is beyond doubt that sensitivity and specificity are useful metrics, they do not 

represent a complete evaluation of a predictive system. This can be seen from, for example, 

Table 2 of Madden (2006). For a predictor with TPP = 0.833 and TNP = 0.844, with prior 
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probabilities (or disease prevalence) Pr(o2) = 0.05, 0.36, and 0.85, the corresponding posterior 

probabilities are Pr(o2|f2) = 0.22, 0.75 and 0.97, respectively. In the first example, where disease 

prevalence is 5%, consider a crop of unknown status for which there is an ‘intervention required’ 

forecast. High sensitivity and specificity values notwithstanding, there is still only a <25% 

chance that the crop actually does require intervention, so the forecast contributes little to the 

decision process. In the second example, disease prevalence is <50% but when the evidence 

related to risk factors results in an ‘intervention required’ forecast for a crop of unknown status, 

there is a >50% chance that the crop actually does require intervention. Thus this example 

illustrates the most useful kind of result supporting disease management decision making, in that 

the predictive system produces a posterior probability that might plausibly result in a different 

management decision to one that was based on the prior probability alone, made without 

recourse to evidence related to risk factors. In the third example, an ‘intervention required’ 

forecast is effectively redundant in relation to the decision process, since a crop of unknown 

status has an 85% chance of requiring intervention on the basis of disease prevalence alone, 

without need for any further evidence. Increasing this to a 97% chance is inconsequential in 

terms of the decision on whether or not to intervene.  

Thus there are aspects of the performance of a predictive system in relation to disease 

management decision making that are characterized by prior and posterior probabilities. The 

probability of requirement for intervention given the forecast result depends both on the evidence 

related to disease risk factors as provided by a predictive system and on the disease prevalence. 

Scoring rules provide a basis for evaluating the performance of probability forecasts in this 

respect, as discussed below. The phytopathological data sets used here for the purpose of 

numerical illustration of the application of scoring rules are given in Table 1.  
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A brief introduction to scoring rules for probability forecasts. Two scoring rules are 

discussed here; the Brier score (Brier 1950) and the divergence score (Weijs et al. 2010), both 

first described in the meteorological literature. Both meet the criteria for strictly proper scoring 

rules (Gneiting and Raftery 2007). Both are penalty scores; that is, a less accurate forecast incurs 

a higher score. In meteorological application, the long term average frequency of a weather event 

is termed the climatological probability. Predictive values obtained by updating a climatological 

probability to a forecast probability for a weather event are not necessarily Bayesian posteriors. 

For example, based on an assessment of current atmospheric conditions, a probability forecast 

for the weather event of interest is usually issued in one of a number of pre-specified forecast 

categories (allowed probabilities). By the standards of disease forecasting, the number of 

categories used by meteorologists may be large; Table 8.2 of Wilks (2011), for example, shows a 

predictive system with 12 allowed forecast probabilities.  

From a phytopathological perspective, it is desirable to place application of the Brier score 

and the divergence score explicitly in the context of Bayesian updating. That is to say, starting 

from prior probability Pr(o2), a forecast updates this (in the two-forecast-category case) to either 

Pr(o2|f1) or Pr(o2|f2). Subsequently, the true status – either control (oj = 0) or case (oj = 1) 

becomes known. If the true status is control, then f1 was the correct forecast and f2 incorrect. If 

the true status is case, then f2 was the correct forecast and f1 incorrect. The Brier scores for 

individual forecasts are given by ( )2ij fo − , where observation [ ]1,0∈jo  and (in the two-

forecast-category case) forecast ( ) ( )[ ]2212 Pr,Pr fofof i ∈ . Similarly, the divergence scores for 

individual forecasts are given by the Kullback-Leibler divergences: 
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with ( ) 0≥ijKL foD , and for calculation purposes (here and throughout) we take 0·ln(0) = 0, 

recalling ( )( ) 00ln0lim
0

=⋅
→x

. Both scoring rules attach a score to a forecast according to the 

distance (or divergence) between the forecast value and the true value. Smaller distances 

represent better forecasts, so individual scores increase with increasing inaccuracy. Usually, the 

frequency-weighted average score over a set of forecasts is presented. Thus for the Brier score 

(BS) we have: 

( )21
BS ijij ij fon

N
−⋅⋅= ∑       (1) 

and for the divergence score (DS): 

( )ijKLij ij foDn
N

⋅⋅= ∑
1

DS       (2)  

where nij denotes the number of subjects in forecast category i and outcome category j, such that 

the total number of subjects is ∑= ij ijnN . As outlined in the introductory section, the true status 

of some subjects (specifically those with an ‘intervention required’ forecast that was then 

actioned) cannot be retrieved from an operational predictive system in disease management, so 

scoring rules are calculated from the same data sets for untreated subjects from which sensitivity 

and specificity values are calculated; that is to say, from data where both the forecast category 

and the actual status are known. 

Both the Brier score and the divergence score are examples of Bregman divergences 

(Bregman 1967, Hughes and Topp 2015). In this format, the scores for individual forecasts are 

given by: 

( ) ( ) ( ) ( ) ( )iijijijB fgfofgogfoD ′⋅−−−=      (3) 
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with ( ) 0≥ijB foD , and where ( )•g  is a convex function chosen to match the particular score to 

be calculated. For the Brier score, ( ) ( )2•=•g  (see Figure 1); for the divergence score, 

( ) ( ) ( ) ( )( )•⋅•=•−=• ∑ PrlnPrHg  (i.e., the negative of the binary Shannon entropy function, see 

Figures 2, 3, and 4). The notation ( )•′g  denotes the slope of a tangent to the curve ( )•g . The 

frequency-weighted average score over a set of forecasts is then: 

( )ijBij ij foDn
N

⋅⋅∑
1

      (4) 

For numerical calculations based on ( ) ( )•−=• Hg , Bregman divergences are denominated in 

units depending on the choice of logarithmic base; since natural logarithms are used here the 

appropriate unit is the nit (Theil 1967). 

An index of separation, PSEP. Altman and Royston’s (2000) paper “What do we mean by 

validating a prognostic model?” relates to the evaluation of probabilistic disease forecasts, and 

remains influential in the clinical literature (see, for example, Collins and Altman 2013, Sharples 

and Nashef 2013). A simple index of separation, PSEP, is proposed for evaluation of the 

performance of predictive models:  

( ) ( )ii fofo best2worst2 PrPrPSEP −=      (5) 

For the two-forecast-category case, this is ( ) ( )1222 PrPrPSEP fofo −= , in which case PSEP 

may be written in terms of sensitivity, specificity and prior probability, via Bayes’ rule. We have 

0 ≤ PSEP ≤ 1 (i.e., PSEP is measured on a probability scale; within which larger values are more 

desirable).  
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Altman and Royston’s (2000) account of PSEP is concerned mainly with its perceived 

advantages; particularly its low computational load and its interpretability as a measure of 

separation between DRGs (forecast categories). Here our interest is in the analytical properties of 

PSEP (as compared to scoring rules), but at the outset it is worth considering why separation 

between forecast categories is important in the forecast evaluation process. Here we offer a 

simple heuristic view. Before the forecast, the best evidence-based decision we can make is 

based on the prior probability Pr(o2). The forecast, incorporating evidence related to risk factors, 

then allows us to update this to a posterior probability Pr(o2|fi), the fi representing the available 

forecast categories. In assigning subjects to appropriate forecast categories based on posterior 

probabilities rather than to a single category based on a prior probability, we are in essence 

modelling observed variation in a manner analogous to the analysis of a simple treatment-

comparison experiment in which we anticipate that the treatment means will provide a better 

description of variation than the overall mean alone. 

 Altman and Royston (2000) consider the Brier score, as follows. “The Brier score has several 

pleasant mathematical properties, but it has the drawback that it lacks an obvious interpretation 

other than in general terms − the bigger the score, the worse the quality of the prediction. A 

cruder but more interpretable statistic is the difference between observed and predicted 

probabilities at the group level (PSEP), though of course more than one measure may be used.” 

For the Brier score, taking the average score for a data set (equation 1) provides a value in the 

range 0 ≤ BS ≤ 1 (Wilks 2011), the same as the range for PSEP. For PSEP, however, the bigger 

the score, the better the quality of the prediction. The use of both PSEP and BS in the course of a 

forecast evaluation would require that the two measures were independent, but as we shall now 

see, this is not the case. 
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The example used here is Scenario A (Table 1). Incidentally, Scenario A was originally 

chosen in order to provide an example from a pathosystem where probability forecasts are 

usually made in more than two categories (Nutter et al. 2002, Esker et al. 2006), but the 

published external validation data supported only a two-forecast-category calculation. 

Analytically, the link between PSEP and the Brier scores for individual forecasts as Bregman 

divergences (Figure 1) and between PSEP and the divergence scores for individual forecasts as 

Bregman divergences (Figure 2) is provided by the forecast probabilities for f1 and f2, which 

define both PSEP (equation 5) and the gradients of the tangents to the convex function g(f) 

(equation 3).  

The goal here is not to establish any quantitative equivalence between PSEP and the scoring 

rules BS and DS; numerical results are provided for the convenience of readers who wish to use 

the analysis as a template for calculations. For Scenario A, PSEP = 0.454 (equation 5). This is 

shown diagrammatically in both Figure 1 (for the purpose of illustrating the link with the Brier 

score) and Figure 2 (for the purpose of illustrating the link with the divergence score). Figure 1 

illustrates the calculation of Brier scores for individual forecasts as Bregman divergences 

(equation 3). Figure 2 illustrates the calculation of divergence scores for individual forecasts as 

Bregman divergences (equation 3). The frequency-weighted average Brier score over the set of 

forecasts for Scenario A is then BS = 0.230 (equation 4), identical to the value calculated via 

equation 1. The frequency-weighted average divergence score over the set of forecasts for 

Scenario A is then DS = 0.650 nits (equation 4), identical to the value calculated via equation 2.   

Resolution, RES. Having characterized the non-independence of PSEP and the BS and DS 

scoring rules, such that PSEP is (qualitatively) an inverse of BS and of DS, it would be useful at 

this stage to characterize a probability forecast evaluation measure for which PSEP is a direct 
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analogue. To do so, we take advantage of the analysis by means of which both BS and DS can be 

decomposed into terms denoted uncertainty (UNC), resolution (RES) and reliability (REL)  

(Murphy 1973, Weijs et al. 2010), such that: 

RELRESUNC
DS

BS
+−=







     (6) 

This decomposition has the advantage that it supplies a useful interpretation of the Brier score 

and of the divergence score in very specific terms. UNC quantifies our state of knowledge based 

only on the prior probability Pr(o2), RES refers to the extent to which forecasts separate subjects 

into different groups, and REL refers to the extent of agreement between forecast probabilities 

and observed frequencies. UNC, RES and REL are all ≥ 0 (see, e.g., Hughes and Topp 2015). 

For an hypothetical perfect forecaster, RES = UNC and REL = 0, so the scoring rule (BS or DS) 

= 0 (equation 6). For a typical (imperfect) forecaster, RES < UNC and REL > 0, so the scoring 

rule (BS or DS) > 0 (equation 6). Smaller BS or DS scores indicate better forecaster 

performance; thus for RES, larger values (≥0) are more desirable; while for REL, smaller values 

(≥0) are more desirable. 

The notation used for equations 7-9 below identifies the context in which data are used in 

analyses based on the decomposition of a scoring rule. Consider Scenario A (Table 1), where 

there are 12 observed cases out of 14 ‘intervention required’ forecasts; then Pr(o2|f2) = 12/14 = 

0.857. In Bayesian disease forecasting as described thus far, the probability forecast and the 

observed frequency are identical. The adopted notation is required for when this is not so. Thus, 

fi denotes the categories for forecast probabilities, and di the categories for the corresponding 

observed frequencies. The prior probability Pr(o2) is calculated as the overall observed frequency 

of cases and denoted d . Note that these notational issues do not arise in non-Bayesian weather 
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forecasting, where the observed frequencies usually differ to some extent from the corresponding 

probability forecasts (see, for example, Table 8.2 in Wilks 2011, Table 1 in Hughes and Topp 

2015). Now, writing the analysis in terms of Bregman divergences provides a common format 

for the decomposition of both the BS and DS scoring rules (Hughes and Topp 2015):  

( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) 









′⋅−−−==

′⋅−−−==

=

iiiiiiiBi

iiiBi

fgfdfgdgfdD

dgdddgdgddD

du

REL

RES

UNC

   (7) 

Given the appropriate convex function for calculation of the Bregman divergences (as described 

above) and an appropriate choice of uncertainty function ( )du , equation 7 applies equally to both 

the Brier score and the divergence score (Hughes and Topp 2015). Because of this we only need 

show one such analysis. We adopt the divergence score for the purpose of illustration because it 

allows some useful information theoretic interpretations. In equation 7, 

( ) ( ) ( )( )∑ ⋅−=
j jj oodu PrlnPr  (the binary Shannon entropy of the prior distribution of 

observations) is the uncertainty function for the decomposition of the divergence score. RESi and 

RELi represent, respectively, resolution and reliability components for group i. The 

corresponding overall resolution and reliability components are, respectively: 

( )ddDn
N

iBi i ⋅⋅= ∑
1

RES       (8) 

( )iiBi i fdDn
N

⋅⋅= ∑
1

REL       (9)
 

Here, RES is the probability forecast evaluation measure of particular interest, because (like 

PSEP) RES is a measure of separation between groups (Wilks 2011). The link between PSEP 

and the RES component of the divergence score decomposition is illustrated diagrammatically in 

Page 13 of 35



14 

 

Figure 3. It is apparent that PSEP, measured on a probability scale, is an analogue of RES, 

measured on an information scale. Further, Weijs et al. (2010) show that the RES component of 

the divergence score decomposition is the expected mutual information between forecasts and 

observations. Applications of expected mutual information in the evaluation of clinical 

diagnostics go back at least as far as Metz et al. (1973), while Benish (2003) provides a useful 

overview. More recent phytopathological perspectives on expected mutual information can be 

found in Hughes (2012) and Hughes and McRoberts (2014).  

The numerical results for Scenario A (Table 1) show PSEP = 0.454 (equation 5) as before. 

For a tangent to g(d) drawn at d , the observed frequencies for d1 and d2 that define PSEP also 

define the Bregman divergences for the required RES components (Figure 3). The frequency-

weighted average divergence over the set of forecasts for Scenario A is then RES = 0.037 nits 

(equation 8).  

Expected mutual information, IM(o,f). The analysis of Scenario A established the non-

independence of PSEP and expected mutual information. This was achieved by using Bregman 

divergences to calculate the RES component of the decomposition of the divergence score. 

However, this is not necessarily the way that expected mutual information would be routinely 

calculated in order to characterize the relationship between forecasts and observations for a 

single data set. The example used here is Scenario B (Table 1). Scenario B was selected in order 

to provide an example from a study where the validation data for a risk prediction model were 

presented as a 2×2 prediction-realization table. In order to calculate some reference values, the 

numerical data for Scenario B are first normalized. Hughes et al. (2015) show a normalized 2×2 

prediction-realization table in both notational and data formats, and provide background related 

to calculations based on equations 10-15 below.  
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Expected mutual information between forecasts and observations may be calculated directly 

from the normalized prediction-realization table as: 

( ) ( ) ( )
( ) ( )












⋅
⋅=∑ ∑

ij

ij

i j ij
fo

fo
fofo

PrPr

Pr
lnPr,IM

I
I     (10) 

from which we obtain IM(o,f) = 0.340 nits for Scenario B. Proceeding instead step-by-step, the 

entropy based on the prior probability is: 

( ) ( ) ( )( )∑ ⋅−=
j jj ooo PrlnPrH      (11) 

and for Scenario B, H(o) = 0.641 nits. The entropy H(o) can be thought of as characterizing 

information or uncertainty. Either H(o) characterizes the amount of uncertainty before use of the 

predictor or, alternatively, H(o) characterizes the amount of information needed to completely 

resolve that uncertainty. The entropies based on the posterior probabilities are:  

( ) ( ) ( )( )∑ ⋅−=
j ijiji fofofo PrlnPrH     (12) 

and then: 

( ) ( ) ( )ii i foffo HPrH ∑−=       (13) 

and for Scenario B, H(o|f) = 0.301 nits. The conditional entropy H(o|f) is the remaining 

uncertainty, on average, after use of the imperfect binary predictor, or, alternatively, the amount 

of information still needed to resolve that remaining uncertainty. Then we note: 

( ) ( ) ( )foofo HH,IM −=       (14) 

and for Scenario B, IM(o,f) = 0.641 – 0.301 = 0.340, as previously. We can see from equation 14 

that expected mutual information IM(o,f) is a measure the average reduction in entropy H(o) 
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resulting from use of the imperfect binary predictor, or, alternatively, the average amount of 

information supplied by the predictor. Normalized expected mutual information is: 

( ) ( ) ( )
( )o

foo
fonormalized

H

HH
,IM

−
=     (15) 

which for Scenario B is equal to 0.530.  

In their model validation, Harikrishnan and del Río (2008) use chi-squared statistics and the 

R
2
 value from a linear regression analysis of predicted frequency on observed frequency, of the 

kind often used in the validation of disease simulation studies (see, for example, Dias et al. 

2014). Here, we consider first the likelihood-ratio chi-squared statistic, denoted G
2
 (Agresti 

2012). Of interest here is that there is a relationship between G
2
 and expected mutual 

information: ( )foNG ,I2 M

2 ⋅⋅=  (Attneave 1959). For example, for Scenario B, referring to the 

original 2×2 prediction-realization table from Harikrishnan and del Río (2008) and following 

Agresti (2012), we calculate G
2
 = 67.931; then note that 67.931/(2·100) = 0.340, identical to 

IM(o,f) from equation 10 or equation 14. From an historical perspective, note that the Pearson 

chi-squared was originally described in order to meet the need for an approximate but more 

conveniently calculable form of G
2
.  

Now consider a binary logistic regression of the 2×2 prediction-realization table for Scenario 

B. This analysis yields estimates of the posterior log odds as:  

( )
( ) 




⋅+−=

⋅+−=

)1(816.4213.2logit

)0(816.4213.2logit

22

12

fo

fo
      

from which the corresponding estimates of Pr(o2|f1) and Pr(o2|f2) are respectively 0.099 and 

0.931, exactly as in Table 1. Of interest here is that goodness-of-fit as measured by McFadden’s 
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(pseudo-) R
2
 (McFadden 1974) is identical to the normalized expected mutual information for 

the 2×2 prediction-realization table (Hauser 1978). For Scenario B, McFadden’s R
2
 = 0.530, as 

given in the model summary provided by the statistical software used to calculate the logistic 

regression analysis, and identical to normalized IM(o,f) from equation 15. Application of binary 

logistic regression is a satisfying approach to the analysis of explained variation for disease 

forecasts as represented by a 2×2 table, because it maintains the classification of subjects into 

forecast categories as the basis for the calculation. 

Reliability, REL. The analysis of Scenario B established the role of expected mutual 

information – via the G
2
 test and McFadden’s R

2
 – in characterizing the relationship between 

forecasts and observations on the basis of a single data set. More important, perhaps, is 

evaluation of probabilistic disease forecasts using independent data. This may happen when a 

predictive system is developed using data collected over a period of time, then tested using data 

collected over a subsequent period (e.g., Esker et al. 2006, Bondalapati et al. 2012), or when a 

system developed in one location is applied in another (e.g., De Wolf et al. 2003, Duttweiler et 

al. 2008).  

The examples used here are Scenarios C1 and C2 (Table 1). These scenarios were selected in 

order to provide an example from a study where both training data and validation data for a risk 

prediction model were presented. For this example, the validation data set provides data that 

meet the original study’s requirements in terms of sensitivity and specificity. If we calculate 

expected mutual information (equation 10) for Scenario C1 (training data set) and C2 (validation 

data set) we obtain IM(o,f) = 0.177 and 0.172, in nits (equation 10), respectively, so resolution is 

consistent between C1 and C2. Note also that from Table 1, we obtain PSEP = 0.55 (C1) and 

0.57 (C2) (equation 5), which would satisfy Altman and Royston’s (2000) validation criterion.  
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What is of particular interest here is characterization of the reliability (REL) component of the 

decomposition of the divergence score (equation 9). For Scenario C1, the (Bayesian) probability 

forecasts and the observed frequencies are identical. Thus fi = di, as a result of which RELi = 0 ∀i 

(equation 7) and REL = 0 (equation 9). The decomposition of the divergence score (equation 6) 

becomes DS = UNC – RES, which is the same as ( ) ( ) ( )foofo ,IHH M−=  (rearranging equation 

14). Theil (1967) discusses ( )foH , the equivalent of DS when REL = 0, as information 

inaccuracy. Consider the amount of information that would be required from a forecast to take us 

from the prior probability to the correct identification of the actual status: if the forecaster in use 

is imperfect, it can only supply enough information to take us part of the way, from the prior to 

the posterior probability. Thus there is a deficit, the amount of information still required to take 

us from the posterior probability to the actual status. This, taken on average over all forecast-

observation combinations, is the information inaccuracy. For Scenario C1, ( )foH  = 0.358 nits 

(equation 13). 

How we then treat the analysis of reliability when it comes to Scenario C2 depends on our 

view of the evaluation process. If we regard Scenario C2 as supplying new probability forecasts, 

then REL = 0 again and calculations yield ( )foH  = 0.506 nits. The increase in information 

inaccuracy for Scenario C2 over that of Scenario C1 arises because H(o) for Scenario C2 (= 

0.678) is larger than that of Scenario C1 (= 0.535) (equation 11), while the IM(o,f) values are 

similar (= 0.177 nits (C1) and 0.172 nits (C2), as above). The difference between H(o) values 

reflects the change in prior probability Pr(o2) between the two scenarios (see Table 1). 

If, instead, we regard Scenario C1 as having established probability forecasts for f1 (= 0.058) 

and f2 (= 0.609) that are applicable to Scenario C2, we note that the observed frequencies for d1 
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(=3/12) and d2 (= 14/17) from C2 now differ from the corresponding forecasts. It is these 

differences between probability forecasts and observed frequencies that are measured by REL. 

The reliability components RELi are calculated as Bregman divergences as in equation 7. For 

Scenario C2, this calculation is illustrated in Figure 4. The frequency-weighted average 

reliability over the set of forecasts for Scenario C2 is then REL = 0.144 nits (equation 9).  

Essentially, we now have two versions of equation 6 for the decomposition of the divergence 

score relating to Scenario C2. They illustrate different perspectives on the evaluation process. 

Recall that for the overall score (DS) and for reliability (REL), smaller values are more desirable; 

while for resolution (RES), larger values are more desirable (all components are ≥ 0). Either:  

DS (= 0.506) = UNC (= 0.678) – RES (= 0.172) 

(in which REL is implicitly taken to be equal to zero by use of the observed frequencies for 

Scenario C2 as the forecast probabilities) or: 

DS (= 0.650) = UNC (= 0.678) – RES (=0.172) + REL (= 0.144) 

(in which REL explicitly accounts for discrepancies between the observed frequencies from 

Scenario C2, the validation data, and the forecast probabilities from Scenario C1, the training 

data) (all quantities in nits). The components of the decomposition are independent (they 

measure different aspects of forecaster performance), so the calculation of reliability (rather than 

the implicit assumption that it is equal to zero) does not affect the calculation of the uncertainty 

and resolution components. The difference between the two versions simply reflects different 

perceptions of the need (or otherwise) to account for differences between forecast probabilities 

from the training data set (Scenario C1) and the observed frequencies from the validation data set 

(Scenario C2). Here, DS increases (by an amount equal to REL) when the lack of agreement 
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between the observed frequencies (from C2) and the forecast probabilities (from C1) is taken 

into account. REL characterizes a difference between training data and validation data by 

applying the forecast probabilities from the former to the calculation of the scoring rule for the 

latter. In evaluations where REL is implicitly taken to be equal to zero, it would be good practice 

to make a clear statement to that effect. 

DISCUSSION 

Altman and Royston (2000) introduced PSEP in the clinical literature as a simple index of 

prognostic information with application in the validation of probabilistic disease risk prediction 

models. Of particular interest was the performance of predictive models applied to subjects other 

than those whose data had been used for model derivation. Specifically, the idea of greater or 

lesser separation between the observed frequencies for the ‘worst’ and ‘best’ forecast categories 

as a measure of prognostic information was considered attractive, being both interpretable and 

pragmatic. The Brier score (Brier 1950), a strictly proper scoring rule for use in the evaluation of 

probability forecasts, was deemed to be lacking in interpretability. Altman and Royston’s (2000) 

misgivings notwithstanding, we note that the Brier score has subsequently been discussed in the 

context of performance evaluation for clinical risk prediction models by, for example, Gerds et 

al. (2008) and Steyerberg et al. (2010).  

Here, analysis of the Brier score and also the divergence score, another strictly proper scoring 

rule for use in the evaluation of probability forecasts (Weijs et al. 2010) shows how PSEP is 

related to both these scoring rules. In particular, PSEP is an analogue of the resolution (RES) 

component of the scoring rule decomposition, a measure of separation between observed 

frequencies for forecast categories (Wilks 2011). Thus PSEP offers no more interpretability than 

either the Brier score or the divergence score. In the specific case of the information-theoretic 
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divergence score decomposition, RES is identical to the expected mutual information between 

forecasts and observations.  

PSEP may be simple to calculate (equation 5), but this simplicity is not as straightforward as 

it may seem, specifically for models with more than two forecast categories. In such cases, only 

the data from the ‘best’ and ‘worst’ forecast categories are used in the PSEP calculation. So, for 

example, in Table III of Altman and Royston (2000) data from only 49% (Hong Kong) and 47% 

(Guangzhou and Shanghai) of subjects in the validation samples are used in the PSEP calculation 

– but the unused data must still be collected to enable that calculation. Once resources have been 

allocated to the collection of validation data, it would seem desirable to use all those data in the 

model evaluation process, increased computational load notwithstanding. This is achieved by the 

adoption of a scoring rule approach.  

 The decomposition of scoring rules into uncertainty, resolution and reliability components 

offers interpretability beyond assessment of separation between forecast categories. For both the 

overall Brier score and the overall divergence score, smaller values are more desirable. For the 

information theoretic divergence score (DS), where the resolution component RES is equal to 

expected mutual information IM(o,f), we have interpretations of resolution in terms of the 

likelihood-ratio chi-squared statistic G
2
 (Agresti 2012) and McFadden’s (1974) R

2
 measure of 

explained variation for logistic regression (Hauser 1978). Larger values of RES are indicative of 

a greater reduction of the uncertainty (UNC) component of DS because the observed frequencies 

for the different forecast categories really are separate from each other. This contributes to a 

smaller overall score. Larger values of the reliability (REL) component indicate greater 

discrepancy between observed frequencies and the corresponding forecast probabilities, which 

contributes to a larger overall score. Essentially, for probability forecasts with application in 
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disease management decision making, resolution is a measure of separation between the 

observed frequencies for the adopted forecast categories and reliability is then a measure of the 

mismatch between the observed frequencies and the probability forecasts for those forecast 

categories.  

The majority of evaluations of probabilistic disease forecasts with clinical applications are 

based on measures defined conditionally on disease status (i.e., sensitivity and specificity) (Shiu 

and Gastonis 2008). The same appears to be true for forecasts with phytopathological 

applications. However, also important in disease management decision making are measures 

defined conditionally on the result of the forecast (i.e., the predictive values), although these are 

more are difficult to evaluate. Shiu and Gastonis (2008) provide an overview of the problem and 

some possible solutions. The application of scoring rules – and in particular the information 

theoretic divergence score of Weijs et al. (2010) and its decomposition – is a useful addition to 

the available methodology for evaluation of the accuracy of probabilistic disease forecasts 

deployed in phytopathological applications. 
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TABLE 1. Data (correct to 3 decimal places (d.p.)) 
a,b

 

   Scenario A   Scenario B  Scenario C1   Scenario C2 

Pr(o2|f1) 0.403  (56/139) 0.099  (7/71) 0.058  (6/104) 0.250  (3/12) 

Pr(o2|f2) 0.857  (12/14) 0.931  (27/29) 0.609  (28/46) 0.824  (14/17) 

Pr(o2) 0.444  (68/153) 0.340  (34/100) 0.227  (34/150) 0.586  (17/29) 

a
 Source: Scenario A, see Table 5 (Stevens Model) in Esker et al. (2006); Scenario B, see Table 2 

in Harikrishnan and del Río (2008); Scenarios C1 and C2, see Table 4 (Model #3) in Bondalapati 

et al. (2012). 

b
 Notation: Pr(o2), prior probability of disease or need for a control intervention (the complement 

is Pr(o1), prior probability of no disease or no need for a control intervention); Pr(o2|f2), posterior 

probability of disease or need for a control intervention given a forecast of disease or need for a 

control intervention (the complement is Pr(o1|f2), posterior probability of no disease or no need 

for a control intervention given a forecast of disease or need for a control intervention); Pr(o2|f1), 

posterior probability of disease or need for a control intervention given a forecast of no disease 

or no need for a control intervention (the complement is Pr(o1|f1), posterior probability of no 

disease or no need for a control intervention given a forecast of no disease or no need for a 

control intervention).  
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Fig. 1. Brier score and index of separation (PSEP), Scenario A (see Table 1). For probability 

forecasts f, the curve ( ) 2ffg =  (solid line) is the basis for the scoring rule known as the Brier 

score. Here, tangents to the curve (long-dashed lines) are drawn at probability forecasts f = 

Pr(o2|f2) = 0.857 and f = Pr(o2|f1) = 0.403, both points marked ● on the curve and the horizontal 

axis. Short-dashed lines show the projections from the points marked ● on the curve to the 

horizontal axis. PSEP is calculated as the horizontal difference between these projections, 

Pr(o2|f2) − Pr(o2|f1) = 0.454. The tangent at f = 0.857 has slope ( )fg′  = 1.714, and intersects the 

vertical axis where f = 0 at g(f) = −0.734 (□) and the vertical axis at f = 1 at g(f) = 0.980 (■). The 

tangent at f = 0.403 has slope ( )fg′  = 0.806, and intersects the vertical axis where f = 0 at g(f) = 

−0.162 (∆) and the vertical axis at f = 1 at g(f) = 0.644 (▲). The vertical distances between the 

curve and the intersections of the tangents at the vertical axis where f = 0 (0.162 and 0.734) and 

at the vertical axis where f = 1 (0.020 and 0.356) are Brier scores for individual forecasts 

calculated as Bregman divergences (equation 3). The frequency-weighted average Bregman 

divergence is then the Brier score (BS = 0.230, equation 4). All calculations correct to 3 d.p. 

 

  

Page 28 of 35



29 

 

Fig. 2. Divergence score and index of separation (PSEP), Scenario A (see Table 1). For 

probability forecasts f, the curve ( ) ( )ffg H−=  (solid line) is the basis for the scoring rule 

known as the divergence score. Here, tangents to the curve (long-dashed lines) are drawn at 

probability forecasts f = Pr(o2|f2) = 0.857 and f = Pr(o2|f1) = 0.403, both points marked ● on the 

curve and the horizontal axis. Short-dashed lines show the projections from the points marked ● 

on the curve to the horizontal axis. PSEP is calculated as the horizontal difference between these 

projections, Pr(o2|f2) − Pr(o2|f1) = 0.454. The tangent at f = 0.857 has slope ( )fg′  = 1.791, and 

intersects the vertical axis where f = 0 at g(f) = −1.945 (□) and the vertical axis at f = 1 at g(f) = 

−0.154 (■). The tangent at f = 0.403 has slope ( )fg′  = −0.393 and intersects the vertical axis 

where f = 0 at g(f) = −0.516 (∆) and the vertical axis at f = 1 at g(f) = −0.909 (▲). The vertical 

distances between the curve and the intersections of the tangents at the vertical axis where f = 0 

(= 0.516 and 1.945) and at the vertical axis where f = 1 (= 0.154 and 0.909) are divergence scores 

for individual forecasts (in nits) calculated as Bregman divergences (equation 3). The frequency-

weighted average Bregman divergence is then the divergence score (DS = 0.650 nits, equation 

4). All calculations correct to 3 d.p. 
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Fig. 3. Resolution and index of separation (PSEP), Scenario A (see Table 1). The solid line is the 

curve ( ) ( )ddg H−=  for observed frequency of case status d. Here, a tangent to the curve (long-

dashed line) is drawn at ( ) 444.0Pr 2 == od , marked ● on the curve. The tangent has slope ( )dg ′  

= −0.223. Short-dashed lines show the projections of the observed frequencies 857.0=d  and 

403.0=d  from the curve onto the horizontal axis. PSEP is calculated as the horizontal 

difference between these projections (= 0.454). The vertical distances between the curve and the 

tangent (i.e., between points marked ▼ and ▲) at d = 0.857 (= 0.369) and at d = 0.403 (= 0.004) 

are Bregman divergences (in nits) (equation 7). The frequency-weighted average Bregman 

divergence is then resolution (RES = 0.037 nits, equation 8). All calculations correct to 3 d.p. 
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Fig. 4. Reliability, Scenario C1, C2 (see Table 1). The solid line is the curve ( ) ( )ffg H−=  for 

probability forecasts f. Here, tangents to the curve (long-dashed lines) are drawn at probability 

forecasts based on Scenario C1, f = Pr(o2|f2) = 0.609 and f = Pr(o2|f1) = 0.058, both points marked 

● on the curve. The tangent at f = 0.609 has slope ( )fg′  = 0.442, the tangent at f = 0.058 has 

slope ( )fg′  = −2.793. Short-dashed lines show the projections of the observed frequencies based 

on Scenario C2, 824.0=d  and 250.0=d , from the curve onto the horizontal axis. The vertical 

distances between the curve and the tangent (i.e., between points marked ▼ and ▲) at d = 0.824 

(= 0.108) and at d = 0.250 (= 0.195) are Bregman divergences (in nits) (equation 7). The 

frequency-weighted average Bregman divergence is then reliability (REL = 0.144 nits, equation 

9). All calculations correct to 3 d.p. 
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Figure 1. Caption in main document.  
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Figure 2. Caption in main document.  
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Figure 3. Caption in main document.  
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Figure 4. Caption in main document.  
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