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10 Abstract 
 
 

11 Conservation tillage and crop rotations can potentially contribute to beneficial effects on 
 

12 soil  quality.  However,  the  impact  of  these  practices  on  greenhouse  gas  (GHG) 
 

13 emissions and crop yields is not well defined, particularly in dry climates. A rainfed 2- 
 

14 year field-experiment was conducted to evaluate the effect of three long-term (17-18 
 

15 years) tillage systems (Conventional Tillage (CT), Minimum Tillage (MT) and  No 
 

16 Tillage  (NT))  and  two  cropping  systems  (rotational  wheat  (Triticum  aestivum  L.) 
 

17 preceded by fallow, and monoculture wheat), on nitrous oxide, (N2O) and methane, 
 

18 (CH4) emissions, during two field campaigns. Soil mineral N, water-filled pore space, 
 

19 dissolved organic C, and grain yield were measured and yield-scaled N2O emissions, N 
 

20 surplus  and  Global  Warming  Potentials  (GWP)  were  calculated.  No  tillage  only 
 

21 decreased cumulative N2O losses (as opposed to MT/CT) during campaign 1 (the driest 
 

22 campaign with least synthetic N input), while tillage did not affect CH4 oxidation. The 
 

23 GWP demonstrated that the enhancement of C sequestration under NT caused this 
 

24 tillage   management   to   decrease   overall   CO2    equivalent   emissions.   Wheat   in 
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25 monoculture was associated with increased N2O fluxes during campaign 2 (normal year 
 

26 and conventional N input) and decreased CH4  uptake, as opposed to rotational wheat. 
 

27 Conversely, wheat in monoculture tended to increase C sequestration and therefore to 
 

28 result in a lower GWP, but differences were not statistically significant. Grain yields 
 

29 were strongly influenced by climatic variability. The NT and CT treatments yielded 
 

30 most during the dry and the normal campaign, and the yield-scaled N2O emissions 
 

31 followed   the   same   tendency.   Minimum   tillage   was   not   an   interesting   tillage 
 

32 management considering the balance between GWP and yield-scaled N2O emissions 
 

33 (which were increased in a 64% compared with that of NT). Regarding the crop effect, 
 

34 wheat in rotation resulted in a 32% increase in grain yield and 31% mitigation of yield- 
 

35 scaled N2O emissions.  Low cumulative N2O fluxes (< 250 g N2O-N ha
-1  

campaign
-1

) 
 

36 highlighted  the  relevance  of  C  sequestration  and  CO2   emissions  from  inputs  and 
 

37 operations in rainfed semi-arid cropping systems. This study suggests that NT and crop 
 

38 rotation can be recommended as good agricultural practices in order to establish an 
 

39 optimal  balance  between  GHGs  fluxes,  GWP,  yield-scaled  N2O  emissions  and  N 
 

40 surpluses. 
 
 

41 Keywords:  N2O  emission,  CH4   emission,  C  sequestration,  rotation,  winter  wheat, 
 

42 tillage 
 
 

43 Highlights 
 
 

44 Different tillage treatments and wheat in rotation versus monoculture were evaluated in 
 

45 a long-term experiment. 
 
 

46 No  tillage  and  wheat  in  rotation  resulted  in  similar  or  lower  N2O  emissions  than 
 

47 conventional management. 
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48 Wheat in rotation (preceded by fallow) increased CH4  uptake when compared with 
 

49 wheat monoculture. 
 
 

50 Wheat in rotation increased grain yield and reduced yield-scaled N2O emissions. 
 
 

51 No tillage decreased the net global warming potential due to enhanced C sequestration. 
 
 

52 1. Introduction 
 
 

53 Agriculture contributes to 10-12% of the total global anthropogenic greenhouse 
 

54 gases (GHGs) (Stocker et al., 2013), through the release of nitrous oxide (N2O), carbon 
 

55 dioxide (CO2) and methane (CH4). The global warming potential (GWP), which is a 
 

56 concept that integrates the radiative properties of all GHG, expressed as CO2 equivalents 
 

57 (CO2-eq), is very dependent on N2O emissions from agricultural crop systems. This gas, 
 

58 which  is  a  by-product  of  microbial  processes  of  nitrification  and  denitrification, 
 

59 (Firestone and Davidson, 1989), is released from soils after nitrogen (N) application 
 

60 (through fertilizers or crop residues).  By contrast, in aerated soils CH4 uptake normally 
 

61 reduces GWP, because the amount of CH4 oxidized by methanotrophic microorganisms 
 

62 is normally higher than the amount produced by methanogenic microoganisms (Chan 
 

63 and   Parkin   2001).   Additionally,   agricultural   practices   that   favour   carbon   (C) 
 

64 sequestration  (Robertson  et  al.,  2000) are  also  considered  as  valuable  strategies  to 
 

65 reduce  the  negative  effect  of  GHG  emissions  associated  with  crop  production. 
 

66 Therefore,  agricultural  management  practices  (e.g.  tillage,  fertilization  and  crop 
 

67 rotation) must integrate the reduction of soil GHG emissions and the increase of C 
 

68 sequestration, while maintaining or enhancing crop yields to satisfy increasing global 
 

69 food demand. 
 
 

70 Conservation agriculture, which involves crop rotations and reduced tillage (no 
 

71 tillage (NT) or minimum tillage (MT)), is currently  common in Mediterranean climates 
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72 due to its effects on preserving soil fertility and increasing soil C sink (Kassam et al., 
 

73 2012). These tillage practices often contribute to improve important abiotic parameters 
 

74 involved in the production and consumption of GHG from soils such as soil water 
 

75 content, aeration and soil organic C (SOC) (Martín-Lammerding et al., 2011; Plaza- 
 

76 Bonilla et al. 2014) compared to conventional tillage (CT). However, contradictory 
 

77 results on N2O and CH4 fluxes have been reported (i.e. Pelster et al., 2011; Dendooven 
 

78 et al., 2012; Ball et al., 1999; Yonemura et al., 2014) due to interaction of tillage with 
 

79 several factors, e.g. soil type, climatic conditions (which determine the prevalence of 
 

80 nitrification or denitrification), nitrogen (N) fertilization rate, crop residues (type and 
 

81 management), and experiment duration (van Kessel et al., 2013). 
 
 

82 The  effect  of  crop  rotations  on  GHG  emissions  is  variable  depending  on 
 

83 rainfed/irrigated conditions, composition and management of previous crop residues 
 

84 (Malhi and Lemke, 2007), and   mineral N remaining in soil from previous cropping 
 

85 phases. Cereal residues (high C:N ratio) can promote soil N immobilization when they 
 

86 are  applied  without  an  additional  source  of  mineral  N,  consequently  leading  to  a 
 

87 temporary  reduction  of  N2O  fluxes  (Huang  et  al.,  2004).  However,  other  authors 
 

88 (Sarkodie-Addo et al., 2003) have observed an enhancement of denitrification losses 
 

89 when a mineral source is added together with high C:N ratio residues, providing an 
 

90 energy supply for denitrifying microorganisms. Addition of N fertiliser may also inhibit 
 

91 CH4 uptake due to interference of enzyme activity responsible for CH4 oxidation (CH4 

 

92 monooxygenase) with NH3  monooxygenase (Dunfield and Knowles, 1995), depending 
 

93 on N rate (Aronson and Helliker, 2010). Different quantities of crop residue inputs are 
 

94 added to the soil under rotational wheat and monoculture wheat systems, which can 
 

95 affect net N2O and CH4 production due to changes in soil C and N availability. 



5  

96 The influence of tillage and crop rotation on C sequestration has been previously 
 

97 assessed, showing promising but contrasting results depending on management (e.g. 
 

98 type and duration of rotation) and experimental (e.g. depth, number of years since the 
 

99 beginning of the experiment) factors (Baker et al., 2007; Álvaro-Fuentes et al., 2014; 
 

100 Triberti et al., 2016). Thus, to identify whether conservation tillage practices (MT/NT 
 

101 and crop rotation) can mitigate both soil GHG emissions and net GWP is still unclear, 
 

102 particularly in semi-arid areas where the weight of direct N2O losses is expected to be 
 

103 lower. 
 
 

104 In rainfed semi-arid cropping systems, characterized by a high variability in total 
 

105 amount and distribution of rainfall, low N input systems are being promoted in order to 
 

106 match N input to the expected N uptake by crops (Kimani et al., 2003; Tellez-Rio et al., 
 

107 2015), which may reduce N surplus and also N losses (van Groenigen et al. 2010). 
 

108 Therefore,  combining  Conservation  Agriculture  practices  with  adjusted  N-input  is 
 

109 expected to provide an optimum balance between GWP and crop yields in semi-arid 
 

110 agro-ecosystems.  In this context, the main objective of this study was to evaluate the 
 

111 effect of three long-term tillage systems (CT, MT and NT) and two cropping systems 
 

112 (wheat in monoculture and wheat in a 4-year rotation with fallow as preceding crop) on 
 

113 N2O and CH4 emissions over two campaigns. Additionally, crop yield, yield-scaled N2O 
 

114 losses (YSNE) and GWP were evaluated. We hypothesized that: 1) considering climatic 
 

115 conditions  of  this  experiment  and  the  low  N  input,  low  N2O  emissions  would  be 
 

116 expected in all treatments; 2) emissions of N2O and CH4  in monoculture winter wheat 
 

117 could be higher than in the rotational winter wheat, because of a combined effect of 
 

118 previous crop residues and N fertilizer application; and 3) NT would reduce net GWP as 
 

119 a result of the reduction of CO2-eq emissions from farm operations and the increase of 
 

120 C sequestration (Aguilera et al., 2013a). 
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121 2. Materials and methods 
 
 

122 2.1. Site characteristics 
 
 

123 A two-year study was carried out at “La Canaleja” Field Station (40º 32´N, 3º 
 

124 20´W,  600  m),  in  Alcalá  de  Henares  (Madrid,  Spain),  where  a  long-term  tillage 
 

125 experiment began in 1994. Tillage systems and crop rotations including legumes and 
 

126 fallow  have  been  assessed  from  that  date.  The  soil  was  a  sandy-loam  Calcic 
 

127 

 
128 

 
129 

Haploxeralf (Soil Survey Staff, 2010). The main physicochemical properties of the top 

soil layer (0-15 cm) were: sand, 50.8%; silt, 37.7%; clay, 11.5%; CaCO3, 41.6 g kg 
-1

; 

pHH2O, 7.9 and EC, 121.3 µS cm
-1

. The site has a semiarid Mediterranean climate with 

 

130 dry summer. The 1994-2013 mean annual temperature and rainfall for this area were 
 

131 13.5 ºC and 402.7 mm, respectively. 
 
 

132 Hourly rainfall and air temperature data were obtained from a meteorological 
 

133 station located at the field site. Soil temperature was measured in each tillage system by 
 

134 inserting a temperature probe 15 cm into the soil. Mean hourly temperature data were 
 

135 stored on a data logger. 
 
 

136 2.2. Experimental design and management 
 
 

137 The  experiment  was  conducted  from  October  2011  to  October  2013.  The 
 

138 experimental design was a three-replicated split plot, divided into three main plots 
 

139 assigned to the three tillage systems (NT, MT and CT) in a randomized complete block 
 

140 design (Guardia et al., 2016). Each of the main plot was further divided into five 
 

141 subplots (10 x 25 m) assigned in completely randomized design to the phases of an 
 

142 annual crop rotation, involving fallow-wheat (Triticum aestivum L. var. Marius)–vetch 
 

143 (Vicia sativa L. var. Senda)-barley (Hordeum vulgare L. var. Kika), and also wheat in 
 

144 monoculture.  In  this  study,  we  evaluated  the  effect  of  the  three  tillage  systems 
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145 mentioned above (tillage factor) and two cropping systems (cropping factor): wheat in 
 

146 rotation and wheat in monoculture; during two campaigns with different climatic (i.e. 
 

147 rainfall  amount)  and  management  conditions  (i.e.  rate  of  N  fertilizer  at  dressing) 
 

148 (campaign  factor):  2011/12  (campaign  1)  and  2012/13  (campaign  2),  resulting  in 
 

149 eighteen subplots (3 plots x 2 subplots x 3 replicates -blocks-). 
 
 

150 Moldboard (20 cm depth) and chisel ploughs (15 cm depth) were used in autumn 
 

151 (early-November 2011 and late-October 2012, for campaign 1 and 2, respectively) in 
 

152 CT and MT plots, respectively. Then, a cultivator pass was carried out for both tillage 
 

153 systems. Thus, crop residues were almost completely incorporated into the soil in CT, 
 

154 whereas under MT they were covered over approximately 30% of the plot surface with 
 

155 

 
156 

the previous season’s crop residues. No tillage involved direct drilling and spraying 
 
with glyphosate (at a rate of 2 L ha

-1  
of Sting Monsanto ®) for weed control, and 

 

157 previous season’s crop residues were retained on the soil surface. Different types of 
 

158 crop residues were applied to the soil in the rotation treatment, depending on rotation 
 

159 phase. Since wheat was  preceded by fallow, the relatively little biomass generated 
 

160 during that phase was left or incorporated into the soil surface in the following crop, 
 

161 

 
162 

 
163 

 
164 

 
165 

 
166 

winter wheat. By contrast, in monoculture wheat, straw residue provided a greater N 

and C input (235 Mg C ha
-1

; 20 kg N ha
-1

) to the following crop of wheat. Rotational 

and monoculture wheat were sown on 26
th 

November 2011 and 14
th 

November 2012 in 

campaign 1 and 2, respectively, with 210 kg seed ha
-1

. Fertilizer was applied at seeding 

(16 kg N ha
-1 

as NPK, 8-24-8) in both campaigns and at dressing as ammonium nitrate 

(NH4NO3, 27-0-0) on 22
nd 

March 2011 and 11
th 

March 2012. The N fertilization rate at 

 

167 dressing was calculated by taking into account the expected crop yield and soil mineral 
 

168 

 
169 

N content two weeks before fertilizer application (February). There was higher average 

nitrate (NO3
- 

-N) content in the 0-15 cm soil at dressing fertilization in campaign 1 (27 
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170 

 
171 

 
172 

 
173 

mg NO3
- 
-N kg

-1
) than in campaign 2 (5.6 mg NO3

- 
-N kg

-1
), which resulted in different 

N rates in campaign 1 (11 kg N ha
-1

) and 2 (54 kg N ha
-1

). All treatments received post- 

emergency herbicide treatments (HerbimurDoble ®) at a rate of 1.6 L ha
-1  

for both 

campaigns. Wheat was harvested on 10
th 

June 2012 and 18
th 

June 2013, for campaign 1 

 

174 and 2, respectively. 
 
 

175 2.3. GHG emissions sampling and analyzing 
 
 

176 Fluxes of N2O and CH4  were measured from October 2011 to October 2013, 
 

177 using the static chamber technique (Sanz-Cobena et al., 2014). One chamber (diameter 
 

178 35.6 cm, height 19.3 cm) was placed in each subplot and closed (for 1 h) by fitting them 
 

179 into stainless steel rings, which were inserted after plough events into the soil to a depth 
 

180 of 10 cm to minimize the lateral diffusion of gases and avoid the soil disturbance 
 

181 associated with the insertion of the chambers in the soil. They were only removed 
 

182 during management practices. Samples were always taken with wheat plants inside the 
 

183 chamber. Thermometers were placed inside three randomly selected chambers during 
 

184 the closure period of each measurement in order to correct the fluxes for temperature. 
 

185 When plants exceeded the chamber height (19.3 cm), plastic intersections of 19 cm 
 

186 were used between the ring and the chamber. 
 
 

187 Gas samples were taken three times per week during the first and second week, 
 

188 then twice per week during the first month after fertilization events or during rainfall 
 

189 periods and then, every week or every two weeks until the end of the cropping period. 
 

190 After harvest, one gas sample was taken each month. To minimize any effects of diurnal 
 

191 variation in emissions, samples were taken at the same time of day (10–12 am). 
 
 

192 Gas samples (20 mL) were taken at 0, 30 and 60 min to test the linearity of gas 
 

193 accumulation in each chamber. Samples were analyzed by gas chromatography using a 
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194 HP-6890 gas chromatograph equipped with a headspace autoanalyzer (HT3), both from 
 

195 

 
196 

Agilent Technologies (Barcelona, Spain). HP Plot-Q capillary columns transported gas 
 

samples to a 
63

Ni electron-capture detector (Micro-ECD) to analyze N2O concentrations 
 

197 and to a flame ionization detector (FID) connected to a methanizer to measure CH4. The 
 

198 temperatures of the injector, oven and detector were 50, 50 and 350ºC, respectively. 
 
 

199 

 
200 

The  increases  in  GHG  concentrations  within  the  chamber  headspace  were 
 

generally linear (R
2 

> 0.90) during the sampling period (1h). Therefore, emission rates 
 

201 of fluxes were estimated as the slope of the linear regression between concentration and 
 

202 time (after corrections for temperature) and from the ratio between chamber volume and 
 

203 soil surface area (Abalos et al., 2014). Cumulative N2O-N and CH4-C emissions per 
 

204 subplot during the sampling period were estimated by linear interpolations between 
 

205 sampling dates, multiplying the mean flux of two successive determinations by the 
 

206 length  of  the  period  between  sampling  and  adding  that  amount  to  the  previous 
 

207 cumulative total (Sanz-Cobena et al., 2014). 
 
 

208 2.5 Soil and crop analyses, meteorological data 
 
 

209 In November 2011, composite soil samples were collected from each subplot at 
 

210 depths of 0-7.5 cm, 7.5-15 cm and 15-30 cm. Soil samples were air-dried and sieved. 
 

211 Then, SOC was determined following the wet oxidation method (Nelson and Sommers, 
 

212 1996). In addition, bulk density was determined using intact core samplers as described 
 

213 by Grossman and Reinsch (2002). Bulk density was measured once a year (before the 
 

214 start of the experiment, as indicated above), on the basis that although bulk density 
 

215 diminishes in the topsoil layer immediately after tillage, this effect is short-lived and is 
 

216 followed by a rapid reorganization of the soil (Gómez-Paccard et al. 2015). In order to 
 

217 relate gaseous emissions to soil properties, soil samples were collected from 0-15 cm 



10  

218 depths during the growing season on almost all gas-sampling occasions. Three soil 
 

219 cores (2.5 cm diameter and 15 cm length) were randomly sampled close to the ring in 
 

220 each subplot, and then mixed and homogenized in the laboratory. Dissolved organic C 
 

221 (DOC) was determined by extracting 8 g of homogeneously mixed soil with 50 mL of 
 

222 

 
223 

 
224 

deionized water. Afterwards, DOC content was analyzed with a total organic carbon 

analyser (multi N/C 3100 Analityk Jena) with an IR detector. Soil ammonium (NH4
+ 

- 

N) and NO3
– 

-N concentrations were analyzed using 8 g of homogeneously mixed soil 

 

225 extracted  with  50  mL  of  KCl  (1M),  and  measured  by  automated  colorimetric 
 

226 determination using a flow injection analyzer (FIAS 400 Perkin Elmer) with a UV-V 
 

227 spectrophotometer detector. The water-filled pore space (WFPS) was  calculated by 
 

228 dividing the volumetric water content by total soil porosity. Total soil porosity was 
 

229 

 
230 

calculated according to the relationship: soil porosity = (1- soil bulk density/2.65), 
 

assuming a particle density of 2.65 g cm
-3  

(Danielson et al., 1986). Gravimetric water 
 

231 content was determined by drying soil samples at 105 °C in a MA30 Sartorius ® oven. 
 
 

232 Grain  yield  and  above-ground  biomass  were  measured  by  harvesting  two 
 

233 randomly selected 0.5 x 0.5 m squares from each subplot. Aerial biomass was cut by 
 

234 hand at the soil level and weighted after separating grain and straw. The total N content 
 

235 of grain and straw were determined with an elemental analyzer (TruMac CN Leco). 
 
 

236 2.6. Yield-scaled N2O emissions, N surplus and GWP calculations 
 
 

237 Yield-scaled N2O emissions, expressed as g N2O-N per of kg N uptake, were 
 

238 calculated based on van Groenigen et al. (2010), considering total above-ground N 
 

239 

 
240 

uptake (wheat grain and straw). The N surplus was calculated as the above-ground N 
 

uptake of the crop minus the N fertilizer applied, in kg N ha
-1  

(van Groenigen et al., 
 

241 2010). Carbon sequestration in the first 30 cm of soil and CO2 emissions from fuel used 



1
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242 in farm operations (e.g. tillage, herbicide and fertilizer application, seeding, harvest) and 
 

243 from manufacturing inputs (operation GHG emission + input GHG emission)  were 
 

244 calculated as described by Guardia et al. (2016). The “∆ soil C GWP” component, as an 
 

245 indicator of the soil C balance, was calculated taking the difference in SOC stocks 
 

246 between monoculture wheat-CT (as baseline) and the other treatments. To avoid the 
 

247 bias associated to bulk density, the comparison of C stocks was made on a fixed soil 
 

248 mass basis, as described in Ellert and Bettany (1995). Default values of GHG emissions 
 

249 derived from farm operations and manufacturing inputs have been reported by West and 
 

250 Marland (2002), Lal (2004) and Snyder et al. (2009). 
 
 

251 2.7. Statistical analysis 
 
 

252 Statistical analyses were carried out with Statgraphics Plus 5.1. Analyses of 
 

253 variance (two-way ANOVA) were performed for almost all variables in the experiment 
 

254 for both campaigns (except climatic ones). A three-way ANOVA was also carried out in 
 

255 order to assess the effect of each campaign and the possible interactions among factors 
 

256 (campaign,  tillage  and  crop).  The  normality  and  variance  uniformity  of  data  were 
 

257 assessed  by  the  Shapiro-Wilk  test  and  Levene´s  statistic,  respectively,  and  log- 
 

258 

 
259 

transformed before analysis when necessary. Means were separated by Tukey's honest 
 

significance test at P < 0.05. For non-normally distributed data (mean soil NH4
+ 

content 
 

260 and YSNE in campaign 1 in the three-way ANOVA), the Kruskal–Wallis test was used 
 

261 on non-transformed data to evaluate differences at P < 0.05. Linear regression analyses 
 

262 were carried out to determine relationships between cumulative gas fluxes and soil 
 

263 parameters, with a 95% significance level. 
 
 

264 3. Results 
 
 

265 3.1. Environmental conditions, soil C and mineral N contents 
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266 Total  rainfall  accounted  for  193.6  mm  and  369  mm,  in  campaign  1  (from 
 

267 October  2011  to  June  2012)  and  campaign  2  (from  October  2012  to  June  2013), 
 

268 respectively (Fig. 1a). Campaign 1 was one of the most dry crop campaigns since 1994; 
 

269 the mean rainfall value from 1994-2013 period was 365.1 mm. Soil WFPS content (Fig. 
 

270 1b) in the upper soil layer was dependent on rainfall events and tillage. For both crop 
 

271 campaigns, WFPS values of NT were often maintained above those of CT or MT.  For 
 

272 NT the number of days with WFPS above 50% was 25-48 and 72-88 days in campaign 
 

273 1 and 2, respectively; whereas those for CT were 10-15 and 25-35 days; and those for 
 

274 MT were 4-8 days in both campaigns. 
 
 

275 

 
276 

 
277 

Topsoil NH4
+ 

content (Fig. 2a, b) peaked after each fertilization event. However, 

The NH4
+ 

concentration decreased rapidly reaching background values (< 10 mg NH4
+ 

- 

N kg
-1

) after 10-35 days of basal and dressing fertilization. Average NH4
+ 

values did not 

 

278 

 
279 

show   significant   differences   between   tillage   and   cropping   systems,   but   were 
 

significantly smaller (P < 0.05) in campaign 1 than in campaign 2. The soil NO3
-
 

 

280 

 
281 

content  in  the  topsoil  (Fig.  2c,  d)  also  increased  after  fertilization  events  in  both 
 

campaigns and ranged between 0.80 and 59.1 mg NO3
- 
-N kg

-1
. No differences between 

 

282 

 
283 

cropping  systems  (wheat  in  rotation  versus  continuous  cropping  of  wheat)  were 
 

observed, while soil mean NO3
- 
content was greater (P < 0.05) in NT plots than in the 

 

284 other  tillage  treatments  in  the  campaign  1.  In  campaign  2,  differences  were  not 
 

285 

 
286 

significant between tillage or cropping treatments. Despite lower N application rates, 
 

the average NO3
- 
content was higher in campaign 1 than in campaign 2 (P < 0.05). 

 
 

287 

 
288 

The DOC content of the topsoil (0-15 cm) (Fig. 2e, f) ranged from 57.2 to 205.4 
 
mg C kg

-1 
(campaign 1) and from 29.4 to 170.2 mg C kg

-1  
(campaign 2). The mean 

 
289 DOC content for NT (taking into account the whole crop period) was significantly 
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291 campaign 2, respectively). No significant differences were found between cropping 
 

292 systems and campaigns. The SOC content in the upper layer was significantly increased 
 

293 after  17  years  of  NT,  as  opposed  to  MT  and  CT  (Table  1).  The  highest  SOC 
 

294 concentrations in the 15-30 cm layer were observed in CT (P < 0.05), but the SOC stock 
 

295 of the three soil layers (0-30 cm) was significantly higher in NT treatment. With regards 
 

296 to the cropping effect, monoculture wheat also tended to increase SOC sequestration 
 

297 compared with rotational wheat (0.05 < P < 0.10). 
 
 

298 3.2 N2O and CH4 emissions 
 
 

299 Nitrous oxide fluxes (Fig. 3) ranged from -0.18 to 0.46 mg N2O -N m
-2 

d
-1

. The 
 

300 highest emission peaks occurred after seeding and top-dressing fertilization in both 
 

301 campaigns (especially in campaign 2) and also after some rainfall events. Negative N2O 
 

302 fluxes were measured on several occasions for all treatments during both campaigns. 
 

303 The data from both campaigns showed that N2O emissions were not affected by tillage 
 

304 or crop (Table 2), but significant interactions of tillage and crop with the campaign 
 

305 factor  were  reported.  In  campaign  1,  cumulative  N2O  emissions  (Table  2)  were 
 

306 significantly lower for NT than those for MT and CT, while any significant crop effect 
 

307 or tillage*crop interactions were found. With regards to campaign 2, higher cumulative 
 

308 N2O emissions (P < 0.05) were observed in wheat in monoculture (with respect to 
 

309 rotational wheat), without no significant effect of tillage or the interaction of factors. 
 

310 Total cumulative N2O fluxes were greater (P < 0.05) in campaign 2 than in campaign 1. 
 

311 The ratio of N2O -N emitted per mineral N applied was significantly greater (P < 0.05) 
 

312 during campaign 1 (0.52%) than during campaign 2 (0.28%) (data not shown). 
 
 

313 Methane emissions ranged from -1.32 to 0.46 mg CH4  -C m
-2  

d
-1  

(data not 
 

314 shown).  Therefore,  all  treatments  were  sinks  for  CH4   during  almost  all  of  the 
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315 experimental period, although positive fluxes were observed on some sampling events. 
 

316 In  both  campaigns,  net  CH4   oxidation  (Table  2)  was  significantly  lower  in  the 
 

317 monoculture wheat than in rotational wheat, whereas no significant effect of tillage was 
 

318 

 
319 

reported (P > 0.05). In campaign 1, a significant and negative correlation was found 
 

between  CH4  fluxes  and NH4
+
-N content  (P  <  0.05,  n  = 20,  r  =  -0.52).  Methane 

 

320 emissions correlated with WFPS content in both campaigns (P < 0.05, n = 20, r = 0.50). 
 
 

321 3.3 Crop yield, YSNE and N surplus 
 
 

322 Grain yield (Table 2) was significantly higher in campaign 2 than in 1 (P < 
 

323 0.001).  Crop  yield  for  both  campaigns  (three-way ANOVA),  showed  a  significant 
 

324 interaction (P < 0.05) between campaign and tillage: NT tended to increase (compared 
 

325 with CT) grain yield in the dry campaign (11/12) while the opposite tendency was 
 

326 observed in the normal campaign (12/13). On average, MT led to numerically (but not 
 

327 statistically) lower yields than NT and CT. Regarding cropping effect, grain yield in 
 

328 rotational wheat was significantly higher (P < 0.05) than that in monoculture wheat. 
 
 

329 In campaign 1, YSNE were significantly lower (P < 0.05) for NT than those for 
 

330 MT and CT (Table 2), whereas no significant differences were observed for the crop 
 

331 effect. Considering data for both campaigns, MT and monoculture wheat significantly 
 

332 increased YSNE  as opposed to NT and  rotational wheat,  respectively.  However, a 
 

333 significant interaction of tillage with the campaign factor was observed, since NT and 
 

334 CT  were  the  tillage  treatments  with  most  mitigated  YSNE  in  campaign  1  and  2, 
 

335 respectively. The values for N surplus were significantly lower (P < 0.05) in campaign 
 

336 2 than campaign 1 (Table 2). There were no significant differences in N surplus values 
 

337 for the other effects (tillage, crop and interactions). 
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339 The net GWP was significantly lower in NT, than MT and CT (Table 3). Wheat 
 

340 in monoculture tended to decrease the net GWP as a result of higher C sequestration, 
 

341 but differences were not statistically significant at 95% significance level. The GHG- 
 

342 GWP (soil N2O and CH4  fluxes) component was significantly affected by tillage and 
 

343 crop factors, since CT and monoculture wheat significantly increased CO2-eq emissions 
 

344 compared with NT and rotational wheat, respectively. The GWP was higher during 
 

345 campaign 2 as a result of higher N fertilizer input (Fig. 4). Wheat in rotation only 
 

346 resulted  in  higher  C  sequestration  than  the  conventional  monoculture  wheat-CT 
 

347 management under NT. 
 
 

348 4. Discussion 
 
 

349 4.1 Effect of campaign, tillage and crop systems on N2O emissions 
 
 

350 The main factor affecting N2O emissions in this experiment was N input (from 
 

351 chemical fertilizer and crop residues), which was very dependent on the campaign and 
 

352 the soil moisture, which in turn was influenced by rainfall amount and distribution. In 
 

353 this context, N2O fluxes were significantly higher in campaign 2 (with the highest N 
 

354 input and rainfall) (Table 2). Due to the complexity of factors and processes affecting 
 

355 the release of N2O emissions, the effect of tillage and crop factors was not consistent 
 

356 throughout  both  campaigns,  so  that  the  interactions  need  to  be  analyzed  in  detail. 
 

357 Contrary to our hypothesis, tillage systems did not have any significant effect on N2O 
 

358 emissions when the data from both campaigns are considered (Table 2). Our results 
 

359 were in agreement with those of Tellez-Rio et al. (2015) and Guardia et al. (2016) under 
 

360 similar climatic conditions. As observed for tillage, the crop effect did not influence 
 

361 N2O emissions across the 2 campaigns. These results could be explained by the similar 
 

362 rates of synthetic N which was applied to both cropping systems, although a significant 
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363 interaction (Table 2) with the campaign effect (i.e. higher N2O losses in monoculture 
 

364 wheat than in rotational wheat, but only in the second campaign) was observed. This 
 

365 interaction suggests that the effect of residues from previous crops can be comparable 
 

366 and even higher than that of synthetic fertilizers (Lenka and Lal, 2013), especially in 
 

367 calcareous soils and low-input semi-arid cropping systems.  Additionally, the effect of 
 

368 tillage was not consistent in the two campaigns, since NT significantly reduced N2O 
 

369 losses during campaign 1 but not during campaign 2 (normal precipitation and N input) 
 

370 compared  with  to  MT  or  CT.  That  caused  the  tillage*campaign  interaction  to  be 
 

371 significant at 10% significance level. 
 
 

372 The meta-analysis of van Kessel et al. (2013) reported a significant mitigation of 
 

373 N2O emissions under NT in dry climates and long-term (> 10 years) studies. Lower 
 

374 emissions  following  long-term  adoption  of  NT  were  explained  as  a  result  of  the 
 

375 improvements of SOC content and porosity, thus reducing the formation of anaerobic 
 

376 microsites (Six et al., 2004). Lower emissions were generally observed under NT in our 
 

377 study for both campaigns in the rotational wheat system and also for monoculture wheat 
 

378 in campaign 1, supporting the results of Van Kessel et al. (2013). Conversely, the 
 

379 results of monoculture wheat in campaign 2 did not agree with this study, because the 
 

380 monoculture wheat-NT treatment resulted in relatively high N2O fluxes during this 
 

381 campaign, particularly after dressing fertilization (Fig. 5). Therefore, we hypothesized 
 

382 that  the  influence  of  the  climatic  conditions  (particularly  rainfall)  and   tillage 
 

383 (incorporating/leaving the residue on surface) on the mineralization of previous crop 
 

384 residues  (whose  amount  was  different  between  cropping  systems,  as  explained  in 
 

385 section 2.2) drove the N2O emission pattern in our experiment. In the case of rotational 
 

386 wheat, an important part of crop residue was presumably mineralized during fallow 
 

387 period (the previous year of rotational wheat growing phase), so N2O fluxes may have 



17  

388 been less dependent on the interaction of crop residue and mineral fertilizer than in 
 

389 continuous cropping of the winter wheat. However, in campaign 1, differences in N2O 
 

390 emissions due to crop residue inputs were not observed between cropping systems. We 
 

391 hypothesized that the low rainfall amounts in campaign 1 limited soil water availability, 
 

392 particularly soil moisture content, which was not enough to promote an intensive N 
 

393 mineralization  and  crop  residues  turnover,  hence  not  stimulating  N2O  production 
 

394 (Mutegi et al., 2010). The number of days with a WFPS above 50%, which has been 
 

395 suggested as a threshold for highest N2O losses (Linn and Doran, 1984; Li et al., 2016) 
 

396 was lower in campaign 1 (from 4 to 48 days) than in campaign 2 (from 7 to 88 days), 
 

397 depending on tillage system, supporting our findings. 
 
 

398 By contrast, the N2O emissions during campaign 2 were higher in monoculture 
 

399 wheat than in rotational wheat. This effect could be a result of better environmental 
 

400 conditions for the mineralization of crop residues from the previous year (Chen et al., 
 

401 2013). In monoculture wheat, a combination of residue inputs with a high C:N ratio 
 

402 (mean C:N ratio of 160.3) and mineral N fertilizer, both at seeding and dressing, may 
 

403 have stimulated denitrification losses from mineral N added to soil (Li et al., 2016), as 
 

404 residues provide an energy supply for denitrifying microorganisms (Sarkodie-Addo et 
 

405 al.,  2003;  Sanz-Cobena  et  al.,  2014).  This  effect  was  particularly  noticeable  after 
 

406 dressing fertilization in the campaign 2, increasing fluxes in the monoculture wheat-NT 
 

407 treatment and changing the trend observed in the first campaign and the beginning of 
 

408 the second (Fig. 5). We hypothesized that the slower mineralization of non-incorporated 
 

409 wheat  residues  in  NT  (with  respect  to  MT/CT) favored  the N2O  release from  the 
 

410 interaction of dressing synthetic N and the mineralization of wheat residues, during the 
 

411 stage (spring) and the campaign (2, as opposed to the dry campaign 1) with more 
 

412 favorable conditions for mineralization (Abalos et al., 2013; Guardia et al., 2016). 
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413 4.2 CH4 emissions 
 
 

414 In this long-term tillage study, cumulative emissions provided a net CH4 sink in 
 

415 all tillage and cropping systems (Table 2), as generally reported in agricultural soils 
 

416 

 
417 

under semiarid conditions (Snyder et al., 2009). The negative correlation found between 
 

soil NH4
+ 

content and CH4 fluxes (P < 0.05) in campaign 1 did not agree with previous 
 

418 studies  (e.g.  Hütsch  et  al.,  1996),  which  suggested  a competitive inhibition  of the 
 

419 enzyme responsible for the oxidation of CH4  (CH4  monooxygenase) with the NH3 

 

420 

 
421 

monooxygenase (Le Mer and Roger, 2001). Conversely, the meta-analysis of Aronson 
 
and Helliker (2010) reported that low amounts of N (<100 kg ha

-1
) tend to stimulate 

 

422 methanotrophy, while larger rates are inhibitory. This explains the correlation obtained 
 

423 in our study, in which low N rates were used, particularly during campaign1. 
 
 

424 Tillage systems did not produce significant differences in CH4  uptake in any 
 

425 campaign, which is consistent with results reported by Guardia et al. (2016) and Tellez- 
 

426 Rio et al. (2015), under semiarid Mediterranean conditions. However, some authors 
 

427 have suggested that the improvement of soil structure in NT, associated with increases 
 

428 in macroporosity and reduction of anaerobic microsites, can favor CH4  consumption 
 

429 (Plaza-Bonilla et al., 2014). Our results may have been a consequence of similar topsoil 
 

430 porosity in all tillage systems and the low soil moisture content maintained during 
 

431 campaign 1 and 2. 
 
 

432 Greater  CH4   oxidation  (P  <  0.05)  was  found  in  rotational  wheat  than  in 
 

433 monoculture wheat in both campaigns, which would suggest that soil conditions under 
 

434 this rainfed rotation can be more favorable for methanotrophic microorganisms. The 
 

435 incorporation of high C:N crop residues has been reported to increase CH4  emissions 
 

436 (Le Mer and Roger, 2001), and that may have partially offset the CH4  oxidation in 
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437 monoculture wheat subplots, where a higher amount of straw was retained/incorporated. 
 

438 This was also reported by Lenka and Lal (2013), who showed that CH4 uptake capacity 
 

439 was increased in bare soil when compared to treatments with residue amendment. 
 
 

440 4.3 Grain yield, YSNE and N surplus 
 
 

441 Grain yield was affected by campaigns, which decreased almost 50% in the dry 
 

442 campaign 1 compared to campaign 2, due to the low rainfalls measured in campaign 1. 
 

443 The  tillage*campaign  interaction  in  wheat  yields  showed  that  the  most  productive 
 

444 tillage system was dependent on climate and management conditions: NT increased 
 

445 grain yield compared to MT / CT in campaign 1 whereas CT produced higher yield than 
 

446 NT / MT in campaign 2, although the differences were not statistically significant at 
 

447 95% probability level. Controversy still exists about crop yield declines in NT, but CT 
 

448 overall  leads  to  higher  crop  yields  in  experiments  with  high  water  and  nutrient 
 

449 availability  (Chatskikh  and  Olesen,  2007),  whereas  in  semiarid  agroecosystems, 
 

450 increases in water content and soil fertility achieved with NT adoption can result in 
 

451 higher  yields  (Morell  et  al.,  2011;  Plaza-Bonilla et  al.,  2014). Recently,  the meta- 
 

452 analysis of van Kessel et al. (2013) reported that long-term NT in dry climates had no 
 

453 significant effect on yield compared to CT, but NT generally produced a yield decline. 
 

454 Although,  differences  in  yield  between  tillage  systems  were  not  observed  in  this 
 

455 experiment in any campaign, our results seem to suggest that NT enhanced yield with 
 

456 limited rainfall values below 200 mm (campaign 1), whereas higher rainfall ( > 300 
 

457 mm) increased yield in CT (campaign 2). Our results were consistent with De Vita et al. 
 

458 (2007) under Mediterranean conditions who explained the superior effect of NT relative 
 

459 to CT due to lower water evaporation from soil combined with enhanced soil water 
 

460 availability. Considering the average 2-campaigns data, MT resulted in numerically but 
 

461 not statistically lower yield than those of CT or NT. The increased weed pressure in this 
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462 tillage system (Armengot et al., 2015) was also observed in our experimental site, and 
 

463 could explain this tendency. With regard to crop effect, monoculture wheat significantly 
 

464 reduced grain yield compared with rotational wheat, especially in campaign 2. Our 
 

465 results confirm the positive effect of crop rotation on wheat  yield under semi-arid 
 

466 conditions (López-Bellido and López-Bellido, 2001). 
 
 

467 The YSNE from our study were in the lowest range of values reported by van 
 

468 Groeningen et al. (2010). These results indicate that rainfed semi-arid agro-ecosystems 
 

469 with adjusted N rates result in low N2O emissions per kg of N uptake. Since grain yield 
 

470 

 
471 

 
472 

was not high (compared with other wheat cropping areas), these low YSNE were a 

result of small N2O losses, ranging from 0.07 to 0.23 kg N2O ha
-1

yr
-1

, compared to those 

(0.04-21.21 kg N2O ha
-1

) for European arable sites (Rees et al., 2013). Besides the small 

 

473 N2O emissions due to the low N fertilization rates, the low ratio of N2O -N emitted per 
 

474 mineral N applied (see section 3.2) confirms that the N2O emission factors of rainfed 
 

475 semi-arid areas are much lower than the IPCC default value (Aguilera et al., 2013b; 
 

476 Cayuela et al., 2016). In this type of agro-ecosystem, N2O emissions during winter are 
 

477 substantially limited by soil temperatures, while low WFPS is the main limiting factor 
 

478 for  large  N2O  losses  during  spring  (when  most  growth  of  winter  crops  occurs). 
 

479 Additionally, low SOC contents (Ussiri and Lal, 2012) and high soil pH conditions 
 

480 (Baggs  et  al.,  2010),  as  was  the  case  for  our  experimental  site,  may  have  also 
 

481 

 
482 

contributed to low N2O losses and YSNE. As a consequence, the mean values of N 
 

surplus (Table 2) were below the threshold (20-50 kg N ha
-1

) of an exponential increase 
 

483 of YSNE (van Groenigen et al., 2010). Remarkably, N surplus was significantly higher 
 

484 in the first campaign, with the driest conditions, in spite of the lower rate of application 
 

485 of synthetic N. This would suggest that there was inefficient uptake of N uptake under 
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486 water stress conditions, resulting in very low grain yields, without higher N2O losses 
 

487 due to unfavorable soil WFPS, as explained above. 
 
 

488 Our results highlight the importance of  crop rotation as an effective YSNE 
 

489 mitigation  strategy,  due  to  increased  yields  and  similar  (or  lower)  N2O  losses  as 
 

490 continuous cropping of wheat. The tillage*campaign interaction for grain yields and the 
 

491 low N2O fluxes drove the tillage*campaign interaction observed for YSNE. Overall, NT 
 

492 significantly mitigated YSNE as opposed to MT, which had no effect on area-scaled 
 

493 N2O losses but was a less advantageous tillage management considering the YSNE 
 

494 ratio. In the campaign with less rainfall than the average, NT mitigated YSNE, as 
 

495 observed by van Kessel et al. (2013) for long-term studies under dry conditions, so it 
 

496 emerges as an interesting option in a global change context with increased aridity. In 
 

497 contrast, in normal rainfall campaigns CT arises as the most sustainable alternative for 
 

498 increasing grain yields while leading to similar N2O losses as NT. 
 
 

499 4.4 Global Warming Potential 
 
 

500 

 
501 

Almost all treatments  (except rotational wheat-NT) had positive GHG-GWP 
 

emission values (19-204 kg CO2-eq ha
-1

), showing that in spite of low N2O fluxes, CH4 

 

502 oxidation did not offset N2O losses (Fig. 4). As reported by previous studies (e.g. 
 

503 Aguilera et al., 2013a; 2015; Plaza-Bonilla et  al., 2015; Abdalla et al., 2016), NT 
 

504 significantly increased C sequestration compared with CT (Table 3). This occurred 
 

505 despite the higher SOC content in the 15-30 cm layer in CT (as opposed to NT/MT), as 
 

506 suggested by Baker et al. (2007). Carbon sequestration was the main cause of the 
 

507 differences between tillage and crop treatments (Fig. 4), but CO2-eq emissions from 
 

508 inputs and operations were also important, a finding which is consistent with Aguilera 
 

509 et al. (2015) or  Guardia et al. (2016). Therefore, our results indicate that management 
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510 practices which promote an increase in C stocks (e.g. NT) should be recommended in 
 

511 semi-arid areas. Supporting our findings, the recent meta-analysis of Abdalla et al. 
 

512 (2016) pointed out that the abatement of CO2-eq emissions through NT adoption is 
 

513 significantly higher in arid climates with low SOC content, as opposed to CT. Nitrous 
 

514 oxide (N2O) emissions have shown to carry less weight in GWP estimates than in 
 

515 previous studies (Mosier et al., 2006; Adviento-Borbe et al., 2007), but uncertainties 
 

516 associated with C sequestration dynamics and its calculation (Guardia et al., 2016) and 
 

517 the large climatic variability in rainfed semi-arid cropping areas, suggest that strategies 
 

518 that mitigate CO2-eq from other GWP components (N2O losses and inputs, e.g. by 
 

519 adjusting N rates) must be also considered. 
 
 

520 Regarding crop effect, wheat in rotation tended to decrease C sequestration and 
 

521 consequently to enhance GWP (0.05 < P < 0.10). Although the wheat phase of the 
 

522 rotation led to numerically higher CO2-eq than monoculture wheat, the widespread 
 

523 fallow-cereal-legume-cereal rotations provide further opportunities to mitigate the GWP 
 

524 during the legume and fallow phases, when lower (or zero) fertilizer inputs are applied. 
 
 

525 5. Conclusions 
 
 

526 Our results showed that cumulative N2O emissions and YSNE were low in this 
 

527 long-term experiment carried out under rainfed semiarid conditions with adjusted N 
 

528 inputs. On average, no significant effect of tillage or cropping system (wheat in rotation 
 

529 and in monoculture) was observed. But this simple overview hides a more complex 
 

530 underlying story; N2O emissions were increased in a normal campaign in monoculture 
 

531 wheat (due to the mineralization of previous wheat residues), as opposed to rotational 
 

532 wheat, and decreased in a dry campaign in NT, as opposed to MT/CT.  Therefore, 
 

533 Conservation Agricultural practices (NT and rotation) resulted in similar or lower N2O 
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534 losses than conventional ones. Methane uptake was significantly higher in rotational 
 

535 wheat than in monoculture wheat, while no effect of tillage was observed. Grain yield 
 

536 and consequently YSNE were strongly affected by climatic variability, since NT and 
 

537 CT resulted in significantly higher productivities and lower YSNE in the dry and the 
 

538 normal campaigns, respectively. Wheat in rotation significantly mitigated YSNE, as 
 

539 opposed to monoculture wheat. Higher C sequestration caused NT to reduce Net GWP 
 

540 compared with the rest of tillage treatments. No-till should be recommended in semi- 
 

541 arid  areas  to  mitigate  the  Net  GWP  of  semi-arid  agro-ecosystems,  providing  the 
 

542 opportunity to reduce YSNE in dry years and therefore in a global change scenario. By 
 

543 contrast, MT performed less well on the basis of YSNE and GWP balances. Wheat in 
 

544 rotation tended to increase Net GWP, but the abatement of YSNE and the opportunities 
 

545 for reducing input CO2  emissions during other rotation phases (fallow and/or legume) 
 

546 may provide and optimum balance between grain yields and GHG mitigation. 
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727 Figure captions 
 
 

728 Fig. 1a Weekly mean soil temperature (°C) and rainfall (mm) and b evolution of soil 
 

729 WFPS  (%)  in  the  different  tillage  (no  tillage,  NT,  minimum  tillage,  MT,  and 
 

730 conventional tillage, CT) and cropping (rotational wheat, W, and monoculture wheat, 
 

731 M) treatments during both crop campaigns. 
 
 

732 Fig. 2a, b NH4
+ 

-N; c, d NO3
- 
-N; and e, f DOC concentrations in the 0–10 cm soil layer 

 

733 during both crop campaigns for the different tillage (no tillage, NT, minimum tillage, 
 

734 MT,  and  conventional  tillage,  CT)  treatments.  Data  are  provided  separately  for 
 

735 rotational wheat (W, right) and monoculture wheat (M, left) treatments. The arrows 
 

736 indicate the dates of application of synthetic N. Vertical lines indicate standard errors. 
 
 

737 Fig. 3 Fluxes of N2O-N during both crop campaigns for the different tillage treatments 
 

738 (no tillage,  NT, minimum  tillage, MT,  and conventional tillage, CT)  and cropping 
 

739 systems: a rotational wheat (W), and b monoculture wheat (M). The arrows indicate the 
 

740 dates of application of synthetic N. Vertical lines indicate standard errors. 
 
 

741 Fig.  4  Relative  contribution  of  each  component  to  Net  Global  Warming  Potential 
 

742 (GWP) in each tillage (no tillage, NT, minimum tillage, MT, and conventional tillage, 
 

743 CT) and cropping treatment (rotational wheat, W, and monoculture wheat, M) during 
 

744 both crop campaigns. 



32  

745 Fig. 5 Cumulative N2O-N emissions during both crop campaigns for the different tillage 
 

746 (no tillage,  NT, minimum tillage, MT,  and conventional tillage, CT) and cropping 
 

747 

 
748 

 
749 

 

 
750 

(rotational wheat, W, and monoculture wheat, M) treatments, from the beginning of the 

campaign to dressing fertilization (1
st 

fertilization) and from dressing fertilization to the 

end of the campaign (2
nd 

fertilization). Vertical lines indicate standard errors. 
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Table 
 
 
 
 
 
 
 

Table 1. 

SOC content (g C kg
-1

) in the 0-7.5, 7.5-15 and 15-30 cm soil layers, total SOC content (Mg C ha
-1

) in the 0-30 cm depth of the different tillage treatments (no 

tillage, NT, minimum tillage, MT, and conventional tillage, CT) and cropping system (rotational wheat, W, and monoculture wheat ,M). 

 
 SOC (g kg

-1
)  Total SOC (Mg ha

-1
) 

Depth (cm) 0-7.5 7.5-15 15-30 0-30 

Tillage P = 0.001 P = 0.516 P = 0.035 P = 0.033 

NT 11.2  b 5.8 4.6  a 28.8  b 

MT 6.7  a 5.4 4.6  a 22.9  a 

CT 5.7  a 5.4 5.3  b 22.9  a 

S.E. 0.7 0.3 0.2 1.4 

 

Crop 

W 

 

P = 0.186 

7.2 

 

P = 0.008 

4.9  a 

 

P = 0.117 

4.7 

 

P = 0.070 

23.1 

M 8.5 6.1  b 5.1 26.6 

S.E. 0.6 0.2 0.1 1.1 

 

Tillage x crop 
 

P = 0.713 
 

P = 0.130 
 

P = 0.098 
 

P = 0.308 

Different letters within columns indicate significant differences by applying the Tukey's honest significance test at P < 0.05. Standard Error (S.E.) is given for 

each effect. 



 

Table 
 
 
 
 
 
 
 

Table 2. 

Total cumulative N2O-N and CH4-C fluxes, grain-yield, Yield-scaled N2O emissions (YSNE) and N surplus in the different tillage treatments (no tillage, NT, 

minimum tillage, MT, and conventional tillage, CT) and cropping systems (rotational wheat, W, and monoculture wheat, M), in campaign 1 and campaign 2, 

and during the two seasons of the experiment. 

 
 

 
Effect 

N2O cumulative emission 
(g N2O-N ha

-1 
yr

-1
) 

CH4 cumulative emission 
(g CH4 -C ha

-1 
yr

-1
) 

Grain yield 

(kg grain ha
-1

) 
YSNE 

(g N2O-N kg N up
-1

) 

 
( 
N surplus 

Kg N ha
-1 

) 

 Camp. 1 Camp. 2 2-season Camp. 1 Camp. 2 2-season Camp. 1 Camp. 2 2-season Camp. 1 Camp. 2 2-season Camp. 1 Camp. 2 2-season 

Tillage * ns ns ns ns ns ns ns ns * * * ns ns ns 

NT 72.0  a 181.6 130.3 -670.6 -654.2 -662.4 2068 3233 2650 1.7 a 3.4 b 2.5  a 21.6 -6.5 7.5 

MT 158.1 b 191.5 174.9 -694.8 -866 -780.7 1151 3241 2196 5.3 b 3.1 ab 4.1  b 6.4 -4.4 1.0 

CT 190.1 b 198.0 194.0 -639.6 -708.5 -674.0 1530 3885 2708 5.4 b 2.5 a 3.9  ab 12.0 13.2 12.6 

S.E. 14.7 17.5 13.6 69.1 42.7 48.7 192 394 209 0.6 0.1 0.3 3.3 6.6 3.8 

 

Crop 
 

ns 
 

* 
 

ns 
 

* 
 

* 
 

*** 
 

ns 
 

ns 
 

* 
 

ns 
 

** 
 

* 
 

ns 
 

ns 
 

ns 

W 147.1 154.0  b 150.6 -792.0 a -919.9 a -855.9 a 1832.5 3903.2 2868  b 3.7 2.1 a 2.9  a 21.4 8.7 15.0 

M 133.1 231.0  a 182.2 -544.6 b -566.2 b -555.4 b 1333.6 3003.3 2169  a 4.5 3.8 b 4.2  b 5.3 -7.2 -0.9 

S.E. 28.0 18.0 12.5 62.6 82.7 29.7 240 322 171 0.9 0.3 0.4 4.9 7.2 4.0 

 
Camp. * ns *** * * 

1   140.1  a   -668.4   1583  a   4,1  b   13.3 b 

2   192.7  b   -743.1   3453  b   3.0  a   0.8 a 

S.E.   11.1   39.8   92   0.3   4.1 

 

Till. x Crop 
 

ns 
 

ns 
 

ns 
 

ns 
 

ns 
 

ns 
 

ns 
 

ns 
 

ns 
 

ns 
 

ns 
 

ns 
 

ns 
 

ns 
 

ns 

Till. x Camp.   ns   ns   *   *   ns 

Crop x Camp.   *   ns   ns   ns   ns 



 

 
 
 

Different letters within columns indicate significant differences by applying the Tukey's honest significance test at* P < 0.05, **P < 0.01, *** P < 0.001. "ns" 

means no significant. Standard Error (S.E.) is given for each effect. 



 

2 

Table 
 
 
 
 
 
 
 

Table 3. 

Estimated Global Warming Potential (GWP, kg CO2 eq ha 
-1 

yr
-1

) for the different tillage treatments (no tillage, NT, minimum tillage, MT, and conventional 

tillage, CT) and cropping systems (rotational wheat, W, and monoculture wheat, M). 
 

 

Global Warming Potential (GWP, kg CO2 eq ha 
-1 

yr
-1

) 
 

Effect GHG-GWP
a
 C sequestration

b
 Net GWP

c
 

Tillage 

NT 

MT 

CT 

S.E. 

P = 0.077 

58.6  a 

89.8  ab 

119.4  b 

17.0 

P = 0.008 

-624.7 a 

652.0  b 

658.2  b 

310.0 

P = 0.010 

116.0  a 

1444.8  b 

1546.7  b 

303.0 

Crop 

W 

P = 0.009 

58.4  a 

P = 0.060 

600.8 

P = 0.078 

1377.3 

M 120.1  b -143.8 694.4 

S.E. 13.9 253.1 247.4 

Campaign P = 0.047 - P = 0.189 

1 67.5  a - 806.1 

2 111.0  b - 1265.3 

S.E. 13.9 - 247.4 

Tillage x crop P = 0.181 P = 0.332 P = 0.332 

Tillage x campaign P = 0.069 - P = 0.988 

Crop x campaign P = 0.026 - P = 0.883 

Different letters within columns indicate significant differences by applying the Tukey's honest significance test at P < 0.05. Standard Error (S.E.) is given for 

each effect. 
 

a 
Sum of CO

 
 

equivalents from N O and CH
 

 

emissions, considering a 100-year horizon.
 

2 2 4 

b 
CO equivalents from C sequestration, calculated taking the difference in SOC stocks between CT-M (as baseline) and the rest of tillage treatments, dividing 

it by the number of years since the experiment started (17) and considering the CO2/C molar ratio. 



 

 
 
 

c Sum of C02 equivalents from N20 and CR. emissions, C sequestration, operations and inputs. 


