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Abstract 16 

Adding nitrate to or increasing the concentration of lipid in the diet are established 17 

strategies for reducing enteric methane (CH4) emissions, but their effectiveness 18 

when used in combination has been largely unexplored. This study investigated the 19 

effect of dietary nitrate and increased lipid included alone or together on CH4 20 

emissions and performance traits of finishing beef cattle. The experiment was a 2 × 4 21 

factorial design comprising two breeds (AAx, cross-bred Aberdeen Angus; LIMx, 22 

cross-bred Limousin steers) and four dietary treatments (each based on 550 g 23 

forage: 450 g concentrate /kg DM). The four dietary treatments were assigned 24 

according to a 2 x 2 factorial design where the control treatment contained rapeseed 25 

meal as the main protein source which was replaced either with nitrate (21.5 g 26 

nitrate/kg DM); maize distillers dark grains (MDDG, which increased diet ether 27 

extract from 24 to 37 g/kg DM) or both nitrate and MDDG. Steers (n = 20 /dietary 28 

treatment) were allocated to each of the four treatments in equal numbers of each 29 

breed with feed offered ad libitum. After 28 days adaptation to dietary treatments, 30 

individual animal intake, performance and feed efficiency were recorded for 56 days. 31 

Thereafter, CH4 emissions were measured over 13 weeks (six steers / week). 32 

Increasing dietary lipid did not adversely affect animal performance and showed no 33 

interactions with dietary nitrate. In contrast, addition of nitrate to diets resulted in 34 

poorer live-weight gain (P<0.01) and increased feed conversion ratio (P<0.05) 35 

compared with diets not containing nitrate. Daily CH4 output was lower (P<0.001) on 36 

nitrate-containing diets but increasing dietary lipid resulted in only a non-significant 37 

reduction in CH4. There were no interactions associated with CH4 emissions between 38 

dietary nitrate and lipid. AAx steers achieved greater live-weight gains (P<0.01), but 39 

had greater DM intakes (P<0.001), greater fat depth (P<0.01) and poorer residual 40 
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feed intakes (P<0.01) than LIMx steers. AAx steers had higher daily CH4 outputs 41 

(P<0.001) but emitted less CH4 per kg DM intake than LIMx steers (P<0.05). In 42 

conclusion, inclusion of nitrate reduced CH4 emissions in growing beef cattle 43 

although the efficacy of nitrate was less than in previous work. When increased 44 

dietary lipid and nitrate inclusion were combined there was no evidence of an 45 

interaction between treatments and therefore combining different nutritional 46 

treatments to mitigate CH4 emissions could be a useful means of achieving 47 

reductions in CH4 while minimizing any adverse effects. 48 

Keywords: beef cattle, greenhouse gas, methane, nitrate, dark grains.  49 

 50 

Implications 51 

The ability of individual nutritional strategies to reduce methane (CH4) emissions 52 

from cattle is limited by potential adverse consequences such as reduction in fibre 53 

digestion for increased lipid or toxicity for added nitrate. The reduction in CH4 54 

emissions when dietary nitrate was fed was not influenced by the presence of lipid.  55 

Combining different nutritional strategies to mitigate CH4 emissions could be a useful 56 

means of achieving reductions in CH4 while minimizing any adverse effects on cattle 57 

health and performance. 58 

 59 

Introduction 60 

Methane emissions arising from the enteric fermentation of feed by ruminant 61 

livestock contribute significantly to greenhouse gas emissions. In the United 62 

Kingdom (Department of Energy and Climate Change, 2016), enteric CH4 emissions 63 

were estimated to account for 23.8 Mt carbon dioxide equivalents or 48% of total 64 

greenhouse gas emissions from the agriculture sector in 2014. Strategies to mitigate 65 
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CH4 emissions have been classified (Hristov et al., 2013) as addressing enteric 66 

fermentation, manure management or animal husbandry (where animal husbandry 67 

included genetics, health and fertility). 68 

Many nutritional strategies which target CH4 emissions have been tested but 69 

convincing evidence for long-term efficacy in vivo for many is lacking. Increasing 70 

dietary lipid and inclusion of nitrate in the diet are effective mitigation strategies 71 

(Hristov et al., 2013) and their use has been recently reviewed (Martin et al., 2010; 72 

Patra, 2014; Lee and Beauchemin, 2014; Yang et al., 2016). However, the extent to 73 

which either strategy can be included in the diet is limited by potential adverse 74 

effects: a reduction in fibre digestion and consequently feed intake from increased 75 

lipid in the diet and nitrate / nitrite toxicity from adding nitrate. As the mechanisms by 76 

which lipid (reduction in fermentable carbohydrate intake, inhibition of micro-77 

organisms; Martin et al., 2010; Patra, 2013) and nitrate (alternative hydrogen 78 

acceptor; Yang et al. 2016) reduce CH4 emissions are different, it may be practically 79 

useful to combine these mitigation strategies. 80 

Klop et al. (2016) fed lipid and nitrate alone or in combination to dairy cows 81 

and found no evidence for any negative interactions between strategies for either 82 

CH4 emissions or animal performance. Similarly in non-lactating dairy cows 83 

(Guyader et al., 2015), there were no interactions between nitrate and tea saponins. 84 

Interactions between mitigation strategies have not been explored to date in beef 85 

cattle. The main hypotheses addressed in this study were that the effects on CH4 86 

emissions of increasing lipid or including nitrate in diets of finishing beef cattle would 87 

be additive and that there would be no adverse effects upon animal performance. 88 

The nutritional strategies used were based on those reported previously (Troy et al., 89 

2015; Duthie et al., 2016). 90 
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 91 

Materials and Methods 92 

This experiment was conducted at Scotland’s Rural College (SRUC) Beef and 93 

Sheep Research Centre in Edinburgh in 2014. The experimental protocol was 94 

approved by SRUC’s Animal Welfare and Ethical Review Body, the Animal 95 

Experiments Committee and was conducted in accordance with the requirements of 96 

the UK Animals (Scientific Procedures) Act, 1986. 97 

 98 

Experimental design, animals and diets 99 

The experiment was a 2 × 4 factorial (breed × dietary treatment) design. The basal 100 

diet contained 550 forage (grass and whole crop barley silages): 450 concentrate 101 

(g/kg DM). The four dietary treatments were assigned according to a 2 x 2 factorial 102 

arrangement where te control diet (CTL) contained rapeseed meal as the main 103 

protein source which was replaced either with nitrate (NIT, 21.5 g nitrate/kg DM) or 104 

maize distillers dark grains (MDDG) to increase diet lipid concentration or both 105 

nitrate and MDDG (COMB). Forage to concentrate ratio was maintained constant by 106 

varying the amounts of barley included in the diets. Nitrate was added in the form of 107 

calcium ammonium nitrate (Calcinit; Yara, Oslo, Norway). The ingredient and 108 

nutritional composition of each dietary treatment are given in Table 1. The steers 109 

were offered diets ad libitum. Feed samples were analysed for DM, ash, CP, ADF, 110 

NDF, starch and ether extract (Ministry of Agriculture Fisheries and Food, 1992), and 111 

gross energy (GE) by adiabatic bomb calorimetry. 112 

The 80 cross-bred steers (13 to 15 months of age at start of performance trial) 113 

used were from a rotational cross between pure-bred Aberdeen Angus or Limousin 114 

sires and cross-bred dams of those genotypes and are referred to as AAx and LIMx, 115 
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respectively. Thus, 20 steers (10 of each breed) were allocated to each dietary 116 

treatment. To avoid animals not adapted to nitrate gaining access to dietary nitrate, 117 

each treatment was allocated to one pen (four pens in total). Treatments were 118 

balanced for sire within each breed and BW at the start of the experiment. Fresh 119 

water was provided ad libitum using a water trough, and diets were offered using 32 120 

electronic feeders (eight per pen, HOKO, Insentec, Marknesse, The Netherlands) to 121 

record individual animal feed intakes. All steers were bedded on wood fibre and 122 

sawdust to ensure that consumption of bedding did not contribute to nutrient intake.  123 

Steers were adapted to the experimental diets in two stages. In stage one 124 

(days -64 to -36 in relation to the start of the performance test on day 0), the animals 125 

were all adapted to the control diet and trained to use the electronic feeders. In stage 126 

two (days –35 to 0), steers were adapted to the treatments over a 5 week period. 127 

Dietary treatments (nitrate and MDDG) were progressively incorporated into the NIT, 128 

MDDG and COMB treatments at 25% (day -35), 50% (day -28), 75% (day -21) and 129 

100% (day -14) of the final dietary inclusion. 130 

 131 

Blood met-haemoglobin (MetHb) measurements 132 

Blood MetHb is formed when nitrite, arising from reduction of nitrate in the rumen, 133 

reacts with haemoglobin to form MetHb which is incapable of oxygen transport and 134 

responsible for acute toxicity (Bruning-Fann and Kaneene, 1993). Blood MetHb 135 

concentrations were monitored in all steers receiving dietary nitrate. Blood samples 136 

were taken 3 h after fresh feed was offered, when MetHb concentrations were 137 

expected to be greatest (van Zijderveld et al., 2010). Samples were taken on days -138 

34 (25%), -27 (50%), -13 (100%), -6 (100%) and 1 (100%) where 100% is the final 139 

dietary inclusion of nitrate. Blood samples were taken from the caudal vein into two 140 
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evacuated tubes (Vacuette 9 ml LH Lithium Heparin, Vacuette, Griener Bio One Ltd., 141 

Gloucestershire, UK). The samples were immediately combined to give one tube 142 

from which air was excluded, sealed and kept on ice until blood MetHb 143 

concentrations were measured within 2 h of sampling by co-oximetry (Stat Profile 144 

Critical Care Xpress, Nova Biomedical U.K., Cheshire, UK).  145 

 146 

56 day performance test 147 

After full adaptation to the experimental diets, performance and feed efficiency were 148 

characterised for all steers over a 56 day test period (days 0 to 56). Steers were 149 

maintained under controlled conditions, where group sizes within the pen remained 150 

constant. Individual DM intake (DMI, kg/day) was recorded for each animal using the 151 

electronic feeding equipment and BW was measured weekly, before fresh feed was 152 

offered, using a calibrated weigh scale. For all steers, ultrasonic fat depth was 153 

obtained at the 12th/13th rib at the start (FD0) and end (FD1) of the 56 day test 154 

using industry-standard equipment (Aloka 500, BCF Technology LTD, UK). Images 155 

were analysed using Matrox Inspector 8 software (Matrox Video and Imaging 156 

Technology Europe Ltd., Middlesex, UK). 157 

 158 

Respiration chamber measurements 159 

Seventy-two of the steers, balanced for breed and treatment were chosen for 160 

respiration chamber measurements. The steers remained on the same diets and in 161 

the same pens as described above prior to entering the respiration chamber facility. 162 

The steers were allocated to six respiration chambers over a 12 week period using a 163 

4 (dietary treatment) x 6 (chamber) randomised block design which was replicated 164 

three times such that each dietary treatment was measured in each respiration 165 
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chamber three times over the 12 week period. Prior to entering the respiration 166 

chambers the steers were housed in training pens, identical in size and shape to the 167 

pens inside the chambers, for a period of one week, to adapt to individual housing. 168 

The steers were allocated to chambers to minimise variation in BW on entry into the 169 

respiration chambers between blocks; thus the heaviest steers for each treatment 170 

were included in the first block. The steers remained in the respiration chambers for 171 

3 days, during which time they were fed ad libitum once daily. Data for DMI during 172 

the 3 day chamber measurement period were averaged per animal. One chamber 173 

malfunctioned from weeks 1 to 6, which resulted in the requirement for a thirteenth 174 

week of chamber analysis to obtain measurements from each of 72 steers. Full 175 

details of the methods are described in Troy et al. (2015).  176 

 177 

Rumen sampling and analysis 178 

Rumen fluid samples were taken to assess long term changes in rumen volatile fatty 179 

acid (VFA) molar proportions from each animal on five occasions: before adaptation 180 

to dietary treatments (day -42); during adaptation (day -28); pre-performance test 181 

(day -11); end of performance test (day 56); immediately after leaving respiration 182 

chambers. Samples, approximately 50 ml rumen liquid, were taken before fresh feed 183 

was offered, by inserting a stomach tube (16 × 2700 mm Equivet Stomach Tube, 184 

JørgenKruuse A/S, Langeskov, Denmark) nasally and aspirating manually. This 185 

liquid was filtered through two layers of muslin. A 5 mL sample of the filtered liquid 186 

was deproteinised by adding 1 mL metaphosphoric acid (215 g/l) and 0.5 ml 187 

methylvaleric acid (10 g/l) was added as an internal standard. These samples were 188 

stored at -20 °C between collection and analysis. Volatile fatty acid  concentrations 189 

were determined by high performance liquid chromatography (Rooke et al. 1990).  190 
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 191 

Calculations and statistical analyses 192 

Data from one steer from the 56 day test period was discarded as the steer was 193 

removed from the trial for health reasons unconnected to the diets and treatments 194 

imposed, leaving data from 79 steers available for analysis. Growth was modelled by 195 

linear regression of BW against test date, to obtain average daily gain (ADG), mid-196 

test BW (mid-BW) and mid-test metabolic BW (mid-MBW, BW0.75). Mean DMI over 197 

the 56 day period was expressed as kg per day or as a proportion of mid-BW and 198 

mid-MBW. Feed conversion ratio (FCR) was calculated as average DMI (kg/day) / 199 

ADG. Residual feed intake (RFI) was calculated as deviation of actual DMI (kg/day) 200 

from DMI predicted based on linear regression of actual DMI on ADG, mid-MBW and 201 

FD1 (Basarab et al., 2003).  202 

Statistical analyses of performance data were conducted using the mixed 203 

procedure of SAS software (SAS 9.3 for Windows; SAS Inst. Inc., Cary, USA) with 204 

the fixed effects of breed, nitrate and lipid. In addition, in the analysis of FD1 and 205 

FD2, the deviation from the breed mean of FD0 was included as a covariate. In the 206 

analysis of the respiration chamber data, fixed effects were breed, nitrate and lipid, 207 

while the random effects were week of chamber measurement and chamber. The 208 

interactions, breed × nitrate, nitrate × lipid, breed × lipid and breed × nitrate × lipid 209 

were included as fixed effects in each model when these effects proved significant (P 210 

< 0.05). 211 

Changes in MetHb concentration were analysed using a repeated measures 212 

design where the fixed effects were breed, lipid and time and their interactions. As 213 

significant time x breed x lipid interactions were found, a two factor (breed x lipid) 214 

ANOVA was then performed for each time to characterise this interaction. Where a 215 
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significant breed x lipid interaction was detected, differences between individual 216 

treatments were characterized using LSD.  217 

Molar proportions of VFA in rumen fluid when steers left the respiration 218 

chamber were analysed using fixed effects of breed, nitrate and lipid and their 219 

interactions with week of measurement as a random effect. For differences in the 220 

ratio, acetate to propionate, between samples taken at different stages of the 221 

experiment, a split plot ANOVA was used where sample was a split plot within steer 222 

and the effects of breed, nitrate, lipid and sample and their interactions were 223 

included in the model. Data for samples taken prior to introduction of dietary 224 

treatments (day -42), were included as a covariate in the model to control for pre-225 

existing differences between steers in VFA pattern. For all analyses data are 226 

reported as means with their standard errors of the mean unless indicated otherwise. 227 

Probability values of P<0.05 were deemed to be significant, while probability values 228 

P>0.05 and P<0.1 were deemed to indicate a tendency.  229 

 230 

Results 231 

Met-haemoglobin response to dietary nitrate 232 

MetHb concentrations were low (<1% total haemoglobin (Hb), Figure 1) when nitrate 233 

was included at 25 and 50% of the maximum inclusion. Adding 100% nitrate 234 

increased MetHb concentrations (P<0.001); mean values were greater on day -6 235 

(7.9% total Hb) than on day -13 (2.9% total Hb) or day 1 (2.2% total Hb). There was 236 

a significant time x breed x nitrate interaction (P<0.01). On day -13, Met-Hb 237 

concentrations were greater (P<0.01) on the COMB than the NIT treatment. 238 

However, on day -6, AAx steers on treatment COMB had greater MetHb 239 

concentrations (4.1% SEM 0.65) than other treatments (1.6% SEM 0.25). For 240 
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individual steers, the highest values for MetHb concentration recorded were 13.0, 241 

20.5 and 7.6 % total Hb on days -13, -6 and 1 respectively. Clinical signs of toxicity 242 

are considered to become apparent at MetHb values of 30 to 40% total Hb (Bruning-243 

Fann and Kaneene, 1993). 244 

 245 

As there were no interactions between breed and dietary treatment for any 246 

measurement, for clarity, results in Tables 2 to 4 are presented as main effects of 247 

breed and dietary treatment. 248 

 249 

Performance traits 250 

At the start of the experiment the treatments were balanced for age and BW. Thus, 251 

age at the start of the test period (AgeST) and Mid-BW did not differ across dietary 252 

treatments (P>0.05, Table 2). DMI was not affected by the inclusion of nitrate or lipid 253 

(P>0.05). However, steers receiving dietary nitrate achieved poorer ADG throughout 254 

the 56 day test (P<0.01). The inclusion of nitrate or lipid did not affect fat depth at the 255 

end of the 56 day test (FD1; P>0.05). Steers receiving dietary nitrate were less 256 

efficient (greater FCR; P<0.05) than those not receiving nitrate, although this 257 

difference was not observed for RFI. In contrast dietary lipid did not affect feed 258 

efficiency (P>0.05). AgeST and Mid-BW did not differ between breeds (P > 0.05). 259 

AAx steers achieved greater ADG compared to LIMx steers (P<0.01). DMI was 260 

greater in AAx compared to LIMx steers, whether expressed daily (P<0.001), or as a 261 

proportion of BW (P<0.001). FD1 was greater in AAx compared to LIMx steers (P < 262 

0.05). Due to the higher levels of DMI and FD1, AAx steers were less efficient with 263 

greater RFI scores than LIMx steers (P<0.01).  264 

 265 
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Methane and hydrogen emissions 266 

Steers receiving treatments which included nitrate produced less CH4 and more 267 

hydrogen (Table 3) than those treatments without added nitrate, expressed on either 268 

a daily or on a DMI basis (P<0.001). Increasing the lipid content of the diets had no 269 

effect on CH4 or H2 emissions. When expressed on a GE basis, CH4 emissions 270 

(kJ/MJ GE intake) were reduced when lipid was included in the diet. There were no 271 

significant interactions between inclusion of nitrate and lipid on CH4 emissions on 272 

either a daily (P=0.59) or DMI (P=0.82) basis. There were no differences in CH4 273 

emissions when calculated /kg ADG for any nutritional treatment. AAx steers were 274 

heavier than the LIMx steers (P<0.01) and had a higher DMI during the chamber 275 

period (P<0.001). Therefore, they produced more CH4 on a daily basis (P<0.001). In 276 

contrast, the LIMx steers produced more CH4 on a DMI basis (P<0.05). Breed had 277 

no effect on H2 emissions on either a daily or DMI basis.  278 

 279 

Volatile fatty acid molar proportions 280 

When nitrate was included in the diets, acetate molar proportions were greater 281 

(P<0.001), those of propionate less (P<0.01) and therefore acetate to propionate 282 

ratio (APR) greater (P<0.001) in rumen samples taken when steers left the 283 

respiration chambers (Table 4). Increasing the lipid concentration of the diet also 284 

increased (P < 0.05) the molar proportions of acetate. There were greater molar 285 

proportions of acetate (P<0.01) and lesser propionate proportions (P<0.05) in LIMx 286 

than AAx steers. The APR ratio differed (P<0.001) in samples taken at different 287 

times during the experiment (Figure 2), increasing as the experiment progressed. 288 

APR in samples taken prior to introduction of dietary treatments was a significant 289 

covariate (P<0.01) in the model indicating that individual steer VFA pattern prior to 290 
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inclusion of treatments influenced VFA pattern throughout the experiment. The main 291 

effects of breed and treatment across the experiment were consistent with samples 292 

taken when steers left the respiration chambers (Table 4). Thus, LIMx steers had 293 

greater APR than AAx steers (P<0.05) and inclusion of both nitrate (P<0.001) and 294 

lipid (P<0.05) increased APR.  295 

 296 

 297 

Discussion 298 

This study extended those of Troy et al. (2015) and Duthie et al. (2016) by using a 299 

factorial design to investigate whether the effects of individual treatments to reduce 300 

CH4 emissions were additive and to characterize the consequences for animal 301 

performance. The diets were formulated from feedingstuffs practical for use in beef 302 

cattle systems. To maintain CP constant, MDDG and nitrate replaced dietary 303 

rapeseed meal. Thus the increase in dietary lipid concentration achieved with MDDG 304 

was modest. However, this was representative of what is practically achievable using 305 

by-product feeds. To achieve higher lipid concentrations, it would have been 306 

necessary to use materials from which oil could have been extracted for human food 307 

consumption. Since a main objective was to investigate the combined effects of lipid 308 

and nitrate, the COMB treatment inevitably contained a higher CP concentration than 309 

the other treatments. However, there were no interactions for any performance 310 

measurement between lipid and nitrate and thus no adverse effects of the higher CP. 311 

 312 

Diet effects 313 

Nitrate. Addition of nitrate to the diet reduced CH4 emissions, a consistent finding 314 

across many studies (see review by Lee and Beauchemin, 2014 and more recent 315 
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studies including: Newbold et al., 2014; Guyader et al., 2015, 2016; Lee et al., 2015; 316 

Troy et al., 2015; Veneman et al., 2015; Klop et al., 2016). Unexpectedly, the 317 

reduction in CH4 from added nitrate was only 10% or 2.2 g/kg DM less than for diets 318 

not containing nitrate. As H2 consumed in reduction of 1 mole nitrate is equivalent to 319 

that used in formation of 1 mole CH4, the reduction in CH4 was only 45% of the 320 

theoretical maximum possible for the dietary nitrate inclusion. A 17% (4.4 g/kg DMI) 321 

reduction in CH4 yield (80% of theoretical maximum) was reported by Troy et al. 322 

(2015) who used very similar experimental conditions to the present experiment. The 323 

meta-analysis of Lee and Beauchemin (2014) predicted that the amount of nitrate 324 

used would have reduced CH4 emissions by 18%. A more recent analysis of the 325 

efficacy of nitrate, including the studies cited above (Rooke et al., 2016) found that a 326 

mean inclusion of 21g nitrate / kg DMI, reduced mean CH4 (g/kg DMI) by 21%. 327 

The lower than expected reduction in CH4 by nitrate was accompanied by 328 

reduced FCR in nitrate-fed animals. Again, the reduction in animal performance was 329 

unexpected as in none of the studies reviewed by Lee and Beauchemin (2014) or 330 

most recent studies (Li et al., 2013; de Raphelis-Soissan et al., 2014; Lee et al.. 331 

2015; Veneman et al., 2015; Duthie et al., 2016; Klop et al., 2016) has animal 332 

performance been compromised by inclusion of nitrate. However, Guyader et al. 333 

(2016) reported reduced fat and protein corrected milk yield when both nitrate and 334 

extruded linseed were added to the diet and Hegarty et al. (2016) in a feedlot study 335 

using high grain diets (700 g / kg DM) reported reduced DMI, ADG and FCR when 336 

nitrate replaced urea. In the current experiment, since DMI was not changed when 337 

nitrate was added to the diet, then the poorer FCR must have been due to alterations 338 

in nutrient supply or utilization.  339 



15 
 

Although MetHb concentrations of greater than 15% total Hb were observed 340 

during adaptation to nitrate, these were isolated occurrences and were substantially 341 

less than the 30 to 40% total Hb considered to lead to clinical toxicity (Bruning-Fann 342 

and Kaneene, 1993). As reduced performance is the most likely response to mild or 343 

subclinical toxicity, then this cannot be excluded as a reason for the poorer FCR in 344 

nitrate-fed animals. Another possibility is that rumen microbial protein synthesis and 345 

therefore host animal amino acid supply may have been less than expected. The 346 

reduction in CH4 attributed to nitrate was only 45% of the theoretical maximum. This 347 

implies that there was a corresponding reduction in the conversion of nitrate to 348 

ammonia. When the degradable protein supply to the rumen (ERDP) was estimated 349 

according to AFRC (1993) for diets CTL and NIT, ERDP supply was greater than 350 

requirement (1.14 and 1.18-fold respectively; 9.9 and 10.6 g ERDP/MJ fermentable 351 

ME, FME). When the ERDP supply from nitrate was reduced to 0.45 of that supplied 352 

by nitrate on diet NIT, ERDP supply was reduced to 0.99 of requirement or 9.0 g 353 

ERDP/MJ FME. However, estimated metabolisable protein supply to the animal was 354 

in excess of requirement (1.40 (CTL), 1.35 (NIT) and 1.30 fold (NIT with reduced 355 

ERDP supply) and therefore overall no reduction in performance as a result of 356 

reduced ERDP supply would have been expected as a consequence of a reduction 357 

in conversion of nitrate to ammonia. A further possibility is that as nitrate, a non-358 

protein nitrogen source of ERDP replaced rapeseed meal in the diet then protein 359 

supply may have been impaired. However, this is unlikely as the reduction in FCR 360 

was a main effect of nitrate and so was also observed in diet COMB where both 361 

nitrate and MDDG were included in the diet and protein supply to both rumen and 362 

animal would have been in excess.  363 
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Lipid. Because inclusion of MDDG in diets was limited by the need to avoid excess 364 

CP intake, the increase in lipid content of the diet was modest (12 g/kg DMI) and the 365 

overall reduction in CH4 emissions was not significant (P=0.12) on a g/kg DMI basis 366 

and only became significant on a kJ/MJ basis. However, the numerical decrease in 367 

CH4 emissions (g/kg DMI) of 4% (3% for a 10 g/kg diet DM increase in lipid) was 368 

consistent with the meta-analysis of Martin et al. (2010) of a reduction in CH4 (g/kg 369 

DMI) of 3.8% for a 10 g/kg DM addition of supplementary fat.  370 

Nitrate and lipid. A primary aim of the experiment was to investigate whether the 371 

effectiveness of different nutritional methods for reducing CH4 were additive. Since 372 

the interaction between treatments was not significant (P=0.82) for CH4 yield (g/kg 373 

DMI) then there was no evidence that the effects of nitrate and lipid were not 374 

additive. Most in vivo studies investigating different strategies for reducing CH4 have 375 

either compared different treatments (e.g. van Zijderveld et al., 2011a; El-Zaiat et al., 376 

2014) or the combined effects of treatments (van Zijderveld et al., 2011b; Li et al., 377 

2013; Caetano et al., 2016) but have not adopted the factorial design necessary to 378 

quantify interactions between treatments. Van Zijderveld et al. (2010) compared 379 

nitrate and sulphate when fed to sheep and found the effects of treatments on CH4 380 

emissions were additive. Similarly de Raphelis-Soissan et al. (2014) fed nitrate and 381 

Propionibacterium acidipropionici to sheep and Klop et al. (2016) nitrate and 382 

docosahexaenoic acid to dairy cows and again treatment effects on CH4 emissions 383 

were additive. Thus in agreement with the current study, there is no evidence that 384 

the effects of nutritional mitigation strategies for reducing CH4 are not additive.  385 

The additive nature of mitigation treatments is of practical importance. The 386 

extent to which lipid-containing feeds can be incorporated into diets is limited by the 387 

need to avoid reductions in fibre digestion when lipid concentrations are greater than 388 
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70 g/kg DM (Patra 2013). During adaptation to nitrate, in both the current experiment 389 

and Duthie et al. (2016), blood Met-Hb concentrations did not increase until 15 g 390 

nitrate / kg diet DM was included in the diet. This is likely because the apparent 391 

efficiency of CH4 reduction by nitrate decreases as nitrate inclusion increases (Leng 392 

2014). Thus, potential adverse effects of mitigation strategies such as toxicity and 393 

impaired animal performance could be avoided by feeding lesser amounts of nitrate 394 

than in the present experiment.  395 

Breed effects 396 

Total CH4 emissions were greater in AAx than LIMx steers as noted before (Rooke 397 

et al., 2014) primarily because of greater DMI. However unlike Rooke et al. (2014), 398 

CH4 yield (g/kg DMI) was lower in AAx than LIMx steers. This was probably because 399 

of a faster rumen turnover rate in the AAx steers, an effect that has been well 400 

documented and included in empirical prediction equations for CH4 yield (Sauvant 401 

and Giger-Reverdin 2009; Ramin and Huhtanen 2013). Similarly the smaller 402 

proportion of acetate in rumen fluid samples from AAx steers was consistent with the 403 

meta-analysis of Nozière et al. (2011). In the performance trial, the greater DMI of 404 

AAx steers noticed when CH4 was measured was also evident and resulted in 405 

greater ADG in AAx steers. However when the RFI of the steers was assessed, the 406 

LIMx steers were more efficient (smaller RFI) than the AAx steers. The lower CH4 407 

emissions (g/kg DMI) and higher propionic molar proportion achieved with the AAx 408 

steers is not consistent with the differences in RFI. There is no obvious reason for 409 

these discrepancies but it should be noted that the performance and respiration 410 

chambers measurements were made sequentially.  411 

 In conclusion, inclusion of nitrate in the diet reduced CH4 emissions in 412 

growing beef cattle although the efficacy of nitrate was less than in previous work 413 
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(Troy et al., 2015). Whereas Duthie et al. (2016) recorded no changes in animal 414 

performance when nitrate was fed, in the present experiment, growth rate and feed 415 

conversion ratio were poorer when nitrate was included in the diet. However, when 416 

both increased dietary lipid and nitrate inclusion were combined there was no 417 

evidence of any interaction between treatments in CH4 emissions or performance 418 

traits. Therefore, combining different nutritional treatments to mitigate CH4 emissions 419 

could be a useful means of achieving reductions in CH4 emissions without adverse 420 

effects. 421 

 422 
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Table 1. Ingredient and chemical composition (g/kg DM) of the experimental diets  

Treatment Control Nitrate MDDG Combined 

Ingredient Composition     

    Barley 336 388 289 263 

    Grass silage 210 211 209 210 

    Whole crop barley silage 347 347 346 346 

    Rapeseed meal 79 0 0 0 

    Calcinit1 0 25 0 24 

    Maize distiller’s dark grains 0 0 128 127 

    Molasses 19 20 19 19 

    Minerals2 9 9 9 9 

Chemical Composition     

    DM, g/kg 533 531 533 533 

    Ash 52 48 51 51 

    CP 135 141 136 162 

    ADF 184 166 184 183 

    NDF 308 295 317 313 

    Starch 281 308 264 250 

    Ether extract 25.0 23.4 36.7 35.9 

    GE, MJ/kg DM 18.1 17.6 18.5 18.0 

    Estimated ME, MJ/kg DM 11.7 11.5 12.0 11.7 

1Contained (g/kg DM): nitrate, 757; Ca, 225. 

2Contained (mg/kg): Fe, 6036; Mn, 2200; Zn, 2600; Iodine, 200; Co, 90; Cu, 2500; Se 30; 

(µg/kg): vitamin E, 2000; vitamin B12, 1000; vitamin A, 151515; vitamin D, 2500. 
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Table 2. Effect of breed and dietary treatment on growth, fat depth, feed intake and feed efficiency of Aberdeen Angus- (AAx) and Limousin-

sired (LIMx) steers fed four dietary treatments in which rapeseed meal (CTL) was replaced by nitrate (NIT) or lipid (MDDG) alone or in 

combination (COMB)  

 

 

Breed Significance2 

 

Treatment 

 
Significance2 

Treatment AAx LIMx   CTL NIT MDDG COMB SEM1 Nitrate Lipid 

AgeST (days) 417 411 NS 

 
414 414 413 415 5.3   

Mid-BW (kg) 542 539 NS 

 
547 543 538 534 17.5   

Mid-MBW (kg0.75) 112 112 NS 

 
113 112 112 112 2.7   

ADG (kg/day) 1.75 1.56 ** 

 
1.74 1.54 1.72 1.63 0.076 **  

DMI (kg/day) 12.15 11.07 *** 

 
11.78 11.43 11.76 11.47 0.425   

DMI/BW(g/kg) 22.44 20.58 *** 

 
21.60 21.08 21.90 21.47 0.483   

DMI/MBW(g/kg0.75) 108.1 99.1 *** 

 
104.3 101.6 105.3 103.1 2.31   

FCR (kg, kg) 7.02 7.21 NS 

 
6.85 7.52 6.90 7.18 0.269 *  

RFI (kg) 0.24 -0.24 ** 

 
-0.08 0.06 -0.02 0.04 0.231   

FD1 (mm)3 9.14 8.05 ** 

 
8.40 8.86 8.81 8.31 0.663   

1SEM for 10 observations. 

AgeST, Age at start of test; Mid-BW, mid-test BW; Mid-MBW, mid-test metabolic BW; ADG, average daily gain at the end of the 56 day test; 

FCR, feed conversion ratio; RFI, residual feed intake; FD1, fat depth at the 12/13th rib at the end of the 56 day test. 

2 There were no significant (P>0.05) interactions between breed and dietary treatment or between nitrate and lipid. 

3Deviation from breed mean of FD0 (measured at start of 56 day performance test) fitted as covariate. 

*P<0.05; **P<0.01; P<0.001 
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Table 3. Effect of breed and dietary treatment on methane and hydrogen emissions of Aberdeen Angus-sired (AAx) and Limousin-sired (LIMx) 

steers fed four dietary treatments in which rapeseed meal (CTL) was replaced by nitrate (NIT) or lipid (MDDG) alone or in combination (COMB)  

 

 

Breed 
  

Treatment 
  

Significance2 

 
AAx Limx Significance CTL NIT MDDG COMB SEM1 Nitrate Lipid 

BW (kg) 669 648 **  677 650 652 655 9.5   

DMI 
             kg/day 11.0 9.3 *** 

 
10.3 9.8 10.2 10.2 0.51   

  g/kg BW 16.4 14.3 *** 

 
15.3 15.0 15.6 15.6 0.65   

Methane 

  
 

     
   

  g/day 241 214 *** 

 
246 219 238 210 12.2 ***  

  g/kg DMI 22.0 23.2 * 

 
24.0 22.1 23.4 20.9 0.94 ***  

  g/kg ADG3 
154 163   161 163 161 147 7.9   

  kJ/MJ GEI  67.5 71.1 * 

 
73.3 69.5 70.2 64.2 2.9 ** * 

Hydrogen 

  
 

     
   

  g/day 0.86 0.67  

 
0.45 0.99 0.40 1.04 0.095 ***  

  g/kg DMI 0.06 0.07  

 
0.04 0.10 0.04 0.10 0.009 ***  

  kJ/MJ GEI 0.56 0.58  

 
0.35 0.81 0.30 0.82 0.073 ***  

H2:CH4 molar ratio 0.025 0.025  

 
0.015 0.035 0.01 0.04 0.003 ***  

DMI, DM intake; GEI, Gross Energy intake;  

1 SEM for 9 observations.  

2There were no significant (P>0.05) interactions between breed and dietary treatments or between nitrate and lipid. 

*P<0.05; **P<0.01; ***P<0.001 

3 Calculated from methane (g/kg DMI) and DMI and ADG from Table 2.  
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Table 4. Effect of breed and dietary treatment on VFA (mmol/mol) molar proportions in rumen fluid from Aberdeen Angus-sired (AAx) and 
Limousin-sired (LIMx) steers fed four dietary treatments in which rapeseed meal (CTL) was replaced by nitrate (NIT) or lipid (MDDG) alone or 
in combination (COMB). Rumen samples taken when steers left respiration chambers 

 

Breed 
  

Treatment 
 

Significance2 

Treatment AAx Limx Significance CTL NIT MDDG COMB SEM1 Nitrate Lipid 

Acetate 672 689 *** 
 

664 685 676 696 7.4 *** * 

Propionate 167 155 * 
 

175 154 164 150 7.3 ** 
 

Butyrate 126 123 
  

124 127 125 123 5.8   

Valerate 13 11 † 
 

13 12 12 10 1.0 † † 

Branched chain 34 35   40 34 29 34 2.8  ** 

Acetate: Propionate 
Ratio 

4.0 4.5 ** 
 

3.9 4.5 4.2 4.7 0.33 ***  

 

1SEM given for 9 observations. 

2There were no significant interactions (P>0.05) between breed and treatments 

†, P<0.1; *P<0.05; **P<0.01; ***P<0.001 

 



27 
 

Legends for Figures 

 

Figure 1. Changes in blood met-haemoglobin (% total haemoglobin) during adaptation to 

nitrate-containing diets. Samples were obtained from cross bred Aberdeen Angus (AAx) or 

Limousin (LimX) steers offered diets containing nitrate alone (NIT) or nitrate and maize 

distillers dark grains (COMB). Blood samples were taken when 25% (day -34, where day 0 

was the start of the performance test), 50% (day -27) and 100% (days -13, -6 and 1) of the 

dietary nitrate (100% = 21.5 g nitrate / kg DM) inclusion was offered. 

 

Figure 2 Changes in the ratio (mol /mol) of acetate to propionate during experiment in rumen 

fluid from steers fed four dietary treatments in which rapeseed meal (CTL) was replaced by 

nitrate (NIT) or lipid (MDDG) alone or in combination (COMB). Samples were taken during 

adaptation to basal diet (Prelim, day -42); during introduction of experimental treatments 

(Adapt, day -28); prior to the start (Start, day -11) and at the end (End, day 56) of 

performance measurement and when steers left respiration chambers (Chamber). 
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dietary nitrate (100% = 21.5 g nitrate / kg DM) inclusion was offered. 
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Figure 2 Changes in the ratio (mol /mol) of acetate to propionate during experiment in rumen 

fluid from steers fed four dietary treatments in which rapeseed meal (CTL) was replaced by 

nitrate (NIT) or lipid (MDDG) alone or in combination (COMB). Samples were taken during 

adaptation to basal diet (Prelim, day -42); during introduction of experimental treatments 

(Adapt, day -28); prior to the start (Start, day -11) and at the end (End, day 56) of 

performance measurement and when steers left respiration chambers (Chamber). 
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