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Abstract 25 

As the use of visual soil evaluation (VSE) methods has spread globally, they have been 26 

exposed to different climatic and pedological scenarios, resulting in the need to elucidate 27 

limitations, encourage refinements and open up new avenues of research. The main 28 

objective of this paper is to outline the potential of VSE methods to develop novel soil 29 

structure research and how this potential could be developed and integrated within existing 30 

research. We provide a brief overview of VSE methods in order to summarize the soil 31 

information that is obtained by VSE. More detailed VSE methods could be developed to 32 

provide spatial information for soil process models, e.g. compaction models. VSE could be 33 

combined with sensing techniques at the field or landscape scale for better management of 34 

fields in the context of precision farming. Further work should be done to integrate plant 35 

vigour, roots and soil fauna into VSE methods to provide general indicators of soil quality 36 

and for estimation of environmental risk factors related to soil C storage, GHG emissions and 37 

nutrient leaching, with particular reference to temporal changes. There is a great potential in 38 

combining (rather than comparing) VSE with measurements of soil structure, i.e. integrating 39 

VSE in soil structure and compaction research, as these methods provide spatial information 40 

that is difficult to obtain with other methods. 41 

 42 

Keywords: Soil management; Soil compaction; Sensing; Modelling; Soil quality 43 
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1. Introduction 45 

Soil structure comprises the physical habitat of soil living organisms, and controls many 46 

important physical, chemical and biological soil functions and associated ecosystem services. 47 

Soil structure is typically defined as the spatial arrangement of soil constituents and voids 48 

(i.e. soil pores), which may also be defined as the spatial distribution of soil properties 49 

(Dexter, 1988). However, soil structure is more than just the physical arrangement of 50 

particles and pores (that was referred to as “structural form” by Kay and Angers (2001)), and 51 

includes structural stability (i.e. the ability to resist extern stresses) and structural resilience 52 

(i.e. the ability to recover upon stress removal) (Kay and Angers, 2001). Different methods 53 

can be used to evaluate the different aspects of soil structure. For example, computed 54 

tomography (CT) imaging is excellent at visualizing and quantifying the form of soil structure 55 

(for an overview, see Taina et al., 2008; Peth, 2011; Wildenshild and Sheppard, 2013) and 56 

can be used to study the dynamics of soil structural pore spaces (i.e. the dynamics of the 57 

form of soil structure) by multiple scanning as demonstrated by Peth et al. (2013), but 58 

cannot directly assess soil structure stability or resilience. Visual soil evaluation (VSE) cannot 59 

reveal as much information on the geometrical arrangement of pores and constituents as CT 60 

imaging does, but assesses both the structural form and the structural stability (e.g. DVWK, 61 

1995a, 1997; ATV-DVWK, 2001; Boizard et al., 2007; Guimarães et al., 2011), and may reveal 62 

information on the resilience through biological indicators (e.g. Boizard et al., 2016 this 63 

issue). Unlike the texture of a soil that can be considered a static property, the soil structure 64 

is a dynamic trait. Soil structure is influenced by both natural and anthropogenic processes. 65 

The natural processes include abiotic processes induced by drying-wetting and freeze-thaw 66 

phenomena, as well as biotic processes leading to the creation of new pore spaces by the 67 

penetration of plant roots and burrowing fauna, soil aggregate stabilization by plant roots, 68 
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fungi, and soil fauna (enmeshing, excretions), and soil shrinkage due to plant water uptake 69 

(Kay, 1990; Dexter, 1991; Horn et al., 1994; Horn, 2003; Hallett et al., 2013). Anthropogenic 70 

influences on soil structure are primarily related to soil management including soil tillage, 71 

soil compaction due to vehicle traffic, incorporation of organic fertilizers and amendments, 72 

as well as crop selection and fertilization (for an overview, see Kay, 1990; Bronick and Lal, 73 

2005; Kay and Munkholm, 2011). Such aspects have significant influence on structural 74 

stability and resilience as well as structural form, all of which influence soil function (Horn, 75 

1990; Horn et al., 1994). 76 

Despite the recognized importance of soil structure for soil functioning, its 77 

characterization and quantification of the complex interactions (as stated above) that drive 78 

soil structure formation remain a challenge (e.g. Hallett et al., 2013; Peth et al., 2013). Visual 79 

soil evaluation (VSE) methods have been developed to assess the structural state of soil (for 80 

a review see Boizard et al. (2007)). Most VSE methods were developed as a practical 81 

diagnostic tool in agricultural extension service. Various visual methods to assess soil 82 

structure and soil quality have been developed and used for many years in different parts of 83 

the world, and these have mainly been published in reports, booklets and notes (e.g. 84 

Görbing, 1947, Peerlkamp, 1959; Preuschen, 1983; Gautronneau and Manichon, 1987; 85 

DVWK, 1995a; Shepherd, 2000; Munkholm, 2000; McKenzie, 2001; Nievergelt et al., 2002). 86 

More recently, methods have been refined, combined, and published in scientific journals 87 

(for an overview see e.g. Ball et al., 2015). In the remainder of this paper, we use ‘visual soil 88 

evaluation (VSE) methods’ as a general term for all methods, whereas specific methods (e.g. 89 

‘Profile Cultural’; Gautronneau and Manichon, 1987) will be referred to by their specific 90 

name. Furthermore, there has been a growing interest to (re-)use VSE methods in research, 91 

primarily have been used to characterize the impact of soil management on soil structure 92 
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and to help identify the type and location of measurements for further characterisation of 93 

soil physical properties (Ball et al., 2015; this special issue).  94 

Only a few studies have used VSE methods with regards to soil structure dynamics. 95 

Roger-Estrade et al. (2000) used the ‘Profil Cultural’ method (Gautronneau and Manichon, 96 

1987) to quantify the temporal evolution of soil structure under contrasting tillage systems, 97 

and Boizard et al. (2013) used the same method to study recovery after compaction in a 98 

reduced tillage experiment. Ball and Munkholm (2015) showed that the ‘Visual Evaluation of 99 

Soil Structure’ (VESS) method (Guimarães et al., 2011) was able to reveal variations in soil 100 

quality and recovery, over a four-year period of evaluation, when assessing compaction by 101 

tractor and animal trampling. These authors also highlighted that repeating VSE 102 

measurements over time enables the monitoring of soil quality evolution.  103 

All VSE methods are mainly used within an agronomic context, with the purpose of 104 

assessing soil management effects and providing soil management recommendations. Thus, 105 

it is important that VSE scores have veracity and are nearly reproducible. Therefore, soil 106 

structure is systematically evaluated according to manuals and instruction videos to reduce 107 

operator dependence for most VSE methods. In general, different operators typically find 108 

very similar scores (e.g Ball et al., 2007; Guimarães et al., 2011). Subjectivity is, however, still 109 

considered a modest limitation to VSE methods, e.g. in relation to the isolation of structural 110 

units and the assessment of their properties and efforts to further reduce this limitation 111 

continue. Other limitations include possibly confusing soil moisture effects on soil strength 112 

with those of compaction and difficulty in use in soils of extreme textures and insufficient 113 

emphasis on porosity, particularly with spade methods (Ball and Munkholm, 2015; 114 

Munkholm and Holden, 2015). Scale is also an important aspect to take account for any soil 115 

structure description method. Babel et al. (1995) proposed an initial  description of soil 116 
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structure (shape and surface of the structural units, geometrical arrangement, aggregate 117 

strength, bioturbation, etc.) at a given scale, and then to reproduce observations at various 118 

scales applicable across land uses and across scientific disciplines. 119 

VSE methods yield information on the vertical thickness and depth of natural and 120 

anthropogenic soil layers, and on the spatial arrangement of structural features (profile 121 

methods) or the size distribution of soil fragments (spade methods). Such information is not 122 

available, for example, from sampling at discrete (pre-defined) depths with small volumes 123 

(e.g. undisturbed cylindrical soil cores that may have a typical volume of 100 cm3), which are 124 

typically used in soil structure research. Several studies have demonstrated significant 125 

correlations between the various structural features (as e.g. obtained by VSE methods) and a 126 

range of soil properties (mainly soil physical properties such as, bulk density, penetration 127 

resistance, saturated hydraulic conductivity, among others; see e.g. Horn, 1990; Shepherd, 128 

2003; Dörner and Horn, 2009; Guimarães et al., 2013; Moncada et al., 2014; Ball et al., 2016 129 

this issue). Moreover, the shape of the fragments and an estimate of the tensile strength of 130 

the fragments is obtainable from VSE methods. The ‘Profil Cultural’ reports detailed 131 

information regarding the spatial arrangement and distribution of soil properties (e.g. 132 

aggregates, pores, roots, organic residues), whereas other methods such as VESS (Guimarães 133 

et al., 2011), the Visual Soil Assessment (VSA) method (Shepherd et al., 2009) and SOILpak 134 

(McKenzie et al., 1998), for example, combine this information into a score or soil quality 135 

index, either for each layer or for a whole soil profile. The reason for combining this 136 

information into a single index is that such an index will be useful for assessing the overall 137 

physical quality of a soil, for comparing soil quality across soils, and for providing soil 138 

management recommendations. However, valuable information on soil structure can be lost 139 

through the combination process. We will argue in this paper that this information could be 140 
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useful in research aiming at better understanding the impact of soil structure on soil 141 

functioning (including plant growth) and better understanding of soil structure dynamics. 142 

A joint workshop of the two ISTRO working groups on Visual Soil Examination and 143 

Evaluation (VSEE) and Subsoil Compaction held in May 2014 brought together scientists 144 

dealing with characterisation of soil structure and its dynamics with a focus on soil 145 

management impacts (soil tillage, soil degradation by compaction). A main aim of the 146 

workshop was to jointly discuss and possibly outline (i) research needs of visual soil 147 

evaluation methods, new approaches (ii) to combine VSE methods with “traditional” soil 148 

physical methods and analysis as well as with remote and proximal sensing techniques, and 149 

(iii) to integrate VSE in soil structure research for better quantification of soil structure and 150 

better understanding of soil structure dynamics caused by soil management. This article 151 

summarises and synthesizes the discussions from the workshop. Although the workshop had 152 

an emphasis on tropical conditions, most of the discussions were relevant to all soils. 153 

The main objectives of this paper are to outline (i) research needs for improvement of 154 

VSE methods, and (ii) the opportunities of VSE methods in soil structure research. We will 155 

provide a brief overview of VSE methods, in order to summarize the soil information that is 156 

obtained by VSE. We will describe research needs for further development of VSE methods 157 

and their better integration in soil structure research. Finally, we propose ways of using and 158 

integrating the spatial information obtained by VSE in research on soil structure dynamics 159 

and soil compaction.  160 

 161 

 162 

2. Brief overview of visual soil assessment methods 163 

2.1 General approach of visual soil evaluation methods 164 
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Many visual soil evaluation (VSE) methods have been developed worldwide to evaluate 165 

the soil structural quality of topsoils and whole soil profiles. As mentioned above, many 166 

different methods have been developed and used in various parts of the world, but 167 

description of many methods may not be readily available for the international scientific 168 

community because they are often published in institutional reports, notes or as booklets. 169 

However, most methods share similar soil quality assessment criteria related to visible soil 170 

porosity as well as the size, shape and strength of aggregates. Please consult Boizard et al. 171 

(2007) for an overview of 10 different methods presented at the ISTRO 2005 workshop at 172 

Péronne, France. The methods generally divide into topsoil-focused spade methods and 173 

topsoil and subsoil focused profile methods. The most commonly used spade methods in 174 

research are the VSA method (Shepherd et al., 2009) and the VESS method developed from 175 

the Peerlkamp method (Ball et al., 2007; Guimarães et al., 2011) (Munkholm and Holden, 176 

2015). Among the soil profile methods, ‘Profil Cultural’ (Gautronneau and Manichon, 1987; 177 

Peigné et al., 2013), SOILpak (McKenzie et al., 1998) and, most recently, the numeric visual 178 

evaluation of subsoil structure methods (SubVESS) (Ball et al., 2015) are used in research 179 

(Munkholm and Holden, 2015). These five spade and profile methods are described in detail 180 

by Batey et al. (2015). It is also important to mention methods that integrate information 181 

from different methods into an overall soil quality rating such as the Muencheberg Soil 182 

Quality Rating system (Mueller et al., 2013).         183 

The five different VSE methods mentioned above all include assessment of size, shape 184 

and strength of soil aggregates and of visible porosity (Batey et al., 2015). These features 185 

yield information on the quality of soil as plant growth medium, habitat for soil biology and 186 

on conditions for nutrient cycling, and water and gas storage and transport. Other 187 

commonly evaluated features are soil colour (e.g. VESS, SubVESS and VSA), earthworms in 188 
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terms of numbers, sizes, species and burrows (e.g. VSA and Munkholm spade method 189 

(Munkholm, 2000)), rooting in terms of proliferation and architecture, depth, and distortion 190 

(e.g. VESS, VSA, SOILpak and SubVESS), porosity (all methods) and water stable aggregates 191 

(SOILpak). Most methods include an evaluation of distinct soil layers or zones but often 192 

evaluation scores are assessed across different layers. The importance of specific evaluation 193 

of limiting layers such as hardpans is highlighted in the profile methods (SOILpak, SubVESS 194 

and ‘Profil Cultural’) and in some spade methods (VESS, Guimarães et al., 2011). The VSE 195 

methods differ markedly in terms of the level of details regarding the evaluation. The more 196 

detailed the analysis (as for ‘Profil Cultural’) the longer it takes to complete an evaluation.  In 197 

general the simple spade methods such as VESS are fastest (5-15 min per sample) and the 198 

detailed profile methods take the longest time (1-3 hours) (Boizard et al., 2007; Batey et al., 199 

2015). The fast and easy to use spade methods make it possible to do many replicates at the 200 

same time as it takes to do one detailed profile evaluation. Thereby, a larger area and more 201 

treatments can be covered within the same time interval. On the other hand this may be at 202 

the expense of more detailed understanding of specific land use or management effects on 203 

soil structure. In many cases a combination of fast and simple methods with a few more 204 

detailed evaluations may be beneficial in order to obtain both general knowledge on spatial 205 

differences and in depth knowledge of the impact of specific land use or soil management. 206 

Please consult Batey et al. (2015) for more details on similarities and differences between 207 

the commonly used methods. 208 

 209 

2.2. Application of visual methods in practice 210 

VSE methods are used in many countries by agricultural advisors, teachers, and 211 

farmers, even though detailed knowledge of the use of the VSE methods in practice is often 212 
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lacking. More detailed VSE methods will require specialized soil knowledge for successful 213 

application, while simple spade methods only require some methodological training for 214 

successful application by students or farmers, for example. We expect that the methods are 215 

most widely used in Western Europe, Australia, New Zealand and Brazil, where most of 216 

today’s known methods have been developed. To illustrate the interest in VSE methods in 217 

practice, the VESS manual has been translated into a number of languages, including 218 

Spanish, French, Portuguese, Norwegian and Danish, primarily by advisors.   219 

 220 

2.3 Application of visual methods in soil research 221 

The VSE methods are increasingly being used in soil research to evaluate effects of 222 

land use and soil management, primarily. Munkholm and Holden (2015) listed 29 VSE papers 223 

on arable soil and 10 VSE papers on grassland soils in a recent review and most of them had 224 

been published since 2010. In general, VSE methods have been useful to detect effects of 225 

land use and management on soil structure. Most VSE papers also include comparative 226 

quantitative soil structure data e.g. soil pore characteristics, bulk density, soil strength, soil 227 

structural stability and hydraulic conductivity. Strong correlations have been found in many 228 

cases as outlined by e.g. Batey et al. (2015). Significant correlations with crop yield have also 229 

been shown in some studies (Mueller et al., 2009; Munkholm et al., 2013). 230 

The VSE methods have primarily been used for comparative studies where effects of 231 

land use and management has been investigated at a specific time. In a few cases the VSE 232 

methods have been applied to study soil structure dynamics, i.e. spatio-temporal changes in 233 

soil structure after e.g. animal or field traffic induced soil compaction (Ball and Munkholm, 234 

2015; Boizard et al. 2013). Boizard et al. (2013) showed that the “Profil Cultural” was a useful 235 

tool to assess soil recovery after heavy compaction. They detected the development of a 236 
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platy structure layer in the years after a heavy compaction treatment. The above mentioned 237 

studies suggest that there is a great potential for more widespread application of VSE 238 

methods in studies of soil structure dynamics. However, VSE methods are destructive by 239 

nature and this has to be taken into account when choosing VSE as a tool to study temporal 240 

evolution of soil structure, especially within field experiments. 241 

 242 

 243 

3. Research needs for further development of visual soil assessment methods 244 

3.1 Improving the quality of scoring by including the impact of soil moisture content at 245 

sampling 246 

Soil aggregate fragmentation is an integral component of many visual evaluation 247 

methods (see previous section). However, fragmentation is strongly affected by the soil 248 

moisture (for an overview, see e.g. Dexter and Bird, 2001; Munkholm, 2011), and hence the 249 

soil moisture, measured in terms of water content or in terms of matric potential, at the 250 

time of assessment can influence the result of the test (Fig. 1). Water strongly affects the 251 

consistency and the strength of soil (e.g. Atterberg, 1911; Horn, 2003), consequently, a drier 252 

soil is generally harder and more difficult to break up, and therefore, extra pressure is 253 

required to fragment dry aggregates. Especially, it is important that the soil is not dried to 254 

conditions drier than it has ever experience before, as this is associated with irreversible soil 255 

structural changes, when smaller aggregates may break up due to pore weakening (Horn et 256 

al. 2014). This may not be a problem under many conditions, but could be crucial when 257 

evaluating subsoils in temperate climates. A wet soil is weak, and beyond a certain moisture 258 

content soil no longer break-up, instead the aggregates plastically deform when a pressure is 259 

applied. Both, a too dry and a too wet soil may result in a false interpretation of its structure.  260 
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Soil friability describes the tendency of a soil to break down into fragments of desired sizes 261 

upon application of a stress (Utomo and Dexter, 1981). A range of water contents can be 262 

defined within which soil friability is satisfactorily (see Munkholm, 2011). The upper (i.e. 263 

wet) limit of this range is typically defined from soil consistency and often assumed at w = PL 264 

(lower plastic limit). A shortcoming of using PL as a limit is that it is determined on 265 

remoulded soils, and natural soil may behave differently. The lower (i.e. dry) limit is less well 266 

defined but related to energy requirement for fragmentation. Soil friability is maximum at 267 

intermediate soil water contents, with the maximum friability at a water content, w, at 268 

around 0.9 × PL, see Munkholm (2011). Similarly, we can define a range of suitable water 269 

contents for visual soil evaluation (Fig. 1). It may be assumed that the range of water 270 

contents for satisfactory friability and satisfactory visual soil evaluation coincide. For this 271 

reason, it is generally recommended that visual tests are conducted while the soil is within 272 

the friable range (Ball et al., 2016 – this issue), to avoid misinterpretation of the sample. The 273 

ease of fragmenting an aggregate is one of the key factors evaluated by VESS. We suggest 274 

that the optimum range of water contents for visual soil evaluation could be investigated in 275 

future research. The range of suitable water contents may be affected by climatic conditions 276 

(e.g. rainfall patterns) and soil type (e.g. different for sand soils vs clay soils). The latter 277 

problem may be overcome by specifying a range in matric potentials rather than in water 278 

content. Another strategy could be to develop methods to normalize VSE results to a 279 

standardized water content (e.g. by using w/PL) or matric potential. This would require that 280 

the water content and/or matric potential at the time of VSE is measured, as suggested by 281 

Babel et al. (1995). Furthermore, it could be interesting to perform VSE at various water 282 

contents/potentials. We hypothesize that the change in soil quality (e.g. score) as assessed 283 
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by VSE as a function of soil water status may carry some information on the resilience of a 284 

certain soil (structure). 285 

 286 

3.2 Extending the scope of VSE by integrating biological indicators 287 

Macrofauna and root activity, which are also assessed in VSE methods, play a major 288 

role in soil structural quality, mainly by improving macroporosity, by promoting aggregation, 289 

and by stabilizing structures (e.g. Lynch, 1984; Kay, 1990; Dexter, 1991; Uteau et al., 2013; 290 

Han et al., 2015; Pagenkemper et al., 2015). Some methods, such as the VSA, include the 291 

number of earthworms as an indicator of soil quality (Shepherd, 2009), while Munkholm 292 

(2000) uses the number of earthworm holes as another quality aspect to be evaluated. 293 

Munkholm (2000) highlights the difficulty of evaluating soil macrofauna as it can be difficult 294 

to observe the fauna before they escape the soil block extracted for evaluation. VESS does 295 

not currently include faunal presence as part of its evaluation, however, the presence of 296 

distinct biopores (resulting from earthworm and root activity) is a criterion for attributing a 297 

score and counting of earthworms within the block is proposed as an extension of the 298 

method. Franco et al. (2016, this issue) showed positive correlations between VESS and 299 

reduction in Isoptera and Coleoptera abundance, while earthworm activity has been shown 300 

to have an important impact on soil structural quality (Piron et al., 2012). Therefore, the 301 

improvement and incorporation of faunal assessments in visual methods and the evidence 302 

of their action in soil structure dynamics should be a future research goal, as also highlighted 303 

by Boizard et al. (2007) and Munkholm and Holden (2015). 304 

 305 

3.3 Combining visual soil assessment methods with remote and proximal sensing and 306 

interactive tools for mobile devices 307 
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Remote sensing techniques can be used to show diagnostic indicators of soil 308 

properties, such as soil texture (Peng et al., 2014), organic matter content (Viscarra Rossel 309 

and Hicks, 2015; Aldan-Jague et al., 2016), organic matter quality (Ben-Dor et al., 1997), iron 310 

content, soil texture or particle size distribution, clay mineralogy, water content, soil 311 

contamination (Peng et al., 2016), cation exchange capacity and calcium carbonate content 312 

through imaging spectroscopy (Ben-Dor et al., 2009; Stenberg et al., 2010; Soriano-Disla et 313 

al., 2014) and soil moisture through RADAR sensing (Zribi et al., 2011). Estimates of these 314 

properties by means of remote sensing typically rely on relationships established from 315 

standard measurements on pre-treated and remoulded soil samples in the laboratory. 316 

However, actual in situ properties of structured soils may differ from apparent properties 317 

measured on homogenised samples. Therefore, there is a risk of misinterpretation of data. 318 

For example, Hartmann et al. (1998) showed that there is a difference in the observed cation 319 

exchange when comparing homogenized samples with in situ structured soil. Multispectral 320 

sensing can be used to estimate land cover and use, vegetation indices and degradation 321 

(Dewitte et al., 2012; Mulder et al., 2011). Here we differentiate remote sensing that is 322 

airborne or satellite based at the large scale from proximal sensing that is ground-based for 323 

finer scales (Wulf et al., 2014).  324 

Proximal sensors utilize a variety of electromagnetic radiations to infer information on 325 

salinity, organic composition, mineralogy, moisture content, topsoil thickness and clay 326 

content (Samouelian et al., 2005; Viscarra Rossel et al., 2006). These and other sensing 327 

techniques can be used to differentiate the landscape or plot into scaled units of sensory 328 

output that can be related to site properties through field sampling (Paradelo et al., 2016). 329 

Good correlations have been observed between the results of remote or proximal sensing 330 

and soil variables such as bulk density, penetration resistance, soil organic carbon and soil 331 
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moisture and, for VIS-NIR sensing of soil quality, has been related to visual quality scores for 332 

VESS (Askari et al., 2015).  333 

A promising area of future study is the correlation of  electromagnetic spectrum 334 

sensing results with visual evaluation scores as it would allow the interpolation of a limited 335 

number of Sq scores (from VESS) over the sensed areas, reducing the burden of sampling. 336 

This would be of particular relevance in precision farming where inputs are related to soil 337 

variables. Aerial photography, now available at low cost using Unmanned Aerial Vehicle 338 

(UAV/drone) technology, could be used to identify areas of compacted or degraded soil for 339 

further investigation via VSE. Combining techniques of remote and ground-based sensing 340 

and yield mapping could be used to delineate areas with similar soil properties and/or 341 

adverse yield productivity (Fig. 2), and thereby assist in selecting locations for more detailed 342 

investigation using VSE. In addition, use of handheld devices with various sensors (e.g. NIR to 343 

detect moisture content) could complement VSE and make soil quality scoring more robust 344 

(cf. Section 3.1).  345 

Another promising area of developing technology is the use of interactive tools for 346 

mobile devices, such as smart phones and tablets, that include instructional help videos, 347 

methodologies and scoring applications, which allow field observations to be related to 348 

reference photographic guides, to make soil quality scoring more relevant or for easy 349 

transmission to experts available online. This would allow more information to be available 350 

than from a chart or field guide, reducing errors and the influence of the operator.  351 

 352 

3.4 Integrating VSE with other properties to provide more holistic estimation of soil quality 353 

The measurement of soil hydraulic properties is a useful indicator of a drainage or 354 

aeration limitation of the cropping potential, however, inferring these properties via visual 355 
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methods can be difficult. Many soil features closely related to soil hydraulics, such as surface 356 

crusting, large cloddy structure, soil colour, surface deformation, surface ponding, soil 357 

erosion and surface microrelief can be scored visually using ad hoc keys (Murphy et al., 358 

2013; Guimarães et al., 2015, Shepherd, 2009). Including surface features in visual methods 359 

could be of particular value by enabling improved inferences regarding hydraulic properties. 360 

For example, recording the presence of sealing or surface crusting or platy layers could imply 361 

restricted infiltration or water drainage. The development of visual assessments such as the 362 

erosion toolkits that relate soil texture and slope to soil structure and thereby to risk of 363 

erosion (Regan, 2012; Guimarães et al., 2015) could enable more objectivity when linking 364 

surface features with soil structural quality. 365 

Profile methods, such as SubVESS, “Profil Cultural” and SOILpak (topsoil and subsoil) 366 

give an overall status of soil structure to a greater soil depth than the spade methods. A 367 

vertical continuous pore network is important for soil functions, such as drainage and 368 

aeration and as a conduit for root growth, all of which are key factors for crop productivity 369 

and profile methods are suitable when tracking macropore continuity (Munkholm and 370 

Holden, 2015). Identifying and distinguishing man-made from naturally compacted layers 371 

will enable profile methods to be more useful for identifying subsoil layers that require 372 

loosening. Munkholm and Holden (2015) reported that identifying the layer that limits plant 373 

growth is crucial for subsoils, therefore, reporting evaluations for individual layers is 374 

recommended by Ball et al. (2015) and McKenzie (1998).   375 

Assessment of agricultural land in terms of soil quality and soil structure using quick 376 

VSA and VESS techniques has been shown to provide an indication of the potential for soils 377 

to store C, release GHGs and lose nutrients, and are therefore important for identifying 378 

problems as well as to combat environmental change (Cloy et al., 2015). VSA and VESS were 379 
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also used to estimate the risk of soil emissions of nitrous oxide from pastures where 380 

compaction damage was present and rates of mineral N fertilizer were high. Visual 381 

assessments also have the potential to assess the risk of surface water runoff and nutrient 382 

loss. Such assessments which combine detailed soil and crop visual evaluations with fertilizer 383 

management history are areas for potential development. The potential role of soil colour 384 

was shown for the further extension of visual evaluation techniques to a soil carbon storage 385 

index. These methods show clear potential for further development and research to provide 386 

validation of scored soil and crop qualities with measured properties of soil C storage, GHG 387 

emissions and nutrient leaching (Cloy et al., 2015; Ball et al., 2016 – this issue). 388 

Extending and combining visual methods with other simple quantitative or qualitative 389 

field methods will give a more general soil quality indicator, such as in VSA and SOILpak 390 

(Mueller et al., 2014; Munkholm and Holden, 2015). Govaerts et al. (2006) proposed a 391 

minimum data set to assess soil quality that should take into account soil and climatic 392 

conditions for the specific agro-ecological zone and their interaction with land use. Mueller 393 

et al. (2014) also proposes the combination of quantitative and qualitative field based 394 

methods with visual evaluation of soil methods. Combination of VSE methods with visual 395 

crop evaluation may also extend the agronomic relevance of VSE for identifying limiting soil 396 

conditions. 397 

 398 

 399 

4. Potential of visual soil evaluation methods to advance soil structure research 400 

4.1. Accounting for spatial variability in soil modelling  401 

Quantification of the form of soil structure can be achieved through imaging (e.g. Peth 402 

et al., 2013) or indirect measurements (i.e. water and gas transport, aggregate size 403 
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distribution, etc.; e.g. Ball et al., 1988). All imaging techniques and physical measurements 404 

are limited to a given size of observation, which makes our understanding of soil structure 405 

discontinuous and incomplete. Thus, extrapolation from measurements on soil samples to 406 

soil profile or to field is uncertain (e.g. Etana et al., 2013). Usually, averaged measurements 407 

on randomly sampled soil cores (10-2 m) are used to explain soil functioning at the profile 408 

(100 m) or field scale (102 m), or to parameterize models. The issue of upscaling observations 409 

at core or smaller scale to field, landscape and global scale was highlighted as one of the 410 

essential challenges for soil modelling in a recent extensive review (Vereecken et al., 2016).   411 

The variability of a soil property can be described using probabilistic models (Perfect 412 

and Kay, 1994; Chun et al., 2008). However, simulation and evaluation of the effect of 413 

agricultural practices on soil functions often need maps of the spatial organization of the 414 

different structural features. Geophysical methods including electrical resistivity 415 

tomography, ground penetrating radar and seismic methods can be used to obtain two- or 416 

three-dimensional maps of soil physical properties that can be related to parameters 417 

relevant for soil models (Besson et al., 2004; Petersen et al., 2005). Further information on 418 

spatial variation of soil structural features can be readily assessed in situ by visual soil 419 

evaluation methods. VESS has been used to determine the minimum sampling density of 420 

VESS and of other assessments of soil quality to capture the spatial variation in a field. This 421 

involved sampling at up to 16 points per ha and mapping the data sets by kriging at 422 

decreasing sampling density to determine the optimum sampling density. This was ~0.9 – 1 423 

per ha for the two agricultural fields assessed (Laura Thomas and Bryan Griffiths, SRUC 424 

Edinburgh, personal communication). This corroborates similar result found by Rachel M.L. 425 

Guimarães (unpublished data), who evaluated 36 blocks per ha and concluded that one VESS 426 

evaluation per ha was the minimum sample density required to accurately represent a field’s 427 



19 
 

soil quality via VESS, however, it is suggested that three replicates should be taken per ha for 428 

statistical purposes. 429 

Few studies have attempted to integrate soil structure spatial variability at the profile 430 

scale as described by visual soil evaluation methods into models, but some exceptions are 431 

the studies by Benjamin et al. (1990), Coutadeur et al. (2002) and Ndiaye et al. (2007). The 432 

methodology was the same for all these studies: physical measurements were performed in 433 

the laboratory or in the field for the different structural zones as identified on the soil profile 434 

by VSE, and measured soil parameters were used to model heat or water transport in two 435 

dimensions. However, none of these works took into account the temporal variation in soil 436 

structure, which would need also a model of structure dynamics, e.g. ‘Sisol’ developed by 437 

Roger-Estrade et al. (2009). For the studies mentioned above, VSE methods were used to 438 

give information on the spatial distribution of different zones, but soil properties needed to 439 

model the process in question (e.g. water transport) were obtained by measurements. VSE 440 

methods were used to choose the position of the sampling, which might lead to an 441 

overestimation of the differences between, for example, loose and compacted zones, as 442 

transitions between these zones might be difficult to sample.  443 

In a recent study, Moncada et al. (2014) showed that pedotransfer functions could 444 

benefit from integrating a VSE score. Similarly, it was shown in the DVWK bulletins 234 and 445 

235 (DVWK 1995b, 1997) that prediction of soil functions (e.g. soil strength) requires 446 

knowledge of in situ soil structural features related to aggregation, in addition to intrinsic 447 

soil properties (e.g. texture). All these results might be due to the more holistic approach of 448 

VSE methods as compared with specific physical measurements. It is well known that soil 449 

structure changes over time due to natural and antrophogenic factors. Despite of this, 450 

dynamic changes in soil structure is ignored in most soil models (Vereecken et al., 2016) – 451 
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most likely due to lack of empirical data. VSE methods are sensitive to temporal changes 452 

(Boizard et al., 2013; Ball and Munkholm, 2015) and may be used as tool to assess in situ 453 

changes at aggregate to pedon scale and at different depths. Qualitative information from a 454 

VSE method at different times before and after tillage could be successfully used to model 455 

soil structural dynamics as affected by tillage (Roger-Estrade et al., 2000). Fig. 3 illustrates 456 

how the spatial information obtained from visual soil evaluation could be used in soil 457 

process modelling. The qualitative information from VSE may be supplemented with 458 

quantitative data at selected times and depths, which may be used in more mechanistic soil 459 

modelling.  460 

 461 

4.2. Improving the description of compaction propagation by including spatial description of 462 

soil structure within the soil profile 463 

Compaction is a major soil threat due to ongoing intensification of agricultural 464 

practices: farmers and contractors choose large machinery to increase efficiency of field 465 

operations, and industry designs machinery that can perform on weak soils to increase 466 

flexibility of field operations planning (Schjønning et al., 2015). Description of the stress-467 

strain processes during compaction of agricultural soils is typically based on geotechnical 468 

frameworks using continuum mechanics (Nawaz et al., 2013). However, agricultural soils 469 

present a three-dimensional organization of various components (mineral and organic 470 

particles, plant residues, stones) (e.g. Horn, 1990). Although approaches from continuum 471 

mechanics have been shown to produce fairly good estimations of stress transmission in 472 

arable soil (Keller et al., 2014), especially tilled topsoils may rather resemble a granular 473 

material (assembly of aggregates) than a continuum. Horn (1990) showed that stress 474 

transmission is affected by soil aggregation, readily assessed in some VSE techniques. The 475 
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model described and applied by Richards et al. (1997) and Richards and Peth (2009) could 476 

accommodate heterogeneity of soil properties and accounts for their evolution due to 477 

mechanical and hydraulic stresses. Naveed et al. (2016) recently observed that, in topsoils, 478 

stress propagation was heterogeneous and occurred through specific paths as long as the 479 

macro-structures were not deformed (Fig. 4). Thus, mechanics of tilled soil layers may be 480 

better described by granular matter physics than continuum physics. The mechanical 481 

behaviour of granular materials largely depends on grain size distribution (Voivret et al., 482 

2007) and grain shapes (Azéma et al., 2009). By analogy, soil aggregate size distribution and 483 

aggregate shapes are expected to influence soil mechanical behaviour. Fig. 5a illustrates the 484 

elastic mode of stress propagation under a point load in an isotropic and continuous matter 485 

as described by Boussinesq (1885), which might be enough to describe stress propagation 486 

under certain soil conditions. Bulk measurements of soil physical parameters (such as 487 

measurements on soil cores) average soil properties for the volume of the sample, and 488 

measurements on replicated soil samples are typically averaged to represent properties at 489 

the pedon scale. Using average soil properties for a collection of aggregates may lead to an 490 

oversimplified description of soil properties within a profile that would result in an 491 

unrealistic stress propagation (Fig. 5b). Introducing some information about the aggregate 492 

properties (size distribution) and how the collection of aggregates is spatially organized 493 

would improve description of stress propagation and therefore help better understanding 494 

mechanical behaviour of structured soil (Fig. 5c). Therefore, information from VSE methods 495 

associated with granular physics would help to better understand stress-strain relationships 496 

of aggregated soil layers. 497 

 498 

 499 
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5. Conclusions 500 

Since their inception VSE methods have grown to become important tools in research. 501 

However, VSE methods still need better harmonization and reduction in subjectivity in 502 

aggregate exposure and the influence of soil moisture content at sampling for more accurate 503 

scoring. Handheld sensors and ICT devices may also help in this area. The spatial distribution 504 

of structural features recorded by VSE methods is often integrated into a score or soil quality 505 

index. We argue that VSE provides important information regarding spatial distribution of 506 

soil structure, particularly aggregation and macro-porosity, which could be disaggregated 507 

and used to better understand various soil processes, especially the process of soil 508 

compaction.  More detailed VSE methods, such as ‘Profil Cultural’, could be developed 509 

(simplified, disaggregated and made more accessible) so that the spatial information is more 510 

easily provided. VSE could be combined with sensing techniques at field or landscape scale 511 

for better management of fields in the context of precision farming. Combining VSE methods 512 

with visual crop evaluation may extend the agronomic relevance of VSE for identifying 513 

limiting soil conditions. Further work should be done to integrate plant vigour, roots and soil 514 

fauna into VSE methods to provide general indicators of soil quality and environmental 515 

indicators of greenhouse gas emission, carbon storage and nutrient transport. For this 516 

purpose more comparisons between scoring and field/laboratory measurements are 517 

needed. However, we see a great potential in combining (rather than comparing) VSE with 518 

measurements of soil structure, i.e. integrating VSE in soil structure research, as these 519 

methods provide repeatable spatial information on large-scale aspects of soil structure that 520 

are difficult to obtain with other methods. 521 

 522 

 523 
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Figure captions 841 

 842 

Fig. 1. Schematic illustration of the suitable range of soil water contents for visual soil 843 

evaluation, in analogy to the relationship between soil friability and soil water content. 844 

Adapted from Munkholm (2011). 845 

 846 

Fig. 2. Conceptual figure showing the use of remote and proximal sensing and interactive 847 

tools for mobile devices together with visual soil evaluation. Remote sensing and ground-848 

based sensing can identify variations in soil properties and yield-limiting factors (e.g. soil 849 

texture, nitrogen availability, soil moisture, soil compaction), while yield mapping reflects 850 

the spatial variability of productivity. For example, combining areas of poor soil conditions 851 

and restricted productivity reveals zones that require further evaluation by VSE in order to 852 

deduce specified soil management recommendations for soil improvement. Ground-based 853 

sensing photo from Naderi-Boldaji et al. (2014). Visual soil evaluation photo from Dr. Craig D. 854 

Rogers 855 

 856 

Fig. 3. Conceptual figure illustrating how the spatial information obtained from visual soil 857 

evaluation could be used in soil process modelling. We outline two ways of incorporating 858 

structural information in models, either via localization of areas of different soil properties 859 

(left) or via a statistical approach (right). Detailed profile methods can be used for either 860 

method, while spade methods are limited to incorporation of spatial information via 861 

statistical means. Different levels of grey in the lower left picture represent different soil 862 

quality scores or different values of a given soil property. Profil Cultural photo from Boizard 863 

et al., (2017 this issue). VESS photo from Rachel M.L. Guimarães. 864 
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 865 

Fig. 4. The importance of including structure information for predicting stress propagation. 866 

Stress transmission in an undisturbed soil column (0.2 m high and 0.2 m in diameter) derived 867 

from X-ray computed tomography at applied stresses of 275 kPa (A) and 620 kPa (B). Source: 868 

from Naveed et al. (2016). 869 

 870 

Fig. 5. Spatial information on soil structure provided by VSE could potentially lead to a better 871 

representation of stress propagation. (A) is a photoelastic view of a plate, (B) a regular 872 

packing of mono-sized discs and a (C) is a random packing of discs with three different sizes. 873 

All are subjected to a point load of 600 N. The plate and the discs were made of 874 

polycarbonate, which has a Young’s modulus of 2.0 GPa and a Poisson’s ratio of 0.37.  875 
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