Pure

Scotland's Rural College

The genetic and biological basis of feed efficiency in mid-lactation Holstein dairy cows

Hardie, LC; VandeHaar, MJ; Tempelman, RJ; Weigel, KA; Armentano, LE; Wiggans, GR; Veerkamp, RF; de Haas, Y; Coffey, MP; Connor, EE; Hanigan, MD; Staples, C; Wang, Z; Dekkers, JCM; Spurlock, DM

Published in: Journal of Dairy Science

DOI: 10.3168/jds.2017-12604

First published: 23/08/2017

Document Version Peer reviewed version

Link to publication

Citation for pulished version (APA):

Hardie, LC., VandeHaar, MJ., Tempelman, RJ., Weigel, KA., Armentano, LE., Wiggans, GR., ... Spurlock, DM. (2017). The genetic and biological basis of feed efficiency in mid-lactation Holstein dairy cows. *Journal of Dairy Science*, *100*(11), 9061 - 9075. https://doi.org/10.3168/jds.2017-12604

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

- **1** Interpretive Summary
- 2 The genetic basis of feed efficiency in dairy cattle
- 3 Hardie
- 4
- 5 Improving the conversion of feed into milk and body tissues in dairy cattle is important for
- 6 economic and environmental sustainability of the dairy industry. There is a genetic basis to the
- 7 utilization of feed by the dairy cow, but underlying genes that contribute to the trait are not well
- 8 identified. Results of this study suggest that many genes, each with a small effect, impact feed
- 9 efficiency and the genetic basis of feed efficiency varies with parity. Also, chromosomal regions
- 10 and candidate genes related to feed efficiency and other relevant biologically and economically
- 11 important traits are identified.
- 12

14	The genetic and biological basis of feed efficiency in mid-lactation Holstein dairy cows
15 16 17	L. C. Hardie, ^{*1} M. J. VandeHaar, [†] R. J. Tempelman, [†] K. A. Weigel, [‡] L. E. Armentano, [‡] G. R. Wiggans, [§] R. F. Veerkamp, [#] Y. de Haas, [#] M. P. Coffey, E. E. Connor, [§] M. D. Hanigan, [¶] C. Staples, ^{**} Z. Wang, ^{††} J. C. M. Dekkers, [*] and D. M. Spurlock [*]
18 19	*Department of Animal Science, Iowa State University, Ames, 50011
20	⁺ Department of Animal Science, Michigan State University, East Lansing, 48824
21	‡ Department of Dairy Science, University of Wisconsin, Madison, 53706
22	§Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA,
23	Beltsville, MD, 20705
24	#Animal Breeding and Genomics Centre, Wageningen UR Livestock Research, 6700 AH, the
25	Netherlands,
26	Scottish Agricultural College, Easter Bush, Midlothian, EH25 9RG, United Kingdom
27	Department of Dairy Science, Virginia Tech, Blacksburg, 24061
28	**Department of Animal Sciences, University of Florida, Gainesville, 32611
29	++Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton,
30	T6G 2P5 Canada.
31	Corresponding author:
32	Lydia Hardie, 324 Henning Bldg, University Park, PA 16802
33	lhardie@psu.edu
34 35 36	

37 ABSTRACT 38 39 The objective of this study was to identify genomic regions and candidate genes 40 associated with feed efficiency in lactating Holstein cows. In total, 4,916 cows with actual or 41 imputed genotypes for 60,671 SNP having individual feed intake, milk yield, milk composition, 42 and body weight records were used in this study. Cows were from research herds located in the 43 US, Canada, the Netherlands, and the United Kingdom. Feed efficiency defined as residual feed 44 intake (RFI) was calculated within location as the residual of the regression of dry matter intake 45 (DMI) on milk energy (MilkE), metabolic body weight (MBW), change in body weight, and systematic effects. For RFI, DMI, MilkE, and MBW, bivariate analyses were performed 46 47 considering each trait as a separate trait within parity group in order to estimate variance 48 components and genetic correlations between them. Animal relationships were established using 49 a genomic relationship matrix. Genome-wide association studies were performed separately by 50 parity group for RFI, DMI, MilkE, and MBW using the Bayes B method with a prior assumption 51 that 1% of SNP have a non-zero effect. One megabase (Mb) windows with greatest percentage 52 of the total genetic variation explained by the markers (TGVM) were identified, and adjacent windows with large proportion of the TGVM were combined and reanalyzed. Heritability 53 54 estimates for RFI were 0.14 (\pm 0.03) in primiparous cows and 0.13 (\pm 0.03) in multiparous 55 cows. Genetic correlations between primiparous and multiparous cows were 0.76 for RFI, 0.78 56 for DMI, 0.92 for MBW, and 0.61 for MilkE. No single 1-Mb window explained a significant 57 proportion of the TGVM for RFI; however, analyses identified adjacent regions explaining the greatest percentage of the TGVM on BTA 27 in primiparous cows and on BTA 4 in multiparous 58 59 cows. Candidate genes in these regions include beta-3 adrenergic receptor and leptin, 60 respectively. Between the 2 parity groups, 3 of the 10 windows with large effects on DMI

61	neighbored windows with greatest effects on RFI, but were not in the top 10 regions for MilkE or
62	MBW. This result suggests there is a genetic basis for feed intake that is unrelated to energy
63	consumption required for milk production or expected maintenance as determined by MBW. In
64	conclusion, feed efficiency measured as RFI is a polygenic trait exhibiting a dynamic genetic
65	basis and genetic variation distinct from that underlying expected maintenance requirements and
66	milk energy output.
67	Key words: GWAS, residual feed intake, feed efficiency, dairy
68 60	INTRODUCTION
09 70	Improvement in feed efficiency in dairy cattle is important in that it results in reduced
71	greenhouse gas emissions (Knapp et al., 2014), less land and resources needed for the production
72	of feed (von Keyserlingk et al., 2013), and economic benefits through reduced inputs for
73	equivalent output, as feed represents more than 50% of the total cost of producing milk (USDA-
74	NASS, 2015). Over the past 100 years, cows have become more feed efficient largely through
75	increases in milk production, thereby diluting the proportion of feed used for maintenance
76	(VandeHaar and St-Pierre, 2006). However, because this effect diminishes with each successive
77	incremental in production relative to body size, continued gains via this route are diminishing
78	(Vandehaar et al, 2016), warranting the exploration of the genetic basis of feed utilization in
79	lactating dairy cattle for targeted selection.
80	Identifying genetically superior animals for feed efficiency is a difficult task that requires
81	many animals with phenotypes in order to accurately predict an animal's genetic merit for feed
82	efficiency. Thus, large collaborations between European, North American, and Australasian
83	researchers have been established in order to pool feed intake data (Berry et al., 2014; de Haas et

84 al., 2015; Tempelman et al., 2015). In one collaboration, nearly 5,000 cows have been

85	genotyped and phenotyped for feed intake and related traits (Tempelman et al., 2015; Vandehaar
86	et al., 2016). Specifically, these cows have phenotypes for residual feed intake (RFI), which is
87	defined as the actual intake minus the intake that is expected based on level of production and
88	animal size (Koch et al., 1963). In mid-lactation dairy cows, RFI is often computed as the
89	residual of the regression of intake on a form of energy-corrected milk production, metabolic
90	body weight (MBW), and energy gained or lost in body tissues. Tempelman et al. (2015)
91	estimated RFI to have a heritability of 0.15 to 0.18 in this population, suggesting a genetic basis
92	to RFI.
93	Presently, a limited number of genome-wide association studies (GWAS) have been
94	performed in order to identify QTL and subsequently candidate genes related to feed efficiency
95	traits in dairy cattle. These studies have either utilized relatively small populations with limited
96	power to detect QTL (Verbyla et al., 2010; Yao et al., 2013) or investigated the genetic
97	architecture of feed efficiency in non-lactating heifers (Pryce et al., 2012) or only primiparous
98	cows (Veerkamp et al., 2012; Tolkamp et al., 2014). However, biological mechanisms
99	underlying variation in feed efficiency in growing animals may not be the same as that for
100	mature lactating animals (Spurlock and VandeHaar, 2013).
101	The first goal of this study was to identify genomic regions associated with RFI in
102	lactating Holstein cows, and compare those regions to QTL influencing traits underlying RFI,
103	including DMI, maintenance energy requirements, and milk energy output. The second goal was
104	to identify potential candidate genes that are located within RFI QTL and known to function
105	within physiological pathways relevant to feed efficiency. To that end, we utilized data from
106	nearly 5,000 lactating Holstein cows to identify genomic regions and candidate genes associated

107 with RFI and related traits. Differences in the genetic basis of RFI associated with parity were108 also explored.

109

124

MATERIALS AND METHODS

110 Data Collection

111 For detailed information on the collection of phenotypes used in this project, see 112 Tempelman et al. (2015). For the current study, phenotypes meeting the criteria outlined below 113 were available on 6,453 cows from research stations within the United States, Canada, the 114 Netherlands, and the United Kingdom. Records were very heterogeneous as described in 115 Tempelman et al. (2015), but for each cow, most of the research stations provided daily feed 116 intake and milk production, a minimum of starting and ending BW for the recording period and 117 biweekly observations of milk fat, protein, and lactose percentages. Only measurements collected between 50 and 200 DIM were used because this is when the cow is at peak DMI, and 118 119 BW is relatively stable.

120 Individual measurements were edited and then combined to form one 28-day average 121 phenotype each for DMI, milk energy (**MilkE**; determined as the sum of the energy in the fat, 122 protein, and lactose in the milk; NRC, 2001), MBW ($BW^{0.75}$), and change in BW (ΔBW). 123 Phenotypes for RFI were calculated similarly to Tempelman et al. (2015) within location as the

residual of the regression of DMI on MilkE, MBW, and Δ BW plus systematic effects:

125
$$DMI_{ijlm} = parity_i + \sum_{k=0}^{5} b_{ik} DIM_{ijlm}^k + \beta_1 MilkE_{ijlm} + \beta_2 MBW_{ijlm} + \beta_3 \Delta BW_{ijlm} + E_j + D_l(E_j) + T_m + RFI_{ijlm}$$
126

127 where *parity_i* is the fixed effect of parity (primiparous or multiparous), $\sum_{k=0}^{5} b_{ik} DIM_{ijlm}^{k}$ is the 5th-

128 order Legendre polynomial regression of DMI on DIM with parity-specific regression

129	coefficients b_{ik} , β_1 is the partial regression coefficient of DMI on MilkE, β_2 is the partial
130	regression coefficient of DMI on MBW, β_3 is the partial regression coefficient of DMI on Δ BW,
131	E_j is the fixed effect of experiment, $D_l(E_j)$ is the random effect of diet within experiment, T_m is
132	the random effect of test date, and RFI_{ijlm} is the random error term and the phenotype used for
133	RFI in further analyses. Test date was defined as the middle date of the window during which the
134	cow had data recorded.
135	Genotypes were determined using various commercially available SNP chips, with the
136	number of genotypes per cow ranging from 3K to 777K. All genotype data were processed by
137	the Animal Genomics and Improvement Laboratory (AGIL, http://aipl.arsusda.gov; Wiggans et
138	al., 2014). A final data set with genotypes for 60,671 SNPs for each animal was generated using
139	imputation methods employed through the software findhap
140	(http://aipl.arsusda.gov/software/findhap/). In total, 4,916 cows had genotypes and phenotypes
141	for all traits, and each cow had up to one primiparous and one multiparous record used (Table 1).
142	Therefore, 3075 primiparous records and 2667 multiparous records were used, and after
143	imputation, these cows had 3.0 and 3.1 percent missing genotypes, respectively. Because a
144	permanent environmental effect was not fitted, if a cow had multiple multiparous records, the
145	parity used was randomly chosen.
146	Genetic Parameters
147	Variance components, heritabilities, and genetic correlations for each trait (RFI, DMI,
148	MilkE, and MBW) between first and second or greater parities were estimated using bivariate
149	analyses in ASReml 4.0 (Gilmour et al., 2015). For each trait, the phenotype measured during
150	first parity was considered as trait one and the phenotype measured in a second or greater parity
151	was considered trait two. While little to no culling based on feed efficiency was experienced in

- 152 the herds providing data, by using bivariate analyses, we accounted for any bias in variance
- 153 component estimation that may have been due to culling. For DMI, MilkE, and MBW, within
- 154 each trait, the following model was used:

155
$$y_{ijlmno} = \mu_i + \sum_{k=1}^{5} DIM_{ijlmno}^k + L_{ij} + D_m (E_l(L_j))_i + T_n (L_j)_i + g_{io} + \varepsilon_{ijlmno}$$

156 where parity-specific (primiparous or multiparous) fixed and random effects were denoted by

157 subscript *i*, y_{ijlmno} is the observed DMI, MilkE, or MBW with overall mean μ_i , $\sum_{k=1}^{5} DIM_{ijlmno}^k$ is the

- 158 5th order Legendre polynomial regression of y on DIM, L_j is the fixed class effect of location (12
- levels), $D_m(E_l(L_j))_i$ is the random effect of diet within experiment within location, $T_n(L_j)_i$ is the
- 160 random effect of test date within location, g_{io} is the random genetic effect of animal, and ε_{ijlmno} is

161 the random error. Random effects were assumed to follow multivariate normal distributions with

162 mean equal to zero and covariance matrix:

$$163 \quad \begin{bmatrix} \mathbf{u}_{DEL_1} \\ \mathbf{u}_{DEL_2} \\ \mathbf{u}_{TL_1} \\ \mathbf{u}_{TL_2} \\ \mathbf{g}_1 \\ \mathbf{g}_2 \\ \mathbf{e}_1 \\ \mathbf{e}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{I} \sigma_{DEL_1, DEL_2}^2 & \mathbf{I} \sigma_{DEL_2, DEL_2} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{I} \sigma_{DEL_1, DEL_2} & \mathbf{I} \sigma_{DEL_2}^2 & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{I} \sigma_{TL_1, TL_2} & \mathbf{I} \sigma_{TL_2} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{I} \sigma_{TL_1, TL_2} & \mathbf{I} \sigma_{TL_2}^2 & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{G} \sigma_{g_1}^2 & \mathbf{G} \sigma_{g_1, g_2} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{G} \sigma_{g_1, g_2}^2 & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \sigma_{e_1, e_2} & \mathbf{I} \sigma_{e_1, e_2} \\ \mathbf{0} & \mathbf{I} \sigma_{e_1, e_2} & \mathbf{I} \sigma_{e_2}^2 \end{bmatrix}$$

where **I** denotes the identity matrix; **G** denotes the genomic relationship matrix that was constructed according to the first method of VanRaden (2008) using the 4,916 animals with phenotypes and genotypes; $\sigma_{DEL_i}^2$ denotes the variance component for the interaction of diet within experiment within location for parity group *i* with subscripts 1 and 2 denoting primiparous

and multiparous records, respectively; $\sigma_{\scriptscriptstyle DEL_1 \: DEL_2}$ denotes the covariance between primiparous and 168 multiparous cows for the interaction of diet within experiment within location; σ_{TL}^2 denotes the 169 variance component for location specific effects of test dates for parity group *i* with σ_{TLTL_0} 170 denoting the covariance between parity groups for location specific effects of test dates; $\sigma_{g_i}^2$ 171 denotes the animal polygenic variance for parity group *i* with $\sigma_{_{g_{1},g_{2}}}$ denoting the polygenic 172 covariance between parity groups; and $\sigma_{e_i}^2$ denotes the residual variance component for parity 173 group *i* with σ_{e_i,e_j} denoting the residual covariance between the two parity groups. Because 174 175 systematic effects were accounted for during calculation of RFI, only the animal effect was 176 considered in the bivariate analysis between RFI estimated in primiparous and multiparous cows. 177 Genome-wide Association Analyses 178 Genome-wide association analyses were performed to identify QTL related to RFI, DMI, 179 MBW, and MilkE using GenSel version 4.0 (Fernando and Garrick, 2009; Garrick and Fernando, 180 2013). Because the current version of GenSel does not accommodate random effects other than 181 marker effects, adjusted phenotypes were calculated as the sum of the animal and error terms 182 from univariate analyses according to the models described above. Method Bayes B was used to 183 identify QTL using the following model:

184
$$y_i = \mu + \sum_{j=1}^k \delta_j m_{ij} \alpha_j + e_i$$

185 where y_i is the phenotype, μ is the overall mean, $\sum_{j=1}^{k} \delta_j m_{ij} \alpha_i$ is the genomic breeding value,

186 modeled as the sum across k SNPs, with inclusion factor δ_j (coded 0 or 1 with prior probabilities π and 1-

- 187 π , respectively, π set equal to 0.99), genotype *m* (coded as 0, 1, 2, or average for missing genotypes),
- allele substitution effect α_i for SNP *j*, and random error e_i . Method Bayes B assumes that the effect of

189	each SNP follows an independent, normal distribution with null mean and unknown SNP-specific
190	variance. Therefore, the variance of each SNP is allowed to differ. All non-monomorphic SNP were
191	used, and missing genotypes were replaced with the average genotype for that SNP (Boddicker
192	et al., 2012). GenSel cannot accommodate missing values for SNP so by replacing the missing
193	genotype with the mean genotype for that SNP, that genotype does not contribute to the estimate
194	of the SNP effect. Priors for genetic and residual variances used in the above model were
195	estimated using method Bayes C with all SNP included in the model ($\pi = 0$) (Habier et al., 2011).
196	For this method, SNP effects are expected to follow a normal distribution with null mean and
197	common variance σ_{α}^{2} (Fernando and Garrick, 2013). For both BayesB and Bayes C Markov
198	chain Monte Carlo (MCMC) sampling with a minimum of 120,000 iterations was used to
199	estimate posterior means of SNP substitution effects with the first 20,000 iterations discarded.
200	Convergence was assessed through visual inspection of the samples of the genetic variance.
201	The SNPs were binned into non-overlapping 1-Mb windows according to the UMD 3.1
201 202	The SNPs were binned into non-overlapping 1-Mb windows according to the UMD 3.1 map of the Bos taurus genome (<u>http://bovinegenome.org/</u> ; Genbank accession:
201 202 203	The SNPs were binned into non-overlapping 1-Mb windows according to the UMD 3.1 map of the Bos taurus genome (<u>http://bovinegenome.org/;</u> Genbank accession: DAAA00000000.2), and the proportion of genetic variation explained by each window was
201202203204	The SNPs were binned into non-overlapping 1-Mb windows according to the UMD 3.1 map of the Bos taurus genome (http://bovinegenome.org/; Genbank accession: DAAA00000000.2), and the proportion of genetic variation explained by each window was estimated following Wolc et al. (2012). Under a pure polygenic model, it was assumed that each
 201 202 203 204 205 	The SNPs were binned into non-overlapping 1-Mb windows according to the UMD 3.1 map of the Bos taurus genome (http://bovinegenome.org/; Genbank accession: DAAA00000000.2), and the proportion of genetic variation explained by each window was estimated following Wolc et al. (2012). Under a pure polygenic model, it was assumed that each 1-Mb window explained an equal amount of the total genetic variance. Thus, the bovine genome
 201 202 203 204 205 206 	The SNPs were binned into non-overlapping 1-Mb windows according to the UMD 3.1 map of the Bos taurus genome (http://bovinegenome.org/; Genbank accession: DAAA00000000.2), and the proportion of genetic variation explained by each window was estimated following Wolc et al. (2012). Under a pure polygenic model, it was assumed that each 1-Mb window explained an equal amount of the total genetic variance. Thus, the bovine genome was divided into 2,676 1-Mb windows, such that the expected percent of the total genetic
 201 202 203 204 205 206 207 	The SNPs were binned into non-overlapping 1-Mb windows according to the UMD 3.1 map of the Bos taurus genome (http://bovinegenome.org/; Genbank accession: DAAA00000000.2), and the proportion of genetic variation explained by each window was estimated following Wolc et al. (2012). Under a pure polygenic model, it was assumed that each 1-Mb window explained an equal amount of the total genetic variance. Thus, the bovine genome was divided into 2,676 1-Mb windows, such that the expected percent of the total genetic variation explained by the markers (TGVM) in each 1-Mb window is 0.037%. For each
 201 202 203 204 205 206 207 208 	The SNPs were binned into non-overlapping 1-Mb windows according to the UMD 3.1 map of the Bos taurus genome (http://bovinegenome.org/; Genbank accession: DAAA0000000.2), and the proportion of genetic variation explained by each window was estimated following Wolc et al. (2012). Under a pure polygenic model, it was assumed that each 1-Mb window explained an equal amount of the total genetic variance. Thus, the bovine genome was divided into 2,676 1-Mb windows, such that the expected percent of the total genetic variation explained by the markers (TGVM) in each 1-Mb window is 0.037%. For each iteration, the TGVM within each window was calculated by multiplying the SNP effects by each
 201 202 203 204 205 206 207 208 209 	The SNPs were binned into non-overlapping 1-Mb windows according to the UMD 3.1 map of the Bos taurus genome (http://bovinegenome.org/; Genbank accession: DAAA00000000.2), and the proportion of genetic variation explained by each window was estimated following Wolc et al. (2012). Under a pure polygenic model, it was assumed that each 1-Mb window explained an equal amount of the total genetic variance. Thus, the bovine genome was divided into 2,676 1-Mb windows, such that the expected percent of the total genetic variation explained by the markers (TGVM) in each 1-Mb window is 0.037%. For each iteration, the TGVM within each window was calculated by multiplying the SNP effects by each individual's SNP genotypes, summing across all SNPs in that window, and calculating the
 201 202 203 204 205 206 207 208 209 210 	The SNPs were binned into non-overlapping 1-Mb windows according to the UMD 3.1 map of the Bos taurus genome (http://bovinegenome.org/; Genbank accession: DAAA00000000.2), and the proportion of genetic variation explained by each window was estimated following Wolc et al. (2012). Under a pure polygenic model, it was assumed that each 1-Mb window explained an equal amount of the total genetic variance. Thus, the bovine genome was divided into 2,676 1-Mb windows, such that the expected percent of the total genetic variation explained by the markers (TGVM) in each 1-Mb window is 0.037%. For each iteration, the TGVM within each window was calculated by multiplying the SNP effects by each individual's SNP genotypes, summing across all SNPs in that window, and calculating the variance across all individuals (Wolc et al., 2012). The proportion of variance explained by the
 201 202 203 204 205 206 207 208 209 210 211 	The SNPs were binned into non-overlapping 1-Mb windows according to the UMD 3.1 map of the Bos taurus genome (http://bovinegenome.org/; Genbank accession: DAAA00000000.2), and the proportion of genetic variation explained by each window was estimated following Wolc et al. (2012). Under a pure polygenic model, it was assumed that each 1-Mb window explained an equal amount of the total genetic variance. Thus, the bovine genome was divided into 2,676 1-Mb windows, such that the expected percent of the total genetic variation explained by the markers (TGVM) in each 1-Mb window is 0.037%. For each iteration, the TGVM within each window was calculated by multiplying the SNP effects by each individual's SNP genotypes, summing across all SNPs in that window, and calculating the variance across all individuals (Wolc et al., 2012). The proportion of variance explained by the window was calculated by the variance across all markers in

iterations were considered the most probable in harboring a QTL and declared significant (Wolc
et al., 2012). Additional windows of interest were defined as any non-significant window of the
ten windows explaining the greatest proportion of TGVM for each analysis.

216 Under the hypothesis that SNP located in adjacent windows explaining large proportions 217 of the total genetic variance were doing so because of linkage disequilibrium (LD) with a single 218 QTL, these windows were combined into an extended window to estimate the total amount of 219 genetic variance explained by that QTL. Specifically, the decision to combine windows was 220 made if two adjacent or nearly adjacent windows were among the ten explaining the greatest 221 proportion of TGVM for each analysis, and the window was extended beyond two Mb so that it 222 was continuous and to include any other adjacent windows in the two percent of windows 223 explaining the greatest proportion of TGVM for each analysis. As with 1-Mb windows, 224 confidence that an extended window harbored a QTL was tested by considering whether or not it 225 explained a greater than expected percent of the TGVM. To calculate the expected TGVM for 226 these extended windows, the expected percentage of the TGVM for each 1-Mb window 227 (0.037%) was multiplied by the number of 1-Mb windows that were combined. Estimates of the 228 percentage of the TGVM of each extended window were generated using MCMC sampling with 120,000 iterations with every 100th iteration of the last 100,000 iterations stored. As with 1-Mb 229 230 windows, a threshold of 0.80 was used such that if greater than 80% of the iterations generated a 231 percentage of the TGVM greater than expected for the extended window, the region was defined 232 as significant and harboring a QTL.

233 Identification of Candidate Genes

Positional candidate genes that may harbor mutations underlying the genetic variance in
 windows with greatest percentage of the TGVM were explored using the NCBI genome database

236	(http://www.ncbi.nlm.nih.gov/genome/) and BioMart (www.ensembl.org). Focus was on genes
237	located in significant regions or 2-Mb up and downstream of the significant 1-Mb windows as
238	recommended based on simulation (Garrick and Fernando, 2013) or within the extended
239	window. Prior evidence of QTL near or in significant 1-Mb, extended windows, or windows of
240	interest was explored using Animal QTLdb (<u>www.animalgenome.ofg/QTLdb/</u> ; Hu et al., 2016).
241	RESULTS AND DISCUSSION
242	Records from a total of 4,916 cows were used, and 826 of these cows contributed both
243	primiparous and multiparous phenotypes (Table 1). On average, multiparous cows had greater
244	DMI, MBW, and MilkE compared to primiparous cows (Table 2). The range in RFI of
245	multiparous cows was approximately twice as great as that of primiparous cows.
246	Genetic Parameters
247	Feed efficiency is a complex trait (an outcome) that is influenced by multiple underlying
248	traits, including DMI, milk production, and maintenance energy requirements. Heritability
249	estimates for DMI, MBW, and MilkE in primiparous and multiparous cows ranged from 0.20 to
250	0.51 (Table 2), which is within the range of estimates previously established for these traits (for

0.51 (Table 3), which is within the range of estimates previously established for these traits (for 250251 example, see Veerkamp, 1998; 2012). Our research also establishes a significant genetic 252 component for RFI with heritability estimates ranging from 0.13 to 0.18 based on the current 253 genomic analyses (Table 3) and traditional pedigree (Tempelman et al., 2015). Identifying and 254 understanding the function of biological pathways underlying this genetic regulation of RFI 255 could aid in the development of genetic, management, or nutritional strategies to improve feed 256 efficiency in dairy herds. However, a challenge in understanding this genetic architecture is that 257 RFI appears to be a truly multigenic trait that is influenced by many genes, each having a 258 relatively small effect (Verbyla et al., 2010; Pryce et al., 2012; Yao et al., 2013). Thus, it is

259 important to minimize non-genetic factors that may compromise the ability to identify specific 260 genomic regions of importance. In the current study, we analyzed data separately for 261 primiparous and multiparous cows because of potential physiological differences between 262 parities that could influence the RFI phenotype. Most notably, primiparous cows typically 263 continue to grow in frame throughout their first lactation (Perotto et al., 1992) and this may 264 impact the utilization of energy in primiparous compared to multiparous cows. It is quite notable 265 that the range of RFI phenotypes was greater for multiparous cows compared to primiparous 266 cows in the current study, resulting in very different estimates of genetic variance for 267 primiparous and multiparous cows. Using the majority of the same cows but pedigree 268 relationships and a different modelling strategy, Lu et al. (2017) also generated numerically 269 larger estimates of genetic variance for multiparous cows. However, unlike the present study, 270 estimates of residual variance in multiparous cows were nearly three times estimates in 271 primiparous cows, leading to a much greater heritability estimate in primiparous cows (0.39) 272 than in multiparous cows (0.22). Additionally, the genetic correlation between RFI in 273 primiparous and RFI in multiparous cows was less than 1 (Table 3), further supporting that the 274 underlying genetic variation differs in part between primiparous versus multiparous cows.

275 Genome-wide Association Study for RFI

The GWAS demonstrated that even though the regulation of RFI includes a genetic component, this regulation is highly polygenic with no individual region explaining a large proportion of the total genetic variation. All GWAS converged. In primiparous cows, the 1-Mb window with the greatest TGVM was located at 1 Mb on BTA 12 (Table 4), while in multiparous cows the window with the greatest TGVM was found at 33 Mb on BTA 28 (Table 5). No single window was considered statistically significant for either primiparous or

282	multiparous cows (Table S1 and S2). However, in primiparous cows, multiple windows in the
283	region of 31 Mb through 38 Mb on BTA 27 were identified as regions of interest, while multiple
284	windows in the region of 93 to 96 Mb on BTA 4 were regions of interest for multiparous cows.
285	Therefore, adjacent windows in these regions were combined into extended windows to
286	determine if they explained a greater than expected proportion of the TGVM. Together, the
287	extended windows on BTA 27 explained 2.13% of the TGVM, and 95.3% of these iterations had
288	a greater TGVM than expected for the region (Table 6). Thus a significant QTL for RFI in
289	primiparous cows resides in the region of 31 to 38 Mb on BTA 27 (Supplemental Figure S1). In
290	multiparous cows, the extended region on chromosome 4 explained 1.5% of TGVM and 79.5%
291	of the iterations explained greater than the expected proportion of TGVM.
292	The significant QTL on BTA 27 has previously been associated with variation in DMI in
293	primiparous cows (Veerkamp et al., 2012) and harbors multiple genes (Table 7). Among the
294	genes in this region, the gene that encodes the beta-3 adrenergic receptor (ADRB3), beginning at
295	32.9 Mb, is particularly intriguing as a candidate gene for RFI because of the important role for
296	beta adrenergic receptors in the mobilization and utilization of energy. In particular, agonists of
297	the beta-adrenergic receptors have long been recognized as repartitioning agents that promote
298	growth efficiency in meat animals (Etherton and Smith, 1991), although their role in lactating
299	animals remains largely undefined. The identification of a significant QTL for RFI that includes
300	the ADRB3 gene, combined with evidence that this gene is expressed in bovine adipose (Sumner
301	and McNamara, 2007) and mammary (Inderwies et al., 2003) tissues identify ADRB3 as a novel
302	positional candidate gene for future investigation of physiological pathways underlying genetic
303	differences for RFI in lactating Holstein cows.

304 The extended window on BTA 4 fell just short of reaching the significance threshold 305 utilized in this study. Nevertheless, among the genes harbored within this region of BTA 4 is the 306 gene that encodes the hormone leptin (*LEP*), starting at 93.2 Mb. Leptin is produced in adipose 307 tissue, proportionally to mass, and functions in part to maintain energy balance by regulating 308 appetite (Barb et al., 2006; Henry et al., 1999). Leptin signals through the central nervous system 309 to elicit changes in feeding behavior, metabolism and endocrine physiology (Frühbeck et al., 310 1998) and also stimulates lipolysis through autocrine or paracrine effects on adipocytes 311 (Frühbeck et al., 1997, 1998; Siegrist-Kaiser et al., 1997). Expression of this gene has 312 previously been associated with variation in RFI in dairy cattle (Xi et al., 2015). Comparing 313 mRNA levels in serum samples of cows with low versus high RFI, these authors found that *LEP*, 314 and other genes in leptin-neuropeptide Y signaling pathway, were down-regulated in low RFI 315 cows, suggesting that this pathway may affect feed efficiency. In the current study, the 1-Mb 316 window on BTA 4 beginning at 95 Mb was also identified as a region of interest for DMI in 317 multiparous cows while variants in LEP have previously been associated with variation in feed 318 intake and energy balance albeit in primiparous dairy cattle (Liefers et al., 2002, 2005; Banos et 319 al., 2008).

Prior studies that identified QTL for RFI were primarily focused on RFI in growing dairy cattle or beef steers, and studies of relatively small populations of lactating mature cows (Table 8). An earlier analysis using novel methodology and a subset of data used in the current study identified 188 SNP s associated with RFI (Yao et al., 2013). Only one region of the 10 most significant regions reported by Yao et al. (2013) and the current study were in common. However, Yao et al. (2013) and the current study each identified a region on BTA 11 that fell within the same confidence interval identified in beef cattle (Sherman et al., 2009). Many of the

327	significant or most explanatory regions were unique across studies. This observation further
328	supports the conclusion of the current study that RFI is a highly polygenic trait, and may suggest
329	that the identification of QTL influencing RFI is highly sensitive to specific populations,
330	statistical approaches, and definition of RFI studied.
331	Using data from 527 primiparous cows, Verbyla et al., (2010) predicted that there are 472
332	QTL for energy balance, which is mathematically equivalent to RFI (Veerkamp, 1998). With
333	only 527 phenotypes, power was not high enough to be able to detect significant QTL, but the
334	authors suggested with more phenotypes, GWAS could lead to identification of possible
335	candidate genes related to energy balance. As such, we used 4,916 cows in the present study.
336	However, the improvements in power were limited by dividing the records into primiparous and
337	multiparous groups and the lower heritability estimated in this study than in Verbyla et al.
338	<mark>(2010)</mark> .
339	Genome-wide Association Study for Underlying Traits
340	Similar to RFI, convergence was achieved and only a small proportion of genetic
341	variance was explained by any single 1-Mb window for DMI, MilkE, or MBW in primiparous
342	(Figure 1) or multiparous (Figure 2) cows. In primiparous cows, there were 7 significant
343	windows across the 4 traits, including 3 windows for DMI (BTA 10, 25, and 26) and 4 windows
344	for MBW (BTA 4, 5, 6, and 18). The region surrounding 105 Mb on BTA 5 has previously been
345	identified as a QTL for body size traits in beef cattle (Saatchi et al., 2014b), and the window on
346	BTA 6 was also a region of interest for MilkE in primiparous cows.
347	In multiparous cows, 4 windows (BTA 14, 18, 22, and 28) were considered significant
348	and all were associated with MBW (Table 5). The gene-rich region on BTA 18 (Table 9) was
349	previously identified in the United States dairy cattle population as related to body size traits. A

350 SNP in this window, ss86324977, had the greatest probability of a non-zero effect on MBW in 351 the present study and was previously identified as explaining the most variation for body depth, 352 sire and daughter calving ease, sire and daughter stillbirth, rump width, stature, and strength 353 (Cole et al., 2009). Cole et al. (2009) identified this SNP as located in an intron of the sialic acid 354 binding IG-like lectin (Siglec)-5 gene, which has been shown to be linked to a leptin deficiency 355 that may cause a delay in parturition, and consequently, larger calf size. The region identified on 356 BTA 14 has been associated with body weight traits in beef cattle (Saatchi et al., 2014b), and the 357 region on BTA 28, has been identified as a QTL for birth weight in Angus cattle (McClure et al., 358 2010).

359 In addition to the significant QTL defined by the 1-Mb windows, extended windows were 360 investigated for 2 additional regions associated with MBW. In primiparous cows, windows 361 beginning at 102 and 103 Mb on BTA 3 were combined. This extended window explained 1.05 362 percent of TGVM and 78.6% of iterations explained greater variance than expected. For 363 multiparous cows, the 1-Mb windows on BTA 7 from 92 to 93 Mb were combined. This 364 extended window explained 1.59 percent of TGVM and 92.2% of iterations explained greater 365 variance than expected. Although only the extended region on BTA 7 achieved statistical 366 significance as defined for this study, both regions have previously been associated with BW 367 traits in cattle. The extended region on BTA 3 was previously identified as a QTL for body size 368 related traits, including calf size and calving ease in Charolais cattle (Purfield et al., 2015). 369 Likewise, the extended region on BTA 7 was identified in previous studies in beef cattle for 370 body-size related traits. This region has been significantly associated with birth weight, weaning 371 weight, yearling weight, mature weight, and rib eye area across multiple breeds of beef cattle 372 (Snelling et al., 2010; Saatchi et al., 2014b; Weng et al., 2016).

373 *Pleiotropic or closely linked regions*. Overlapping or nearby windows of interest for 374 multiple traits were explored because of the possibility of a pleiotropic QTL causing genetic 375 variation in multiple traits. Regions in common between DMI and RFI but not between DMI 376 with MilkE or MBW were of particular interest because of the possibility that genetic variation 377 here could be exploited to reduce DMI without adversely impacting MilkE or MBW. Three such 378 regions were identified on BTA 12 and BTA 18 in primiparous cows and on BTA 4 in 379 multiparous cows. Additional regions that may characterize pleiotropic effects on multiple traits 380 include the window on BTA 6 that was a region of interest for MilkE and MBW in primiparous 381 cows; BTA 13 from 43 to 46 Mb that was a region of interest for MilkE and RFI in multiparous 382 cows; and BTA 28 from 20 to 33 that included regions of interest for all traits evaluated in 383 multiparous cows. 384 Pleiotropy is not surprising in light of the genetic correlations between these traits. Using 385 nearly 2,000 US cows and more than 2,000 cows from the Netherlands, up to half of which were 386 in common with the current study, genetic correlations of 0.70 (the Netherlands) and 0.89 (US) 387 were estimated between RFI and DMI (Manzanilla-Pech et al., 2016). In both the US and Dutch 388 population of cows, genetic correlations were estimated at 0.63 between DMI and MilkE and at 389 0.56 in the Netherlands and 0.46 in the US populations between DMI and MBW. 390 CONCLUSIONS 391 392 This study characterized the genetic architecture of RFI and related traits of DMI, milk 393 energy and MBW. In general, these traits are highly polygenic with no individual region 394 explaining large proportions of the total genetic variation. Furthermore, the genetic basis of

these traits is not static throughout the life of the dairy cow as indicated by moderate genetic

396 correlations between primiparous and multiparous cows. Nevertheless, 2 noteworthy QTL were

397	identified; in primiparous cows, a significant QTL was identified for RFI on BTA 27 that harbors
398	the positional candidate gene ADRB3, and the region of BTA 4 that harbors the gene encoding
399	LEP was identified as a region of interest for RFI and DMI in multiparous cows. Overall, these
400	results illustrate the physiological complexity underlying the genetic regulation of feed
401	efficiency in lactating dairy cattle.
402	ACKNOWLEDGMENTS
403	This project received financial support from the USDA National Needs Graduate
404	Fellowship Competitive Grant no. 2013-38420-20496 and the Agriculture and Food Research
405	Initiative Competitive Grant no. 2011-68004-30340.
406	REFERENCES
407	
408	Banos, G., J.A. Woolliams, B.W. Woodward, A.B. Forbes, and M.P. Coffey. 2008. Impact of
409	single nucleotide polymorphisms in leptin, leptin receptor, growth hormone receptor, and
410	diacylglycerol acyltransferase (DGAT1) gene loci on milk production, feed, and body
411	energy traits of UK dairy cows. J. Dairy Sci. 91:3190-3200. doi:10.3168/jds.2007-0930.
412	
413	Barb, C.R., R.R. Kraeling, G.B. Rampacek, and G.J. Hausman. 2006. The role of neuropeptide Y
414	and interaction with leptin in regulating feed intake and luteinizing hormone and growth
415	hormone secretion in the pig <i>Reproduction</i> 131:1127–1135. doi:10.1530/rep.1.01108
416	
417	Berry D.P. M.P. Coffey, J.F. Pryce, Y. de Haas, P. Løvendahl, N. Krattenmacher, J. J.
-117 /18	Crowley, A. Wang, D. Snurlock, K. Weigel, K. Macdonald, and R. E. Veerkamp. 2014
-10 /10	International genetic evaluations for feed intake in dairy cattle through the collation of data
420	from multiple sources <i>L. Dairy Sci</i> 07:3804-3005
420	from multiple sources. J. Durry Sci. 71.5074-5705.
421	Roddicker N EH Weide PPP Rowland IK Lunney DI Corrick IM Reservend ICM
422	Dekkers 2012 Evidence for a major OTL associated with host response to porcine
423	menulyative and requirestory syndrome virus shellenge. I Avin. Sci. 00:1722, 1746
424	dei:10.2527/iec2011.4464
425	dol:10.2527/jas2011-4464.
426	
427	Bolormaa, S., B. J. Hayes, K. Savin, R. Hawken, W. Barendse, P. F. Artnur, R. M. Herd, and M.
428	E. Goddard. 2011. Genome-wide association studies for feed lot and growth traits in cattle.
429	J. Anim. Sci. 89:1684-1697.
430	
431	Cole, J.B., P.M. VanKaden, J.K. O'Connell, C.P. Van Tassell, T.S. Sonstegard, R.D. Schnabel,
432	J.F. Taylor, and G.R. Wiggans. 2009. Distribution and location of genetic effects for dairy
433	traits. J. Dairy Sci. 92:2931–2946. doi:10.3168/jds.2008-1762.

434	
435	de Haas, Y., J.E. Pryce, M.P.L. Calus, E. Wall, D.P. Berry, P. Løvendahl, N. Krattenmacher, F.
436	Miglior, K. Weigel, D. Spurlock, K.A. Macdonald, B. Hulsegge, and R.F. Veerkamp. 2015.
437	Genomic prediction of dry matter intake in dairy cattle from an international data set
438	consisting of research herds in Europe, North America, and Australasia. J. Dairy Sci.
439	98:6522–6534. doi:10.3168/jds.2014-9257.
440	J
441	
442	Etherton, T.D., and S.B. Smith, 1991, Somatotropin and Badrenergic agonists: their efficacy and
443	mechanisms of action. J. Anim. Sci. 69(Suppl.2):2–26.
444	
445	Fernando, R.L., and D.J. Garrick, 2009. GenSel-User manual for a portfolio of genomic selection
446	related analyses. Third Edition. Iowa State University.
447	https://www.biomedcentral.com/content/supplementary/1471-2105-12-186-s1.pdf
448	(Accessed 12 January 2017).
449	(11000000000000000000000000000000000000
450	Fernando, R.L., and D.J. Garrick, 2013, Bayesian methods applied to GWAS. In Methods in
451	Molecular Biology, 237–274.
452	
453	Frühbeck, G., M. Aguado, and J.A. Martínez, 1997. In vitro lipolytic effect of leptin on mouse
454	adipocytes: evidence for a possible autocrine/paracrine role of leptin. <i>Biochem. Biophys.</i>
455	<i>Res. Commun.</i> 240:590–594. doi:10.1006/bbrc.1997.7716.
456	
457	Frühbeck, G., S.A. Jebb, and A.M. Prentice. 1998. Leptin: Physiology and pathophysiology.
458	<i>Clin. Physiol.</i> 18:399–419. doi:10.1046/j.1365-2281.1998.00129.x.
459	
460	Garrick, D. J. and R. L. Fernando, R. L. 2013. Implementing a QTL detection study (GWAS)
461	using genomic prediciton methodology. In Methods in Molecular Biology. 275–298.
462	
463	Gilmour, A.R., B.J. Gogel, R.B. Cullis, S.J. Welham, and R. Thompson. 2015. ASReml User
464	Guide. Release 4.1.
465	http://www.vsni.co.uk/downloads/asreml/release4/UserGuideStructural.pdf. (Accessed 12
466	January 2017).
467	
468	Habier, D., R.L. Fernando, K. Kizilkaya, and D.J. Garrick. 2011. Extension of the Bayesian
469	alphabet for genomic selection. BMC Bioinformatics. 12:186. doi:10.1186/1471-2105-12-
470	186.
471	
472	Henry, B.A., J.W. Goding, W.S. Alexander, A.J. Tilbrook, B.J. Canny, F. Dunshea, A. Rao, A.
473	Mansell, and I.J. Clarke. 1999. Central administration of leptin to ovariectomized ewes
474	inhibits food intake without affecting the secretion of hormones from the pituitary gland:
475	Evidence for a dissociation of effects on appetite and neuroendocrine function.
476	Endocrinology. 140:1175–1182. doi:10.1210/en.140.3.1175.
477	
478	Hu, Z.L., C.A. Park, and J.M. Reecy. 2016. Developmental progress and current status of the
479	Animal QTLdb. Nucleic Acids Res. 44:D827–D833. doi:10.1093/nar/gkv1233.

480	
481	Inderwies, T., M.W. Pfaffl, H.H.D. Meyer, J.W. Blum, and R.M. Bruckmaier. 2003. Detection
482	and quantification of mRNA expression of alpha- and beta-adrenergic receptor subtypes in
483	the mammary gland of dairy cows. Domest. Anim. Endocrinol. 24:123-135.
484	
485	Knapp, J.R., G.L. Laur, P.A. Vadas, W.P. Weiss, and J.M. Tricarico. 2014. Invited review:
486	Enteric methane in dairy cattle production: Quantifying the opportunities and impact of
487	reducing emissions. J. Dairy Sci. 97:3231-3261. doi:10.3168/jds.2013-7234.
488	
489	Koch, R.M., L.A. Swiger, D. Chambers, and K.E. Gregory. 1963. Efficiency of feed use in beef
490	cattle. J. Anim. Sci. 22:486–494.
491	
492	Liefers, S.C., M.F. te Pas, R.F. Veerkamp, and T. van der Lende. 2002. Associations between
493	leptin gene polymorphisms and production, live weight, energy balance, feed intake, and
494	fertility in Holstein heifers. J. Dairy Sci. 85:1633–1638.
495	
496	Liefers, S.C., R.F. Veerkamp, M.F. te Pas, C. Delavaud, Y. Chilliard, M. Platje, and T. van der
497	Lende. 2005. Leptin promoter mutations affect leptin levels and performance traits in dairy
498	cows. Anim. Genet. 36:111-118.
499	
500	Lu, D., S. Miller, M. Sargolzaei, M. Kelly, G. V. Voort, T. Caldwell, Z. Wang, G. Plastow, and
501	S. Moore. 2013. Genome-wide association analyses for growth and feed efficiency traits in
502	beef cattle. J. Anim. Sci. 91:3612-3633.
503	
504	Lu, Y., M. J. VandeHaar, D.M. Spurlock, K.A. Weigel, L.E. Armentano, C.R. Staples, E.E.
505	Connor, Z. Wang, M. Coffey, R.F. Veerkamp, Y. de Haas, and R. J. Tempelman. 2017.
506	Modeling genetic and nongenetic variation of feed efficiency and its partial relationships
507	between component traits as a function of management and environmental factors. J. Dairy
508	<i>Sci.</i> 100:412-427. doi:10.3168/jds.2016-11491.
509	
510	Manzanilla-Pech, C.I.V., R.F. Veerkamp, R.J. Tempelman, M.L. van Pelt, K.A. Weigel, M.
511	VandeHaar, T.J. Lawlor, D.M. Spurlock, L.E. Armentano, C.R. Staples, M. Hanigan, and
512	Y. De Haas. 2016. Genetic parameters between feed-intake-related traits and conformation
513	in 2 separate dairy populations—the Netherlands and United States. J. Dairy Sci. 99:443–
514	457. doi:10.3168/jds.2015-9727.
515	
516	Márquez, G. C., R. M. Enns, M. D. Grosz, L. J. Alexander, and M. D. MacNeil. 2009.
517	Quantitative trait loci with effects on feed efficiency traits in Hereford x composite double
518	backcross populations. Anim. Genet. 40:986-988.
519	
520	McClure, M.C., N.S. Morsci, R.D. Schnabel, J.W. Kim, P. Yao, M.M. Rolf, S.D. McKay, S.J.
521	Gregg, R.H. Chapple, S.L. Northcutt, and J.F. Taylor. 2010. A genome scan for quantitative
522	trait loci influencing carcass, post-natal growth and reproductive traits in commercial Angus
523	cattle. Anim. Genet. 41:597–607. doi:10.1111/j.1365-2052.2010.02063.x.
524	the second se
525	National Research Council. 2001. Nutrient Requirements of Dairy Cattle 7 th rev. ed. Natl. Acad.

- 526 Press, Washington, DC.
- Nkrumah, J.D., E. L. Sherman, C. Li, E. Marques, D. H. Crews Jr., R. Bartusiak, B. Murdoch, Z.
 Wang, J. A. Basarab, and S. S. Moore. 2007. Primary genome scan to identify putative
 quantitative trait loci for feedlot growth rate, feed intake, and feed efficiency of beef cattle. *J. Anim. Sci.* 85:3170 0181.
- 532

527

- Olivieri, B. F., M. E. Z., Mercandante, J. N d. S. G. Cyrillo, R. H. Branco, S. F. M. Bonilha, L.
 G. de Albuquerque, R. M. de Oliveira Silva, and F. Baldi. 2016. Genomic regions
 associated with feed efficeiency indicator traits in an experimental Nellore cattle population. *Plos One*. 10.1371/journal.pone.0164390.
- 537

545

549

560

564

- Perotto, D., R.I. Cue, and A. J. Lee. 1992. Comparison of nonlinear functions for describing the
 growth curve of three genotypes of dairy cattle. *Can. J. Anim. Sci.* 72:773–782.
- Pryce, J.E., J. Arias, P.J. Bowman, S.R. Davis, K.A. Macdonald, G.C. Waghorn, W.J. Wales,
 Y.J. Williams, R.J. Spelman, and B.J. Hayes. 2012. Accuracy of genomic predictions of
 residual feed intake and 250-day body weight in growing heifers using 625,000 single
 nucleotide polymorphism markers. *J. Dairy Sci.* 95:2108–2119. doi:10.3168/jds.2011-4628.
- Purfield, D.C., D.G. Bradley, R.D. Evans, F.J. Kearney, and D.P. Berry. 2015. Genome-wide
 association study for calving performance using high-density genotypes in dairy and beef
 cattle. *Genet. Sel. Evol.* 47:47. doi:10.1186/s12711-015-0126-4.
- Rolf, M. M., J. F. Taylor, R. D. Schnabel, S. D. McKay, M. C. McClure, S. L. Northcutt, M. S.
 Kerley, and R. L. Weaber. 2011. Genome-wide association analysis ofr feed efficiency in
 Angus cattle. *Anim. Genet.* 43:367-374.
- Saatchi, M., J. E. Beever, J. E. Decker, D. B. Faulkner, H. C. Freetly, S. L. Hansen, H. YamparaIquise, K. A. Johnson, S. D. Kachman, M. S. Kerley, J. Kim, D. D. Loy, E. Marques, H. L.
 Neibergs, E. J. Pollak, R. D. Schnabel, C. M. Seabury, D. W. Shike, W. M. Snelling, M. L.
 Spangler, T. L. Weaber, D. J. Garrick, and J. F. Taylor. 2014a. QTLs associated with dry
 matter intake, metabolic mid-test weight, growth and feed efficiency have little overlap
 across 4 beef cattle studies. *BMC Genomics*. 15:1004
- Saatchi, M., R.D. Schnabel, J.F. Taylor, and D.J. Garrick. 2014b. Large-effect pleiotropic or
 closely linked QTL segregate within and across ten US cattle breeds. *BMC Genomics*.
 15:442. doi:10.1186/1471-2164-15-442.
- Santana, M. H. A., M. C. Freua, D. N. Do, R. V. Ventura, H. N. Kadarmideen, and J. B. S.
 Ferraz. 2016. Systems genetics and genome-wide association approaches for analysis of
 feed intake, feed efficiency, and performance in beef cattle. *Genet. Mol. Res.*15(4).
 10.4238/gmr15048930.
- Santana, M. H. A., Y. T. Utsunomiya, H. H. R. Neves, R. C. Gomes, J. F. Garcia, H. Fukumasu,
 S. L. Silva, G. A. Oliveira Junior, P. A. Alexandre, P. R. Leme, R. A. Brassaloti, L. L.

572 573 574	Coutinho, T. G. Lopes, F. V. Meirelles, J. P. Eler, and J. B. S. Ferraz. 2014. Genome-wide association analysis of feed intake and residual feed intake in Nellore cattle. <i>BMC Genetics</i> . 15:21.
575	
576 577	Serão, N. V. L., D. González-Peña, J. E. Beever, D. B., Faulkner, B. R. Southey. 2013. Single nucleotide polymorphisms and haplotypes associated with feed efficiency in beef.
579 580 581	Sherman, E. L., J. D. Nkrumah, C. Li, R. Bartusiak, B. Murdoch, and S. S. Moore. 2009. Fine mapping quantitative trait loci for feed intake and feed efficiency in beef cattle. <i>J. Anim. Sci.</i> 87:37-45.
582	
583 584 585 586	Siegrist-Kaiser, C. A, V. Pauli, C.E. Juge-Aubry, O. Boss, A Pernin, W.W. Chin, I. Cusin, F. Rohner-Jeanrenaud, A G. Burger, J. Zapf, and C. A Meier. 1997. Direct effects of leptin on brown and white adipose tissue. <i>J. Clin. Invest.</i> 100:2858–64. doi:10.1172/JCI119834.
587 588 589 590	Snelling, W.M., M.F. Allan, J.W. Keele, L.A. Kuehn, T. McDaneld, T.P.L. Smith, T.S. Sonstegard, R.M. Thallman, and G.L. Bennett. 2010. Genome-wide association study of growth in crossbred beef cattle. <i>J. Anim. Sci.</i> 88:837–848. doi:10.2527/jas.2009-2257.
501	Spurlock D and M VandaHaar 2013 Pagulation of feed efficiency in dairy cattle CAB
502	Reviews 8:030 doi:10.1070/PAVSNNR20138030
502	<i>Reviews</i> . 8.059 doi:10.1079/1 A v 51010R20158059.
393 504	Summer IM and ID MaNamana 2007 Eugragian of linelytic sames in the adiress tissue of
594 505	Summer, J.M., and J.P. McNamara. 2007. Expression of inpolytic genes in the adipose tissue of
393 506	pregnant and factating Holstein dairy cattle. J. Dairy Sci. 90:5237–5246.
507	doi.10.3108/jus.2007-0307.
597	Townshing DI DM Condest M Coffee DE Verderung LE Amountage KA Weisel V
598 599 600 601 602	Tempelman, R.J., D.M. Spurlock, M. Coffey, R.F. Veerkamp, L.E. Armentano, K.A. Weigel, Y. de Haas, C.R. Staples, E.E. Connor, Y. Lu, and M.J. VandeHaar. 2015. Heterogeneity in genetic and nongenetic variation and energy sink relationships for residual feed intake across research stations and countries. <i>J. Dairy Sci.</i> 98:2013–2026. doi:10.3168/jds.2014.8510.
603	
604	Tolkamp, A., M. P. Coffey, E. Wall, D. P. Berry, E. Strandberg, and R. F. Veerkamp. 2014.
605	Functional cluster analysis of genome wide associations for energy balance for cows in experimental bords in four European countries. <i>Proceedings</i> 10th World Congr. Const.
600	Appl. to Livest Brod Vancouver Canada
607	Appl. to Livest. Proa. Vancouver, Canada.
608	
609 610	USDA-NASS Wisconsin Field Office. 2015. 2015 Wisconsin Agricultural Statistics. 1–64.
010	Vardahara MIII E Amaratana K Walad D M Constala D I Tamadanan and D
611 612 613	Vandenaar, M.J., L. E. Armentano, K. Weigel, D. M. Spuriock, R. J. Tempelman, and R. Veerkamp. 2016. Harnessing the genetics of the modern dairy cow to continue improvements in feed efficiency. <i>J. Dairy Sci.</i> 99:4941-4954
614	
615 616 617	VandeHaar, M.J., and N. St-Pierre. 2006. Major advances in nutrition: Relevance to the sustainability of the dairy industry. J. Dairy Sci. 89:1280–1291. doi:10.3168/jds.S0022- 0302(06)72196-8.

618	
619	VanRaden, P.M. 2008. Efficient methods to compute genomic predictions. J. Dairy Sci.
620	91:4414–4423. doi:10.3168/jds.2007-0980.
621	
622	Veerkamp, R.F. 1998. Selection for economic efficiency of dairy cattle using information on live
623	weight and feed intake: a review. J. Dairy Sci. 81:1109-1119. doi:10.3168/jds.S0022-
624	0302(98)75673-5.
625	
626	Veerkamp, R.F., M. P. Coffey, D. P. Berry, Y. de Haas, E. Strandberg, H. Bovenhuis, M. P. L.
627	Calus, and E. Wall. 2012. Genome-wide associations for feed utilisation complex in
628	primiparous Holstein-Friesian dairy cows from experimental research herds in four
629	European countries. Animal. 6:1738-1749.
630	
631	Verbyla, K.L., M.P.L. Calus, H. A. Mulder, Y. de Haas, and R.F. Veerkamp. 2010. Predicting
632	energy balance for dairy cows using high-density single nucleotide polymorphism
633	information. J. Dairy Sci. 93:2757–2764. doi:10.3168/jds.2009-2928.
634	
635	von Keyserlingk, M.A.G., N.P. Martin, E. Kebreab, K.F. Knowlton, R.J. Grant, M. Stephenson,
636	C.J. Sniffen, J.P. Harner III, A.D. Wright, and S.I. Smith. 2013. Invited review:
637	Sustainability of the US dairy industry. J. Dairy Sci. 96:5405-25. doi:10.3168/jds.2012-
638	6354.
639	
640	Weng, Z., H. Su, M. Saatchi, J. Lee, M.G. Thomas, J.R. Dunkelberger, and D.J. Garrick. 2016.
641	Genome-wide association study of growth and body composition traits in Brangus beef
642	cattle. Livest. Sci. 183:4–11. doi:10.1016/j.livsci.2015.11.011.
643	
644	Wiggans, G.R., T.A. Cooper, D.J. Null, and P.M. VanRaden. 2014. Increasing the number of
645	single nucleotide polymorphisms used in genomic evaluations of dairy cattle. <i>Proceedings</i> ,
646	10th World Congr. Genet. Appl. to Livest. Prod. Vancouver, Canada. 2009–2011.
647	
648	Wolc, A., J. Arango, P. Settar, J. E. Fulton, N. P. O'Sullivan, R. Preisinger, D. Habier, R.
649	Fernando, D. J. Garrick, W. G. Hill, and J. C. M. Dekkers. 2012. Genome-wide association
650	analysis and genetic architecture of egg weight and egg uniformity in layer chickens. Anim.
651	Genet. 43(Suppl. 1):87-96. doi:10.1111/j.1365-2052.2012.02381.x.
652	
653	Xi, Y.M., Z. Yang, F. Wu, Z.Y. Han, and G.L. Wang, 2015. Gene expression profiling of
654	hormonal regulation related to the residual feed intake of Holstein cattle. <i>Biochem. Biophys.</i>
655	<i>Res. Commun.</i> 465:19–25. doi:10.1016/i.bbrc.2015.07.092.
656	
657	Yao, C., D.M. Spurlock, L.E. Armentano, C.D. Page Jr., M.J. VandeHaar, D.M. Bickhart, and
658	K A. Weigel, 2013, Random Forests approach for identifying additive and epistatic single
659	nucleotide polymorphisms associated with residual feed intake in dairy cattle <i>I Dairy Sci</i>
660	96:6716–29. doi:10.3168/ids.2012-6237
661	
662	

663

Table 1. Distribution and location.	on of cow recor	ds with phenot	ype and genotype data by parity
	Primiparous	Multiparous	Total number of unique $cows^1$

	Primiparous	Multiparous	Total number of unique cows ¹
United States	1,916	1,843	3,309
Canada	213	112	220
Netherlands	581	372	937
United Kingdom	365	340	450
Total	3,075	2,667	4,916

¹ Difference between sum of primiparous and multiparous records and total number of unique cows is the number of cows contributing to both primiparous and multiparous records.

GENETIC BASIS OF FEED EFFICIENCY IN DAIRY

Table 2. Means ± SD and (minimum, maximum) for selected traits for primiparous (N=3075)
and multiparous (N = 2667) cows: residual feed intake (RFI), DMI, metabolic body weight
(MBW), milk energy (MilkE), milk yield (MY), percentage fat in milk, percentage protein in
milk, change in BW (Δ BW), and DIM.

mink, change in Dw	$(\Delta D W)$, and DIW.				
	Primipar	rous	Multiparous		
RFI (kg)	0.00 ± 1.30	(-7.31, 5.47)	0.01 ± 1.79	(-13.81, 17.96)	
DMI (kg/d)	$20.63 \hspace{0.2cm} \pm \hspace{0.2cm} 3.23$	(9.16, 32.68)	25.23 ± 4.47	(11.07, 44.72)	
MBW (kg)	114.6 ± 8.34	(61.6, 155.3)	129.5 ± 10.01	(94.22, 170.1	
MilkE (Mcal/d)	$24.82 \hspace{0.2cm} \pm \hspace{0.2cm} 4.54$	(6.18, 39.45)	$32.14 \hspace{0.2cm} \pm \hspace{0.2cm} 5.83$	(10.06, 52.74)	
MY (kg/d)	35.38 ± 6.74	(8.34, 56.51)	$46.35 \hspace{0.2cm} \pm \hspace{0.2cm} 8.72$	(13.73, 77.66)	
Fat (%)	$3.69 \hspace{0.2cm} \pm \hspace{0.2cm} 0.50$	(1.85, 5.59)	$3.66 ~\pm~ 0.57$	(1.83, 6.45)	
Protein (%)	$3.00 \hspace{0.1in} \pm \hspace{0.1in} 0.28$	(2.28, 4.11)	$2.96 ~\pm~ 0.32$	(2.01, 4.70)	
$\Delta BW (kg/d)$	0.40 \pm 0.47	(-5.21, 3.19)	0.29 \pm 0.66	(-5.30, 4.83)	
DIM	85.01 ± 28.67	(61, 186)	89.28 ± 30.38	(63, 185)	

Table 3. Estimates (SE) of phenotypic (r_P), and genetic (r_g) correlation, additive genetic variance (σ_a^2) and heritability for residual feed intake (RFI), DMI, metabolic body weight (MBW), and milk energy (MilkE) for primiparous and multiparous cows.

	r _P	$r_{ m g}$	σ^2_a		h	1 ²
			Primiparous	Multiparous	Primiparous	Multiparous
RFI	0.27 (0.03)	0.76 (0.13)	0.23 (0.05)	0.41 (0.09)	0.14 (0.03)	0.13 (0.03)
DMI	0.49 (0.03)	0.78 (0.07)	1.22 (0.14)	1.61 (0.24)	0.32 (0.03)	0.23 (0.03)
MBW	0.78 (0.01)	0.92 (0.03)	24.7 (1.83)	33.5 (2.86)	0.51 (0.03)	0.46 (0.03)
MilkE	0.49 (0.03)	0.61 (0.08)	3.18 (0.35)	3.44 (0.53)	0.31 (0.03)	0.20 (0.03)

667

Table 4. Location, percentage of total genetic variance explained, and rank of the ten 1-megabase (Mb) windows that explained the most genetic variation in primiparous cows for each trait DMI, residual feed intake (RFI), milk energy (MilkE), and metabolic body weight (MBW). Results are based on Bayes B analysis with 1% of SNP included in the model and starting parameters based on Bayes C with all SNP included in the model.

Chromosome	Mb^1	Percentage ²	RFI ³	DMI	MilkE	MBW
1	52	0.69	3			
2	33	0.31	7			
3	102	0.55				9
3	103	0.82				5
4	7	0.58		10		
4	14	1.35				2*
5	105	2.03				1*
5	117	0.28	9			
5	118	0.63		7		
6	88	1.15,0.79			1	6*
7	18	0.49			9	
7	91	0.84				4
8	76	0.52			8	
9	84	0.46			10	
10	33	1.87		2*		
11	76	0.79	2			
12	1	1.09	1			
12	20	0.58		8		
12	25	0.60	5			
13	69	0.57				8
17	30	0.72		5		
18	5	0.55			5	
18	23	1.15				3*
18	64	0.28	8			
18	65	0.80		4		
19	38	0.47		9		
21	2	0.59			4	
21	12	0.53			7	
22	1	0.53				10
22	37	0.60			3	
23	3	1.39			6	
23	39	0.27	10			
23	47	0.68		6		
25	30	0.96		3*		
26	32	1.89		1*		

Table 4 (continued)							
27	32	0.63	4				
27	33	0.44	6				
28	15	0.84		2			
Х	132	0.68			7		

¹Distance in Megabases to the start of the window

²Percentage of the total genetic variance explained by the window. x,x reflects the traits in the order of the columns from left to right.

³Rank is based on the total genetic variance explained by the window with rank = 1 denoting the window explaining the greatest percentage of total genetic variance explained for that trait.

*In greater than 80% of iterations, the variance was greater than expected (0.37%)

Table 5. Location, percentage of total genetic variance explained, and rank of the ten 1-megabase (Mb) windows that explained the most genetic variation in multiparous cows for each trait DMI, residual feed intake (RFI), milk energy (MilkE), and metabolic body weight (MBW). Results are based on Bayes B analysis with 1% of SNP included in the model and starting parameters based on Bayes C with all SNP included in the model.

Chromosome	Mb^1	Percentage ²	RFI ³	DMI	MilkE	MBW
2	44	0.41		7		
2	53	0.95				5
3	114	0.38		9		
4	93	0.67	2			
4	95	0.48, 0.55	4	5		
5	67	0.64		4		
6	60	1.23		1		
7	18	0.39			6	
7	27	0.29		8		
7	92	0.82				7
7	93	0.83				6
9	95	0.51			7	
11	51	0.37	7			
11	13	0.35			10	
11	66	0.73		2		
11	105	0.37		6		
13	43	0.34	8			
13	46	0.66			1	
14	11	0.68				9
14	20	1.24				2*
18	23	0.66				10
18	57	1.08				4*
19	51	0.32	9			
20	27	0.39			4	
20	48	0.86			3	
21	16	0.44	6			
21	25	0.31	10			
21	63	0.73				8
22	1	1.19				3*
24	54	0.64		3		
25	13	0.67	3			
26	28	0.47	5			
26	39	0.47			8	
26	45	0.46			2	
28	20	1.62				1*

Table 5 (continued)							
28	24	0.43			9		
28	26	0.30		9			
28	33	0.80	1				
X^4	30	0.56			5		

¹Distance in Megabases to the start of the window

²Percentage of the total genetic variance explained by the window. x,x reflects the traits in the order of the columns from left to right.

³Rank is based on the total genetic variance explained by the window with rank = 1denoting the window explaining the greatest percentage of total genetic variance explained for that trait.

⁴X refers to the X-specific portion of the X chromosome

*In greater than 80% of iterations, the variance was greater than expected (0.37%)

670

beyond	beyond 1 megabase (Mb).							
Parity ¹	Trait ²	BTA	Position, Mb ³	Percent ⁴	Iterations (%)			
1	MBW	3	102-103	1.05	78.6			
	RFI	27	31-38	2.13	95.3			
2	MBW	7	92-93	1.59	92.2			
	RFI	4	93-96	1.50	79.5			

Table 6. Percentage of genetic variance explained and the corresponding percentage of iterations in which the variance was greater than expected for windows extended

¹1, primiparous cows; 2, multiparous cows. ²MBW = metabolic body weight; RFI = residual feed intake. ³Location in Megabases of the window.

⁴Percentage of the total genetic variance explained by the window.

Parity ¹	Trait	BTA	Position, Mb	Candidate Genes
1	MBW	3	102-103	ARTN, ATP6VOB, B4GALT2, CCDC24, DMAP1, DPH2, ERI3,IPO13, KDM4A, PTPRF, RNF220, ST3GAL3
	RFI	27	31-38	ADAM2, ADAM9, ADAM18, ADAM32, ADGRA2, ADRB3, AP3M2, ASH2L, BAG4, BRF2, C8orf4, CHRNA6, CHRNB3, CSGALNACT1, DDHD2, DKK4, EIF4EBP1, ERLIN2, FGFR1, FNTA, GINS4, GOLGA7, GOT1L1, GPAT4, HGSNAT, HOOK3, HTRA4, IDO1, IDO2, INTS10, IKBK, KAT6A, KCNU1, LETM2, LSM1, PLAT, PLEKHA2, PLP5, POMK, PROSC, PSD3, RAB11FIP11, RNF170, SFRP1, SH2D4A, SLC20A2, SMIM19, STAR, TACC1, THAP1, TM2D2, UNC5D,WHSC1L1, ZMAT4, ZNF703
2	MBW	7	92-93	ADGRV1, ARRDC3, CETN3, LYSMD3, MBLAC2, POLR3G
	RFI	4	93-96	AHCYL2, CALU, CCDC136, CEP41, COPG2, CPA1, CPA4, CPA5, FAM71F1, FLNC, IMPDH1, IRF5, KCP, KLHDC10, LEP, LRRC4, MEST, MKLN1, NRF1, OPN1SW, PLXNA4, PODXL, PRRT4, RBM28, SMO, SND1, SSMEM1, STRIP2, TMTM209, TNPO3, TSGA13, TSPAN33, UBE2H, ZC1HC1

Table 7. Candidate protein-coding genes in windows extended beyond 1 megabase (Mb).

¹1, primiparous cows; 2, multiparous cows.

Reference ¹	N	Breed	Age Group	Location ²
Nkrumah et al., 2007	400	Multiple beef	Steers	1:61* , 5:70*, 7:9* , 8:40*, 12:37*, 14:51*, 16:17*, 17:19*, 26:25*, 29:7-28*
Marquez et al., 2009	218	Multiple beef	Steers and heifers	2:126*, 6:55*, 7:93*, 10:31*, 11:29*, 13:18*, 16:43*
Sherman et al., 2009	400	Multiple beef	Steers	1:0-3* , 3:52*, 7:5-26* , 11:3-16* , 18:17-35* , 19:15-44* , 19:59*, 22:9-16*, 23:21-31*, 26:32-35*
Bolormaa et al., 2011	379	Angus	Steers and heifers	2:24*, 2:63*, 3:105*, 4:41*, 4:91*, 5:110*, 7:102*, 8:86*, 8:93*, 10:18*, 20:33*
Bolormaa et al., 2011	852	Multiple beef	Steers	2:22*, 5:51*, 8:90*, 9:14*, 9:60*, 11:1*, 12:55*, 17:43*, 18:3*, 25:12*, 27:21*
Rolf et al., 2012	698	Angus	Steers	1:130*, 2:31*, 2:45*, 2:76*, 8:6*, 8:110*, 11:70*, 12:72*, 17:4*, 28:14*
Pryce et al., 2012	1,782	Holstein	Heifers	14:25, 14:36
Yao et al., 2013	402	Holstein	Multiple lactations	1:146*, 7:50*, 11:5*, 11:6 *, 8:11*, 12:78*, 18:56*, 19:29 *, 22:38*, 26:28 *
Serao et al., 2013	976	Angus and Simmental	Steers	4:75*, 5:60*, 6:109*, 8:108*, 17:28*, 17:59*, 22:57*, 24:2*
Lu et al., 2013	751	Multiple beef	Growing males and females	1:2* , 1:61* , 1:157*, 3:102*, 7:27*, 10:91*, 10:95*, 16:27*, 20:44*, 24:29*
Saatchi et al., 2014a	5,133	Multiple beef	Steers and heifers	6:50*, 10:58*, 14:41*, 14:43*, 15:82*, 18:22* , 18:37*, 19:54*, 20:4*, 25:7*
Tolkamp et al., 2014	1,804	Holstein-Fresian	Primiparous	5:6*, 5:87*, 8:113*, 21:68*, 26:29*
Santana et al., 2014	720	Nellore	Young bulls and steers	8:4*, 21:71*

Table 8. Locations in the bovine genome identified in previous genome-wide association studies as associated with RFI in beef or dairy cattle.

Table	8	(continued)
-------	---	-------------

Olivieri et al, 2016	896	Nellore	Growing males and females	1:100, 1:121, 4:105, 4:118, 7:92, 8:41, 8:103, 10:68, 18:11, 21:18, 24:59
Santana et al., 2016	1334	Nellore	Young bulls and steers	2:43*, 3:2*, 5:101*, 15:62*, 22:48*
Present study	2,667	Holstein	Multiparous	4:93, 4:95, 4:96, 6:128, 11:12 , 21:16, 25:13, 19:51, 26:28 , 28:33
Present study	3,075	Holstein	Primiparous	1:52, 11:76, 12:1, 12:25, 18:64, 23:39, 25:0, 25:2, 27:32, 27:37

*Significance threshold set in the original study is met

¹The trait considered in Tolkamp et al. (2014) was energy balance

² The ten most significant locations, or in the absences of significance criteria, locations explaining the greatest proportion of genetic variance are provided.Format is Chromosome:Megabase (Mb) where the Mb may be a range (x - x) encompassing a confidence window. Results reported in centiMorgans were converted to Mb using an alignment to Baylor cattle SNPs provided by AnimalQTLdb. Locations published as SNP were converted to the whole Mb lying upstream of the SNP using the NCBI SNP database. Regions in bold are in common between 2 or more studies.

Parity ¹	Trait	BTA	Position, Mb ²	Candidate Genes
1	DMI	10	33	BMF, BUB1B, C15orf51, DPH6, EIF2AK4, FAM98B, FSIP1, MEIS2, RASGRP1, SRP14, SPRED1, THBS1, TMCO5
		25	30	AUTS2, CALN1, CHCD2, CRCP, GUSB, NUPR2, KCTD7, PHKG1, RABGEF1, SBDS, SUMF2, TMEM248, TPST1, TYW1, WBSCR17
		26	32	ACSL5, ADD3, ADRB1, CASP7, CCDC186, DCLRE1A, DUSP5, GPAM, HABP2, MX11, NHLRC2, NRAP, PDCD4, PLEKHS1, RBM20, SHOC2, SMC3, SMNDC1, TDRD1, TECTB, XPNPEP1, ZDHHC6
	MBW	4	14	ASB4, ASNS, C1GALT1, COL28A1, DLX5, DLX6, DYNC111, MIOS, PDK4, PON1, PON2, PON3, PPP1R9A, RPA3, RPL7, SDHAF3, SLC25A13, TAC1
		5	105	ACRBP, AKAP3, ANO2, ATN1, B4GALNT3, C12orf57, C1RL, C1S, CCDC77, CCND2, CD4, CD9, CD27, CDCA3, CHD4, CLSTN3, COPS7A, DDX11, DYRK4, ENO2, FGF6, FGF23, FKBP4, FOXM1, GALNT8, GNB3, GPR162, IFFO1, ING4, IQSEC3, ITFG2, KCNA1, KCNA5, KCNA6, KDM5A, LAG3, LPAR5, LPCAT3, LRRC23, LTBR, MLF2, MRPL51, NCAPD2, NINJ2, NOP2, NRIP2, NTF3, PARP11, P3H3, PEX5, PHB2, PIANP PLEKHG6, PRMT8, PTMS, PTPN6, RBP5, RHNO1, SCNN1A, SLC6A12, SLC6A13, SPSB2, TAPBPL, TEAD4, TIGAR, TNFRSF1A, TP11, TSPAN9, TSPAN11, TULP3, USP5, VAMP1, VWF, ZNF384
		6	88	ADAMTS3, AFM, AFP, ALB, AMBN, AMTN, ANKRD17, CABS1, COX18,CSN1S1, CSN2, CSN3, DCK, ENAM, EPGN, GC, GRSF-1, IL-8, JCHAIN, MOB1B, MTHFD2L, NPFFR2, ODAM, PPBP, RASSF6, RUFY3, SLC4A4, SULT1B1, SULT1E1, UGT2A3, UTP3
		18	23	ADGRG3, ADGRG5, AKTIP, AMFR, ARL2BP, BBS2, CCDC102A, CCL17, CCL22, CES5A, CHD9, CIAPIN1, CNGB1, COQ9, CPNE2, CX3CL1, DOK4, DRC7, FAM192A, FTO, GNAO1, HERPUD1, IRX3, IRX5, IRX6, KATNB1, KIFC3, LPCAT2, MMP2, MT3, MT4, NLRC5, NUDT21, NUP93, OGFOD1, PLLP,

 Table 9. Candidate protein-coding genes within 2 megabases (Mb) of significant 1-Mb windows for traits underlying feed

 efficiency.

Table	9 (continu	ed)		
				POLR2C, RBL2, RPGRIP1L, RSPRY1, SLC12A3, SLC6A2, TEPP, TOX3, USB1, ZNF319
2	MBW	14	20	ATAD2, DERL1, EFCAB1, FAM83A, HAS2, PCMTD1, PRKDC, SNAI2, SNTG1, SPIDR, ST18, TBC1D31, UBE2V2, WDYHV1, ZHX1, ZHX2
		18	57	ACPT, AKT1S1, ALDH16A1, AP2A1, ASPDH, ATF5, BAX, BCAT2, BCL2L12, CA11, C19orf68, C19orf81, CABP5, CCDC114, CCDC155, CD37, CEACAM18, CLEC11A, CPT1C, CRX, CYTH2, DBP, DHDH, DKKL1, EHD2, ELSPBP1, EMC10, EMP3, ETFB, FAM83E, FCGRT, FGF21, FLT3LG, FUT1, FUT2, FUZ, GLTSCR1, GLTSCR2, GRIN2D, GRWD1, GYS1, HAS1, HRC, HSD17B14, IGLON5, IL411, IRF3, IZUMO1, IZUMO2, JOSD2, KCNA7, KCNC3, KCNJ14, KDELR1, KLK1, KLK4, KLK5, KLK6, KLK7, KLK8, KLK10, KLK11, KLK12, KLK13, KLK14, LIG1. LIM2, LIN7B, LMTK3, LRRC4B, MAMSTR, MED25, MYBPC2, MYH14, NAPSA, NKG7, NOSIP, NR1H2, NTF4, NTN5, NUCB1, PIH1D1, PLEKHA4, PNKP, POLD1, PPFIA3, PPP1R15A, PPP2R1A, PRR12, PRRG2, PTH2, PTOV1, RCN3, RASIP1, RPL18, RRAS, RUVBL2, SCAF1, SEPW1, SHANK1, SIGLELC1, SLC17A7, SLC6A16, SNRNP70, SPACA4, SPACA6, SPHK2, SULT2B1, SYNGR4, SYT3, TBC1D17, TEAD2, TMEM143, TRPM4, TSKS, TULP2, VN1R4, VRK3, VSIG10L, ZNF114, ZNF175, ZNF432, ZNF473, ZNF613, ZNF614
		22	1	AZI2, CMC1, DBNL, EGFR, EOMES, LANCL2, MRPS24, NEK10, PGAM2, RBMS3, SEC61G, SLC4A7, UBE2D4, URGCP, VOPP1
- 1		28	20	ADO, ARID5B, CTNNA3, EGR2, JMJD1C, NRBF2, REEP3, RTKN2, ZNF365
¹ 1 nri	minarous of	$\mathbf{w} \cdot 2 \mathbf{m}$	ultiparous cows	

¹1, primiparous cows; 2, multiparous cows. ²Significance declared when in greater than 80% of iterations, the variance was greater than expected (0.37%)

Figure 1. Manhattan plots of 1-Mb windows for residual feed intake (RFI), DMI, and the energy sinks milk energy (MilkE) and metabolic body weight (MBW) in primiparous cows. Chromosomal location XA refers to the pseudo autosomal portion of the X chromosome with the X-specific markers the set of black markers at the right edge of the plots.

Figure 2. Manhattan plots of 1-Mb windows for residual feed intake (RFI), DMI, and the energy sinks milk energy (MilkE) and metabolic body weight (MBW) in multiparous cows. Chromosomal location XA refers to the pseudo autosomal portion of the X chromosome with the X-specific markers the set of black markers at the right edge of the plots.

Supplemental Figure S1. Distribution of genetic variance for each of 999 iterations for extended windows spanning from A) 102 through 103 megabases (Mb) on BTA 3 for metabolic body weight (MBW) in primiparous cows, B) 31 through 38 Mb on BTA 27 for residual feed intake (RFI) in primiparous cows, C) 92 through 93Mb on BTA7 for MBW in multiparous cows and D) 92 through 95 on BTA 4 for RFI in multiparous cows. Labels for the x-axis denote the maximum value included in the corresponding bar. Expectations were 0.074%, 0.296%, 0.074%, and 0.148% for panels A through D, respectively.

Testudai Teee	i ilitake (IKI I), aliu	mik chergy (wilk	L) in prinipa		
Trait	Chromosome ¹	Location (Mb)	No. SNP	%Var	Iterations $(\%)^2$
RFI	12	1	14	1.09	0.32
RFI	11	76	21	0.79	0.28
RFI	1	52	28	0.69	0.33
RFI	27	32	27	0.63	0.35
RFI	12	25	23	0.60	0.31
RFI	27	33	23	0.44	0.29
RFI	2	33	21	0.31	0.23
RFI	18	64	43	0.28	0.34
RFI	5	117	24	0.28	0.23
RFI	23	39	36	0.27	0.32
RFI	27	37	28	0.27	0.27
RFI	14	70	26	0.27	0.25
RFI	6	113	30	0.25	0.24
RFI	25	2	37	0.24	0.29
RFI	16	77	30	0.24	0.26
RFI	25	0	39	0.23	0.31
RFI	25	4	36	0.23	0.27
RFI	5	106	28	0.22	0.36
RFI	19	29	31	0.21	0.28
RFI	Х	13	14	0.21	0.18
DMI	26	32	29	1.89	0.94
DMI	10	33	17	1.87	0.93
DMI	25	30	28	0.96	0.85
DMI	18	65	48	0.80	0.76
DMI	17	30	22	0.72	0.64
DMI	23	47	34	0.68	0.72
DMI	5	118	47	0.63	0.69
DMI	12	20	22	0.58	0.58
DMI	19	38	24	0.58	0.55
DMI	4	7	34	0.58	0.62
DMI	7	94	20	0.57	0.60
DMI	13	6	18	0.54	0.54
DMI	7	85	27	0.49	0.52
DMI	13	54	18	0.49	0.53
DMI	7	102	16	0.49	0.58
DMI	13	46	30	0.47	0.63
DMI	3	5	28	0.43	0.57
DMI	9	23	28	0.42	0.54
DMI	11	68	20	0.39	0.49
DMI	12	1	14	0.36	0.46
MilkE	6	88	36	1.15	0.83
MilkE	28	15	26	0.84	0.78

Supplemental Table S1. Ten 1-Mb windows with the greatest percentage of the total genetic variance explained by the markers for each DMI, metabolic body weight (MBW), residual feed intake (RFI), and milk energy (MilkE) in primiparous cows.

MilkE	22	37	20	0.60	0.63
MilkE	21	2	18	0.59	0.75
MilkE	18	5	26	0.55	0.63
MilkE	23	3	26	0.54	0.55
MilkE	21	12	31	0.53	0.65
MilkE	8	76	24	0.52	0.56
MilkE	7	18	31	0.49	0.57
MilkE	9	84	16	0.46	0.46
MilkE	3	112	35	0.45	0.62
MilkE	4	95	22	0.45	0.52
MilkE	5	75	25	0.43	0.48
MilkE	6	74	25	0.42	0.45
MilkE	6	78	14	0.41	0.44
MilkE	1	126	23	0.39	0.47
MilkE	13	34	11	0.39	0.41
MilkE	2	98	20	0.38	0.44
MilkE	24	7	27	0.37	0.50
MilkE	5	74	23	0.37	0.45
MBW	5	105	29	2.03	1.00
MBW	4	14	19	1.35	0.95
MBW	18	23	34	1.15	0.94
MBW	7	91	32	0.84	0.68
MBW	3	103	26	0.82	0.65
MBW	6	88	36	0.79	0.88
MBW	Х	132	15	0.68	0.69
MBW	13	69	24	0.57	0.79
MBW	3	102	26	0.55	0.57
MBW	22	1	27	0.53	0.81
MBW	9	48	16	0.53	0.64
MBW	12	68	32	0.49	0.67
MBW	24	34	29	0.47	0.56
MBW	19	48	30	0.47	0.56
MBW	17	33	25	0.45	0.62
MBW	13	41	31	0.44	0.68
MBW	20	9	30	0.44	0.62
MBW	18	57	25	0.42	0.62
MBW	7	102	16	0.42	0.60
MBW	23	39	36	0.39	0.65

¹X refers to the X-specific portion of the X chromosome. ² Percentage of iterations in which the variance was greater than expected (0.37%).

Tebladar Teea	intuite (Iti I), und	initik energy (ivitik	<i>L)</i> in multipe		
Trait	Chromosome ¹	Location (Mb)	No. SNP	%Var	Iterations $(\%)^2$
RFI	28	33	30	0.80	0.38
RFI	4	93	24	0.67	0.32
RFI	25	13	24	0.67	0.30
RFI	4	95	22	0.48	0.28
RFI	26	28	22	0.47	0.26
RFI	21	16	25	0.44	0.33
RFI	11	51	11	0.37	0.21
RFI	13	43	16	0.34	0.20
RFI	19	51	24	0.32	0.29
RFI	21	25	21	0.31	0.22
RFI	4	96	27	0.28	0.27
RFI	6	128	24	0.28	0.22
RFI	11	12	31	0.28	0.26
RFI	1	53	20	0.27	0.24
RFI	3	100	24	0.26	0.23
RFI	3	99	24	0.24	0.22
RFI	22	48	27	0.24	0.27
RFI	22	2	27	0.23	0.22
RFI	11	49	25	0.22	0.22
RFI	9	93	23	0.22	0.19
DMI	6	60	18	1.23	0.64
DMI	11	66	24	0.73	0.50
DMI	24	54	17	0.64	0.47
DMI	5	67	16	0.64	0.48
DMI	4	95	22	0.55	0.55
DMI	11	105	30	0.44	0.47
DMI	2	44	16	0.41	0.39
DMI	7	27	25	0.41	0.41
DMI	3	114	30	0.38	0.45
DMI	10	75	13	0.37	0.33
DMI	5	93	20	0.33	0.37
DMI	28	32	28	0.32	0.37
DMI	11	12	31	0.30	0.39
DMI	18	49	25	0.29	0.39
DMI	Х	59	16	0.29	0.30
DMI	3	115	23	0.28	0.34
DMI	29	3	26	0.28	0.39
DMI	8	9	26	0.27	0.37
DMI	16	44	10	0.27	0.37
DMI	10	74	25	0.26	0.37
MilkE	13	46	30	1.41	0.78
MilkE	26	45	35	1.10	0.76

Supplemental Table S2. Ten 1-Mb windows with the greatest percentage of the total genetic variance explained by the markers for each DMI, metabolic body weight (MBW), residual feed intake (RFI), and milk energy (MilkE) in multiparous cows.

|--|

		/			
MilkE	20	48	15	0.86	0.49
MilkE	20	27	30	0.58	0.53
MilkE	Х	30	17	0.56	0.46
MilkE	10	75	13	0.54	0.39
MilkE	9	95	27	0.51	0.49
MilkE	26	39	26	0.47	0.46
MilkE	28	24	24	0.43	0.48
MilkE	11	13	34	0.35	0.45
MilkE	10	6	23	0.34	0.44
MilkE	6	90	22	0.34	0.40
MilkE	19	60	51	0.31	0.52
MilkE	28	33	30	0.30	0.40
MilkE	5	110	26	0.28	0.40
MilkE	11	105	30	0.28	0.38
MilkE	14	4	47	0.26	0.49
MilkE	5	118	47	0.26	0.49
MilkE	13	25	26	0.25	0.34
MilkE	2	71	22	0.25	0.34
MBW	28	20	23	1.62	0.89
MBW	14	20	28	1.24	0.85
MBW	22	1	27	1.19	0.84
MBW	18	57	25	1.08	0.82
MBW	2	53	28	0.95	0.71
MBW	7	93	23	0.83	0.71
MBW	7	92	24	0.82	0.74
MBW	21	63	27	0.73	0.62
MBW	14	11	33	0.68	0.65
MBW	18	23	34	0.66	0.61
MBW	5	105	29	0.58	0.67
MBW	2	74	19	0.53	0.54
MBW	2	109	31	0.50	0.58
MBW	8	109	28	0.49	0.56
MBW	3	82	19	0.47	0.51
MBW	14	72	21	0.46	0.56
MBW	14	71	21	0.46	0.49
MBW	23	12	24	0.42	0.57
MBW	19	42	32	0.41	0.54
MBW	20	46	21	0.36	0.47

¹X refers to the X-specific portion of the X chromosome. ² Percentage of iterations in which the variance was greater than expected (0.37%).