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Summary 23 

Grading of canine mammary carcinomas (CMC) is associated to subjective assessments 24 

made by the pathologists. Due to its unbiased nature, stereology can be used to 25 

objectively quantify morphological parameters associated with grading and malignancy. 26 

However, the use of stereology in CMC has not been fully disclosed. The nuclear 27 

numerical density [NV (nuclei, tumor)] is a cellularity-associated parameter that can be 28 

estimated by the optical disector. Herein, it was estimated in 44 CMC and its 29 

association with clinicopathologic factors — such as tumor size, histological subtype 30 

and grade, vascular/lymph node invasion, nuclear pleomorphism and survival — was 31 

evaluated. Considering all the cases, the mean NV (nuclei, tumor) was 1.6x106 ± 32 

0.5x106nuclei mm-3. Lower values were attained in complex carcinomas, comparing to 33 

simple carcinomas, in tumors smaller than 5 cm, with low mitotic activity and in those 34 

with high nuclear pleomorphism. No statistically significant association with grade or 35 

vascular/lymph node invasion was observed, but tumors with disease progression had 36 

lower nuclear densities. The NV (nuclei, tumor) and the correlated parameters mirror to 37 

some extension those in human breast cancer, suggesting an interesting interspecies 38 

agreement. This first estimation of the nuclear numerical density in CMC highlights the 39 

feasibility of the optical disector and their utility for objective morphological 40 

assessments in CMC. The association between nuclear numerical density and disease 41 

progression warrants future studies. 42 

 43 

Keywords: canine mammary tumors; disector; grade; prognosis; stereology  44 
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Introduction  45 

The level of knowledge in canine mammary carcinomas (CMC) has increased 46 

considerably in recent years, with various putative prognostic factors been pointed (1).  47 

However, it is still recognized that the marked clinical and morphological heterogeneity, 48 

including the possibility of multiple synchronous CMC of different subtypes could 49 

make the assessment of the prognosis difficult (2). Moreover, the different 50 

methodological approaches and end-points used in prognostic studies of CMC puzzled 51 

the identification of definitive prognostic factors (2).  52 

Despite the development of sophisticated “omics” technologies in oncology, tumor 53 

morphology continues to be a powerful mode of providing clinical and prognostic 54 

informative data (3). Still, it is recognized that the histopathological assessment of 55 

tumor features is not entirely objective and this can jeopardize the biological 56 

conclusions, namely in terms of prognosis (4). Such subjectivity may be overcome by 57 

quantitative morphological parameters assessed by suitable morphometric or 58 

stereological methods (5, 6). These methods are substantially different: while 59 

morphometry describes quantitatively what is seen in conventional sections [under the 60 

microscope or in two-dimensional (2D) images], using a caliper and sometimes 61 

benefiting from image-analysis software, stereology uses probes or test-systems in 2D 62 

images or virtual optical z-planes, aiming to obtain three-dimensional (3D) information 63 

inherent of all biological tissues (5-7). Stereology can be used in histological sections of 64 

tumors, allowing unbiased estimates (in relation to the 3D reality) of many parameters, 65 

such as absolute or relative volumes of the cells or their nuclei and numerical nuclear 66 

densities (4, 8).   67 

Stereological studies have been performed in human breast cancer and estimates of 68 

nuclear volumes (volume and number-weighted mean nuclear volumes) and of 69 
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numerical density (NV) of nuclei and mitotic figures have been correlated with 70 

prognosis (4, 8-10). In CMC, the use of stereology is still very incipient (11), but it 71 

already started to solve issues related with the subjective assessment of nuclear 72 

pleomorphism in grading of CMC (12). 73 

CMC are classified according to the cell populations presented within the tumor, as 74 

simple (one neoplastic cell population, epithelial or myoepithelial of origin) or complex 75 

(when epithelial and myoepithelial cells coexist) (13). In simple carcinomas, the 76 

architectural arrangement of the neoplastic epithelial cells, e.g., the presence of 77 

tubulopapillar structures or solid sheets is included in the histological classification, 78 

with some special subtypes such as squamous cell or mucinous carcinomas being 79 

characterized by specific morphological features (13).  80 

It has been suggested that highly cellular CMC, i.e. solid subtypes, are associated with a 81 

poorer prognosis compared with tubulopapillary tumors (13, 14). However, cellularity 82 

assessed by pathologists tends to be qualitative and may be subjective. To the best of 83 

our knowledge, a quantitative evaluation of a cellularity parameter, such as the NV, has 84 

never been performed in CMC. Such an evaluation can be performed by the optical 85 

disector (7, 15). Instead of counting nuclear cell profiles, which not only depend on the 86 

cell number but also on the size, shape, and spatial orientation and distribution of nuclei, 87 

the disector uses a 3D counting cube with inclusion and exclusion sides that allows 88 

counting nuclei in proportion to their real number (5, 6, 16).  89 

The primary aims of this study were to estimate the NV (nuclei, tumor) in CMC and 90 

their relation with other clinicopathological parameters, namely tumor size, histological 91 

subtype, vascular/lymph node invasion and histological grading parameters (i.e. tubule 92 

formation, nuclear pleomorphism and mitotic count). Ultimately we intended to 93 

evaluate the prognostic utility of the NV (nuclei, tumor) in CMC.   94 
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Materials and Methods 95 

Selection of cases and histological analysis  96 

Forty four spontaneous CMC treated at UPvet (Veterinary Hospital of the University of 97 

Porto) were retrospectively selected, blinded to clinical and other pathological data. The 98 

female dogs were submitted to surgical resection of the tumors with the owner’s 99 

consent. For twenty seven cases follow-up data were collected prospectively over two 100 

years following a protocol detailed elsewhere (2). The histological diagnosis and 101 

grading was reviewed by two pathologists (MS and PDP) using the criteria of the World 102 

Health Organization classification (17) and the Nottingham histological grade (NHG) 103 

(18). For this, routine 5 µm sections resulting from the largest cross slab of the tumor 104 

were retrieved and screened. For every case, the tumor size and the histological 105 

evidence of vascular invasion and/or regional lymph node metastases were recorded. As 106 

to tumor size, it was categorized according to World Health Organization (WHO) 107 

criteria (T1< 3 cm, T2=3-5 cm and T3> 5 cm), as previously described (19).  108 

 109 

Sectioning and stereological analysis 110 

For every case, a thick section (30 µm thick) from all the paraffin blocks was obtained. 111 

To avoid chatter, the surface of the paraffin block was warmed (by breathing on) 112 

immediately before cutting. After being picked from the water-bath, the sections were 113 

covered with a cotton cloth and gently pressed against the slide with a finger, for 114 

ensuring adhesion. All the sections were mounted on precleaned slides primed with 115 

aminopropyltriethoxy-silane. Finally, sections were dried overnight at 37°C and then 116 

stained with hematoxylin-eosin.  117 

For the stereological analysis we used a workstation comprising: 1) a microscope 118 

(Olympus BX-50, Tokyo, Japan) equipped with a 100x oil-immersion lens (Olympus 119 
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Uplan NA = 1.35, Tokyo, Japan) and a matching condenser; 2) a microcator 120 

(Heidenhain MT-12, Traumrent, Germany), to control the movements and position in 121 

the z-direction (0.5 µm accuracy); 3) a motorized stage (Prior, Fulbourm, United 122 

Kingdom) for stepwise displacement in the x–y directions (1 µm accuracy); 4) a CCD 123 

video camera (Sony, Tokyo, Japan) connected to a 17′′ PC monitor (Sony); and 5) a 124 

computer with a stereology software (Olympus CAST-Grid, version 1.5, Albertslund, 125 

Denmark). At the monitor, a final magnification of 4750x allowed an accurate 126 

recognition of the nuclei of the neoplastic cells. The first field of vision was randomly 127 

selected by the software. Thereafter, fields were sampled systematically by stepwise 128 

movements of the stage in the x- and y-directions, so that a minimum of 40 fields were 129 

examined per tumor. Throughout the disector height (h = 16 µm), a software generated 130 

counting frame was superimposed, having a defined area of 253 µm2 and inclusion and 131 

forbidden lines (Fig. 1), to prevent the edge effect counting bias (20). 132 

Nuclei were counted when two conditions were met: (1) at the plane of focus, they were 133 

within the counting frame or touching the inclusion lines and not touching the forbidden 134 

lines or their extensions; (2) the rim of the nucleus was in perfect focus at a plane below 135 

4 µm and above or equal to 20 µm in the z-axis (Fig. 1). The potential bias from lost 136 

caps was avoided by an upper guard height (4 µm) and a lower one (from 20 µm 137 

downward) (5). Spindle-shaped nuclei were excluded from the counts. 138 

The NV (nuclei, tumor) was estimated using the formula (21): 139 

NV (nuclei, tumor) = ΣQ−/[h x a(frame) x ΣP] 140 

where ΣQ– corresponded to the sum of neoplastic nuclei counted in the sampled fields, 141 

and a(frame), h and ΣP were, respectively, the area of the counting frame, disector 142 

height and the total number sampled fields within the reference space. Since the 143 

reference space defined was the parenchyma of the tumor, fields that were empty, 144 
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containing large vessels, stroma, or necrotic areas were excluded. The coefficient of 145 

error (CE) of the estimations of NV (nuclei, tumor) was determined using the formula 146 

(16): 147 
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where u and v stands for the number of nuclei counted (Q-) and total number sampled 149 

fields within the reference space (P), respectively. 150 

The CE of the NV estimations was then compared with the observed relative variance 151 

among cases, OCV2, according to the formula (16): 152 

OCV2 = BCV2 + CE2(NV) 153 

where BCV2 is the inherent biological relative variance of the NV in tumors and CE2is 154 

the mean square of the individual estimates of the CE of NV. 155 

 156 

Shrinkage estimation 157 

It would be reasonable to assume that the shrinkage in x-y would be alike in all the 158 

included cases, as they were handled by the same surgical team and submitted to similar 159 

processing protocols. Despite this, estimation of the shrinkage in thick sections of each 160 

case was performed. For this, blood vessels were randomly photographed and the 161 

erythrocyte diameter was measured in 30 cells (measurements were restricted to 162 

erythrocytes appearing as clear circles). It should be stressed that: 1) animals had no 163 

hematological abnormality in their pre-surgical evaluation; and 2) a diameter of 7.0 µm 164 

was considered for normal canine erythrocytes (22).  165 

 166 

Statistical analysis 167 

To test if the data followed a normal distribution the Shapiro-Wilk and Kolmogorov-168 

Smirnov tests were used. For skewed data, a logarithmic transformation was applied. 169 
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The associations between the NV (nuclei, tumor) and: 1) NHG grade (grade I, II and III); 170 

2) grading parameters  tubule formation, nuclear pleomorphism and mitotic counts 171 

scores; 3) WHO size categories; and 4) histological subtypes, were tested with one-way 172 

ANOVA, followed by Tukey post-hoc tests. The association degree between the NV 173 

(nuclei, tumor) and the volume-weighted mean nuclear volume [previously assessed by 174 

point sampled intercepts (12)] was evaluated by Pearson correlation test. In all cases, a 175 

P value < 0.05 was considered significant. Statistical analyses were performed with the 176 

IBM SPSS Statistics, version 22 (IBM, New York, USA).  177 
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Results  178 

Thirty out of 44 tumors were diagnosed as simple carcinomas (11 tubulopapillary, 16 179 

solid, 2 squamous cell and 1 mucinous) and 14 were complex carcinomas. At the time 180 

of diagnosis, 12 cases (27%) presented vascular/regional lymph node invasion. With 181 

regard to NHG, 9, 15 and 20 cases were grade I, II and III, respectively. Follow-up data 182 

were available for 27 female dogs and during this period 30% (8/27) presented 183 

progression of the disease (defined as recurrence and/or metastases de novo). Of the 184 

remaining, 56% (15/27) were alive and clinically disease-free at 24 months after the 185 

surgery, whilst 14% (4/27) were censored for being lost to follow-up or for non-186 

malignancy-related death. The clinicopathological parameters are summarized in Table 1.  187 

The optical disector procedure was straightforward. Sections had a mean thickness of 188 

28.9 ± 2.8 µm and around 6 cells nuclei were computed per disector. In average, 259 189 

nuclei per tumor were counted and the NV (nuclei, tumor) was estimated as 1.6x106 ± 190 

0.5x106 nuclei mm-3 (Fig.2). The mean CE of the NV (nuclei, tumor) estimations was 191 

0.07 (ranged from 0.04 to 0.11), meaning that the estimation methodology was 192 

responsible for 5% of the total observed variance. Therefore, the biological variability 193 

was by far the most important component of the observed variability of the NV (nuclei, 194 

tumor) estimations.  195 

The NV (nuclei, tumor) was significantly higher in simple carcinomas (1.7x106 ± 196 

0.5x106 nuclei mm-3) comparing with complex carcinomas (1.3x106 ± 0.2x106 nuclei 197 

mm-3) (t-test, P =0.002). No statistical difference was observed when solid carcinomas 198 

were compared with any other subtypes. The NV (nuclei, tumor) was 1.3x106, 1.7x106 199 

and 1.6x106 nuclei mm-3 in grade I, II, III tumors, respectively, without statistically 200 

significant differences. With regard to NHG parameters, the NV (nuclei, tumor) did not 201 

differ with the tubule formation score, but an association with nuclear pleomorphism 202 



10 
 

was observed  tumors scored 3 for nuclear pleomorphism presented lower NV (nuclei, 203 

tumor) compared to tumors scored 2 (Tukey test, P =0.021). Similarly, a statistically 204 

significant increase in numerical nuclear density existed from tumors scored 1 or 2 to 205 

those scored 3 in mitotic counts (Tukey test, P =0.006 score 1 versus score 3 and P 206 

=0.013 score 2 versus score 3). With respect to tumor size, no difference in NV (nuclei, 207 

tumor) was observed in tumors of each the three WHO size category. However, when 208 

tumors larger than 5 cm were compared with smaller tumors, the first ones presented a 209 

significant higher NV (nuclei, tumor) (t-test, P =0.030).  210 

The NV (nuclei, tumor) was weak-to-moderately correlated with the volume-weighted 211 

mean nuclear volume (r =-0.34; P =0.027)  i.e. the NV (nuclei, tumor) tended to be 212 

lower in tumors presenting higher nuclear pleomorphism.  213 

As to vascular/lymph node invasion status, the NV (nuclei, tumor) was similar in tumors 214 

with and without evidence of invasion. In the same line, no significant association 215 

between the NV (nuclei, tumor) and the post-surgical disease progression was detected. 216 

However, the eight cases that showed post-surgical disease progression during the 217 

follow-up period presented a lower NV (nuclei, tumor) (1.4x106 nuclei mm-3) when 218 

compared with cases without evidence of metastases and/or recurrence (1.8x106 nuclei 219 

mm-3) (t-test, P =0.047).  220 

The estimated shrinkage in x-y was 35.8% ± 2.3%, with no significant differences 221 

between cases.   222 
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Discussion 223 

Studies over the last thirty years have built a consensus on the value of quantification 224 

for improving the prognostic value of morphological parameters in malignant tumors (9, 225 

23-28). Stereological methods not only achieve such quantification, but have additional 226 

advantages of unbiasedness and reproducibility (5, 6). These have been applied for long 227 

in breast pathology (8, 27), but their use in the veterinary oncology is still incipient (11). 228 

Herein, the optical disector was used to assess the NV (nuclei, tumor) in CMC. Notably, 229 

the mean value for CMC (1.6x106 nuclei mm-3) was higher (but in the same order of 230 

magnitude) than that reported for human breast cancer (0.4x106 nuclei mm-3) (10). 231 

Interspecies differences may underlie such discrepancy, along with eventual technical 232 

discrepancies, particularly in the definition of the reference space (for example, we 233 

excluded stromal areas). Still, our data suggest that CMC present a higher numerical 234 

density of nuclei than human breast carcinomas. Despite the differences in figures 235 

between our and human studies, some observations in breast cancers were mirrored to 236 

some extension in CMC. For instance, there was no significant association between NV 237 

(nuclei, tumor) and histological grade, but a significant negative correlation was noted 238 

between the NV (nuclei, tumor) and the volume-weighted mean nuclear volume  r= -239 

0.34, -0.63 and -0.31 in our study and in the two existing breast cancer estimations 240 

[respectively, (10) and (27)]. 241 

Another interesting finding in both species is that cancers with worst survival outcomes 242 

presented a lower NV (nuclei, tumor) (10). At a first glance, this is an unexpected 243 

observation that appears to contradict the traditional concept that highly cellular tumors 244 

are associated with  poorer prognosis (13). However, it should be kept in mind that any 245 

numerical density is a relative parameter (i.e. a fraction) that can be influenced by the 246 

number of nuclei/cells or by changes in the reference space (i.e. decreases in numerator 247 
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or increases in the denominator). A decrease in the NV (nuclei, tumor) can occur in 248 

different scenarios, namely when cells get larger, or appear more distant (e.g. either due 249 

to an increase in extracellular matrix, as it probably occurs in complex carcinomas, or 250 

due to the loss of epithelial adhesion), or when an increased nuclear/cellular 251 

pleomorphism exists (Fig.3). The latter is more likely to occur in CMC, since it was 252 

previously described that the volume-weighted mean nuclear volume was significantly 253 

higher in more aggressive tumors (12), and herein a negative correlation between the 254 

nuclear volume parameter and the NV (nuclei, tumor) existed.  255 

Herein the NV (nuclei, tumor) did not differ between solid and tubulopapillary 256 

carcinomas. This supports that the presence of luminal structures in routine sections is 257 

not directly correlated with cellularity at 3D level. According to the present data, both 258 

solid and tubulopapillary carcinomas are heterogeneous regarding the 3D densities of 259 

nuclei, which is in accordance to previous studies describing variability in those 260 

subtypes of tumors using immunohistochemistry (e.g. 29). Yet, this study evidenced 261 

that complex carcinomas have decreased NV (nuclei, tumor). A possible explanation for 262 

this could reside in the presence of small portions of myxoid matrix, typical of these 263 

tumors (13). When being surrounded by that extracellular matrix, cells tend to appear 264 

separated and, thus fewer neoplastic cell nuclei would be counted in the disector (Fig. 265 

3C).  266 

Paraffin shrinkage during tissue processing can influence the reference space and, 267 

therefore, lead to overestimations of the NV (5, 30). In this study, the shrinkage was 268 

similar to that reported for thick paraffin sections (30, 31). In this case, the overall NV 269 

(nuclei, tumor) corrected for shrinkage would be 1.17x106 ± 0.5x106 nuclei mm-3. 270 

Theoretically, problems arise by comparing estimations of tissues with different 271 

amounts of shrinkage. This is unlikely to have influenced our results, not only because 272 
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all the cases were handled and processed similarly, but also because no significant 273 

differences in the diameter of erythrocytes between cases were noted. In fact, it should 274 

be stressed that the possibility of bias related to tissue handling when stereology is 275 

applied to routine diagnostic material should never cloud the advantages of stereology 276 

over traditional 2D techniques (32). These latter are not only affected by shrinkage, but 277 

are also severely influenced (in an uncontrolled extent) by the shape, orientation and 278 

size of the particles being counted (6, 16, 30). 279 

As a final methodological appraisal, in this first approach to the NV (nuclei, tumor) of 280 

CMC we obtained a small CE, much below the 0.1 threshold (16), and the error due to 281 

the methodology was low. For future studies and for practical purposes, the CE could be 282 

optimized, by counting fewer nuclei per tumor. In this vein, counting 20 fields per 283 

tumor would suffice and this would significantly reduce the time needed for the analysis 284 

(for forty fields, around 30 minutes were needed).  285 

Spontaneous CMC have been pointed as a suitable model for human breast cancer, 286 

based on similarities in epidemiological data, risk factors, molecular characteristics, and 287 

clinical course of the disease (e.g. 33, 34). The subtypes of simple CMC are more 288 

similar, in terms of the histological features, to the most frequent human breast 289 

carcinomas. The quantitative data presented herein strengthened the similarity of those 290 

canine tumors with human breast carcinomas. 291 

 292 

Conclusion 293 

We showed in CMC that an unbiased and reproducible estimation of a cellularity-related 294 

parameter — expressed as NV (nuclei, tumor) — can be obtained by stereological 295 

methods. The mean NV (nuclei, tumor) was lower in complex carcinomas, in smaller 296 

tumors, and in those with low mitotic activity and high nuclear pleomorphism. No 297 
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association with vascular/lymph node invasion was observed, but nuclear numerical 298 

density was lower in cases that progressed during follow-up. This association is a 299 

promising finding, suggesting that the NV (nuclei, tumor) have potential to be used to 300 

assess survival outcome in CMC. For this, further and larger studies are required.  301 
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 433 

 Simple carcinomas (n=30) Complex 
carcinomas 

(n=14) 
Tubulopapillary 

(n=11) 
Solid 

(n=16) 
Others 
(n=3) 

NV (nuclei, tumor) (mean, µm) 1.8x106  1.7x106 1.6x106 1.3x106 

Tumor size <3 cm 10 5 1 9 

Tumor size 3-5 cm 0 4 1 2 

Tumor size > 5 cm 
1 7 1 3 

Histological grade I 2 0 0 7 

Histological grade II 7 3 1 4 

Histological grade III 2 13 2 3 

Vascular/lymph node invasion 2 8 0 2 

Disease progression (recurrence 
and/or metastasis)* 

1 5 0 2 

*Follow up data was available for 22 cases with simple carcinomas and 5 cases with complex carcinomas 434 

 435 
Table 1: Numerical nuclear density and relevant clinicopathological parameters of the 44 canine mammary carcinomas used in this study.   436 
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Figure legends 437 
 438 

 439 
Fig. 1: Series of light micrographs from a thick section (30 µm) of a canine mammary 440 
carcinoma that form an optical disector (the depth of each optical plane is indicated in 441 
the upper left corner). Nuclei of neoplastic cells are counted if they are seen within the 442 
counting frame or touching the inclusion (green) lines, but not touching the exclusion 443 
(red) lines. In this illustrative field, 6 nuclei are counted (arrowheads); bar: 6 µm. 444 
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 445 
 446 
Fig. 2: Histogram of the mean NV (nuclei, tumor) values in the 44 canine mammary 447 
carcinomas; lozenge-arrow: mean value; circle-arrow: median value.  448 
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 449 
Fig. 3: Potential (theoretical) explanations for the changes in the NV (nuclei, tumor). For 450 
the sake of illustration consider a reference space (gray cube) holding particles that are 451 
counted through the optical disector (A). From B to D the NV (nuclei, tumor) decreases 452 
through different mechanisms. In (B) cells enlarge, thus few nuclei are counted, 453 
whereas in (C) cells are apart, due to extracellular matrix deposition or loss of 454 
intercellular adhesion. In (D) cells are highly pleomorphic, some cells are considerably 455 
larger, and so few nuclei are counted in the disector.  456 


