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Development and validation of a SPME method for in situ 

passive sampling of root volatiles from glasshouse-grown 

broccoli plants undergoing below-ground herbivory by larvae 

of cabbage root fly, Delia radicum L 

ABSTRACT: 

Introduction - Research on plant root chemical ecology has benefited greatly from recent 

developments in analytical chemistry.  Numerous reports document techniques for sampling 

root volatiles, although only a limited number describe in situ collection. 

Objectives - To demonstrate a new method for non-invasive in situ passive sampling using 

solid phase micro extraction (SPME), from the immediate vicinity of growing roots. 

Methods – SPME fibres inserted into polyfluorotetrafluoroethylene (PTFE) sampling tubes 

located in situ which were either perforated, covered with stainless steel mesh or with 

microporous PTFE tubing, were used for non-invasive sub-surface sampling of root volatiles 

from glasshouse-grown broccoli.  Sampling methods were compared with above surface 

headspace collection using Tenax TA. The roots were either mechanically damaged or 

infested with Delia radicum larvae.  Principal component analysis (PCA) was used to 

investigate the effect of damage on the composition of volatiles released by broccoli roots. 

Results - Analyses by gas chromatography-mass spectrometry (GC-MS) with SPME and 

automated thermal desorption (ATD) confirmed that sulfur compounds, showing 

characteristic temporal emission patterns, were the principal volatiles released by roots 

following insect larval damage.  Use of SPME with in situ perforated PTFE sampling tubes 

was the most robust method for out-of-lab sampling. 

Conclusion - This study describes a new method for non-invasive passive sampling of 

volatiles in situ from intact and insect damaged roots using SPME.  The method is highly 

suitable for remote sampling and has potential for wide application in chemical 

ecology/root/soil research. 

Keywords: Chemical ecology; in situ root volatiles analysis; Brassica; Delia radicum; 

SPME-GC-MS 
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Introduction 

Introduction 

Plants emit volatile compounds from their roots that play critical roles in interactions with 

their environment.  Research on root chemical ecology and the function of root volatiles as 

signals in interactions between plants, insect herbivores and their natural enemies has greatly 

benefitted from recent advances in sampling and analytical methods (D'Alessandro and 

Turlings 2006; Rasmann et al., 2012; Campos-Herrera et al., 2013; Peñuelas et al., 2014; van 

Dam 2014).   

Overcoming the methodological difficulties associated with non-invasively investigating 

volatiles emissions from plant roots poses challenges for researchers studying below-ground 

interactions (D'Alessandro and Turlings 2006; Rasmann et al., 2012; Campos-Herrera et al., 

2013; van Dam 2014). Whilst techniques for sampling volatiles from the headspace above 

growing roots have been successfully used to detect changes in volatiles released in response 

to root herbivory (Soler et al., 2007; Pierre et al., 2011; Crespo et al., 2012; Danner et al., 

2012; van Dam et al., 2012), very few methods have been developed for in situ collection of 

root volatiles (Mohney et al., 2009; Weidenhamer et al., 2009; Ali et al., 2012, Eilers et al., 

2015). 

In previous experiments measuring the diffusion of volatile compounds injected into 

sand and soil, Rasmann et al., (2005) and Hiltpold and Turlings (2008) demonstrated that 

solid phase micro extraction (SPME) can be used to sample volatiles below-ground by 

exposing fibres in pre-made holes.  This approach was subsequently used to study attraction 

of cockchafer larvae to damaged roots of young oak trees (Weissteiner et al., 2012) and the 

release of phytotoxic volatiles from sagebrush roots (Jassbi et al., 2010).  However, in these 

studies, the sampling holes were made adjacent to the stems of established growing plants 

and therefore root damage may have been caused during the sampling process.   

Delia radicum L. (Diptera: Anthomyiidae), the cabbage root fly, is an important 

insect pest of Brassica crops.  Adult females lay their eggs in the soil near suitable host plants 

and, after hatching, the larvae crawl down to feed on the roots before pupating in the 

surrounding soil.  Thus far, a number of invasive, non-invasive, passive and dynamic 

headspace sampling approaches have been used to study volatile emissions from Brassica 

roots infested with D. radicum larvae (Ferry et al., 2007; Soler et al., 2007; van Dam et al., 

2010; Danner et al., 2012).   
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As part of our studies to develop alternative measures for control of Delia radicum 

during commercial cultivation of broccoli (Brassica oleracea L) we identified a requirement 

for in situ collection of volatiles from broccoli roots in undisturbed soil using SPME under 

field conditions. We hypothesised that development of an accessorial tool to create a pre-

positioned headspace in the soil/substrate next to growing roots using variously perforated 

polytetrafluoroethene (PTFE) tubes would protect the fragile SPME fibre assembly from 

damage or fouling during sampling by avoiding direct contact with the soil/substrate/roots.  

This could also support the SPME holder in position during sampling. We further 

hypothesised that this technique would facilitate repeated non-destructive temporal and 

location-specific collection of root volatiles pre- and post-damage to roots, enabling time 

course studies of volatile signal dynamics.  Here, we present the development and validation 

of a novel SPME-based method for below-ground passive sampling of volatiles in situ from 

intact roots of glasshouse-grown broccoli (Brassica oleracea L. convar. botrytis L. Alef. var. 

cymosa Duchesne ‘Parthenon’) and those damaged mechanically or by feeding D. radicum 

larvae. 
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Experimental 

Plants.  Broccoli ‘Parthenon’ seeds from Sakata UK Ltd., Boston, UK were germinated in 

345 module trays (Westhorpe Plants Ltd., Boston, UK) containing Levington M2 compost for 

experiments using SPME or in 12 cm deep Rootrainers (Ronaash Ltd., Kelso, UK) using 

Levington M2 compost for experiments using ATD-GC-MS. 

Insects. Delia. radicum first instar larvae used for plant infestation and root volatiles 

induction were obtained from a continuously reared culture maintained at The James Hutton 

Institute. 

Reagents. Reference compounds were obtained from Sigma-Aldrich UK Ltd. 

Sampling of root volatiles in situ using SPME and analysis of volatiles by GC-MS 

Plant growth.    At the 3-4 true leaf stage plants were transplanted to custom-modified 

containers (described below) for growing on and for collection of root derived volatiles in 

situ using SPME.  Transplantation in this way is the standard practice for commercial growth 

of broccoli in the UK.  Since we ultimately wish to evaluate our in situ sampling 

methodology using field-grown plants this practice was adopted here.  Glasshouse conditions 

were maintained at 21°C:16°C (day:night) temperature and 16:8 hours (light:dark) 

photoperiod throughout.  Natural daylight was supplemented when required by artificial 

lighting (MASTER SON-T PIA Green Power; Philips, Guildford, UK) to maintain irradiance 

>200 W m
−2

.  Containers were watered daily to beyond field capacity and allowed to drain

freely before the next irrigation event. 

Perforated PTFE sampling tubes.  Each sampling tube (Figs 1a and 1d.2) consisted of a 19 

cm length of PTFE tubing (Fig. 1d.1; 5 mm internal diameter [Ø], 1 mm wall thickness; 

Radleys, Saffron Walden, UK, catalogue no. S1810-46) manually perforated 1,400 times 

using a sewing needle (500 µm Ø; Korbond Industries Ltd., Grantham, UK).  Perforations 

started 4.5 cm from the top end of the tube and stopped 2.5 cm from the bottom. 

Stainless steel mesh covered PTFE sampling tubes.  To create the sampling tubes (Figs 1b, 

1d.3 and 1d.4) a 4.8 cm x 4 mm slot was cut and removed 4.5 cm from the top end of a 20 cm 
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length of PTFE tube using a fixed blade utility knife (Stanley, Slough, UK).  A single piece 

(5.1 cm x 2.3 cm) of 165/1400 stainless steel mesh (Nisjemetall AS, Røyken, Norway) with a 

pore size of 20 µm was wrapped around the tube to cover the opening and held in place with 

PTFE tape (RS Components Ltd., Corby, UK). 

Microporous PTFE tubing covered PTFE sampling tubes.  Initial construction of sampling 

tubes (Figs 1c and 1d.5) was similar to that described above for use with stainless steel mesh. 

However, in place of the mesh, microporous PTFE tubing (5.1 cm long piece of 5 mm 

internal Ø, 1 mm wall thickness; Aeos ePTFE tubing; Zeus, Letterkenny, Ireland) was slid 

over the opening made in a PTFE tube and held in place with PTFE tape. 

Sampling containers.  Sampling containers, shown in cross section (Fig. 2a) and during 

sampling with a plant in situ (Fig. 2b), were constructed as follows.  Holes (6 mm Ø) were 

drilled in the base of a 3 L container (SM, 19 cm Ø x 15 cm; Soparco, 61110 Condé-sur-

Huisne, France), 2.5 cm apart, to hold the sampling tubes in position.  Sampling tubes were 

inserted such that approximately 2.5 cm of the lower part of their length protruded below the 

pot.  A ¼” PTFE ferrule (Thames Restek UK Ltd., Saunderton, UK, catalogue no. 21128) 

was placed around the base of each tube on the inside of the container, and a silicone rubber 

ring (Fisher Scientific UK Ltd., Loughborough, UK, catalogue no. QAK-165-Y) was placed 

on the outside, to support and seal the tubes in position.  Sampling tubes covered with 

stainless steel mesh or microporous PTFE tubing were positioned such that the slots cut in the 

PTFE tube faced toward the centre of the pot.  PTFE push-fit end caps (Perkin Elmer, 

Cambridge, UK, catalogue no. L4270122) were fitted to both ends of each tube and only 

removed during sampling (upper cap) and when inspecting the inside of the tube (both caps). 

When assembled, the 3 L container with the tubes attached (Fig. 1) was placed within a taller 

4 L container (AKG Hortiproducts, Vroomshoop, The Netherlands) (Figs 2a and 2b).  This 

enabled the sampling container to stand upright as normal, without the tube ends contacting 

the base of the 4 L container.  Transplantation of the module grown broccoli plant involved 

filling the 3 L container with Levington M2 compost and positioning the plant between the 

sampling tubes which were gently positioned against either side of the module or “plug” of 

growing medium and root, with the top of the root plug at surface level.  Controls were 

containers with sampling tubes in compost but without plants. 
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Experimental design.  Each sampling container, with or without a plant, incorporated two 

sampling tubes.  Experiments conducted with perforated PTFE and stainless steel mesh 

covered PTFE sampling tubes each had three replicates with a plant and one control without a 

plant.  Experiments using PTFE sampling tubes covered with microporous PTFE had two 

replicates with a plant and one control without a plant.  Sampling containers, including 

controls, were arranged in the glasshouse using a completely randomised design. 

Induction of root volatiles.  At the 8-10 true leaf stage plants in containers with the 

perforated PTFE and stainless steel mesh covered PTFE sampling tubes were infested with 

150 freshly laid Delia. radicum eggs.  Eggs suspended in water were carefully injected onto 

the growing medium next to the plant stem using a 60 mL plastic syringe and drinking straw. 

Controls without plants were also infested with the same number of D. radicum eggs.  Plants 

in containers with PTFE sampling tubes covered with microporous PTFE tubing were 

mechanically damaged using a stainless steel spatula.  The number of larvae which actually 

fed on roots is unknown.  Whilst the eggs were viable at the point of infesting plants, it is 

possible that larvae may not have emerged from some, for example, due to damage or 

desiccation.  Pupae were not retrieved and counted after the experiment to equate with the 

number of eggs used at infestation. 

Sampling of root volatiles.  Each system was sampled once using SPME immediately prior 

to initiation of root damage.  Systems using perforated PTFE sampling tubes and stainless 

steel mesh covered PTFE sampling tubes were sampled simultaneously at two further time 

points, 24 hours and one week (8 days), after estimated egg hatch and induction of volatiles 

by larval feeding damage, 24 hours after infestation with Delia. radicum eggs.  Systems using 

PTFE sampling tubes covered with microporous PTFE tubing were sampled once 

immediately following mechanical damage to roots.  SPME fibre exposure and volatiles 

entrainment time for all collections was 24 hours, under glasshouse conditions.  Sampling 

schedules for experiments conducted with perforated tubes, stainless steel mesh and 

microporous tubing are given in Supporting Information, Tables S2 and S3. 

Root volatiles were collected using a single fibre type, 65 µm Polydimethylsiloxane/-

Divinylbenzene (PDMS/DVB) with a 23 gauge needle (Supelco, Sigma-Aldrich, UK, 

catalogue no. 57293-U).  Fibres were conditioned at 250°C for 30 min in a flow of dry 

nitrogen according to manufacturer’s guidelines before collections using a fibre conditioning 
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station (see SPME-GC-MS section below).  For sampling, the fibre was attached to a SPME 

fibre holder for use with CTC autosamplers (Supelco, Sigma-Aldrich, UK, catalogue no. 

57347-U).  Prior to inserting the SPME fibre holder and fibre within its protective needle into 

the PTFE sampling tubes, the O-ring insert from a Merlin Microseal™ High Pressure Septum 

(Fig. 2d; Merlin Instrument Company, USA) was slid over the needle 10 mm from its end. 

This was followed by a 50 mm length of 5 mm Ø drinking straw (Morrisons, UK) which was 

pushed onto the end of the fibre assembly to keep the microseal spacer in place (Fig. 2c). 

Once inserted into the top of the PTFE sampling tube both served to create a seal between the 

inserted fibre holder and inner wall of the tube whilst keeping the fibre holder upright 

independent of any further support requirements.  This also kept the needle straight and 

centred, ensuring the exposed fibre avoided contact with the internal wall of the tube during 

entrainment.  When exposed, by fully depressing the fibre holder plunger, the fibre was 

situated approximately 5 cm below surface level.  On completion of volatiles collection, the 

SPME fibre was retracted and the fibre and holder assembly was removed from the sampling 

tube.  The microseal spacer and straw were then removed and the fibre assembly was 

detached from the fibre holder and transferred to a screw cap glass Pyrex® culture tube, 

purged with dry nitrogen, for storage.  Subsequently, the fibre was reattached to a fibre holder 

and installed in the gas chromatography-mass spectrometry (GC-MS) autosampler for 

desorption and analysis by GC-MS. 

SPME-GC-MS.  Volatiles were analysed by GC-MS using a Trace DSQ™ II Series 

Quadrupole system (Thermo Electron Corporation, Hemel Hempstead, UK), fitted with a 

CTC CombiPAL autosampler configured for SPME with an attached SPME fibre 

conditioning station supplied with nitrogen purge gas at a fixed flow of 6 mL/min.  (CTC 

Analytics, Switzerland).  The volatiles were desorbed at 250°C by exposure of the fibre for 2 

min within a programmed temperature vaporising (PTV) injector operating in constant 

temperature splitless mode and fitted with a Merlin Microseal™ High Pressure Septum and a 

Siltek™ deactivated metal PTV liner (120 mm x 1 mm internal Ø x 2.75 mm external Ø, 

Thermo Scientific, UK).  On completion of desorption the fibre was reconditioned 

automatically within the fibre conditioning attachment.  Separation of volatiles was achieved 

on a DB-1701 GC column (30 m x 0.25 mm internal Ø x 0.25 µm film thickness; Agilent 

Technologies, UK) using helium carrier gas at a flow rate of 1.5 mL/min in constant flow 

mode.  The GC temperature programme was 40°C for 2 min, 10°C/min to 240°C then 
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isothermal at 240°C for 1 min.  The GC-MS interface temperature was 250°C.  After a 1 min 

delay, mass spectra were acquired at 6.5 scans/sec over the mass range of 25-400 u under 

electron ionisation (EI) conditions at 70 eV, with a source temperature of 200°C.  The GC-

MS was tuned daily using perfluorotertiarybutyl amine (PFTBA) with the instrument’s 

autotune function. 

Data were acquired and analysed using Xcalibur™ 2.0.7 (Thermo Electron 

Corporation, Hemel Hempstead, UK).  Specific ions characteristic of each compound in the 

samples were selected by examination of the mass spectrum of each component in the total 

ion chromatogram (TIC) of several raw data files, representative of each stage of the 

experiments, using Xcalibur™ (Table 1).  These ions, to be used for compound identification 

and measurement of raw abundance,  were selected on the basis that they should have a high  

relative abundance, should be unique to the compound and/or the compound should be well 

resolved chromatographically from other compounds with ions with the same m/z (Cognat et 

al., 2012).  A defined time window centred on the chromatographic peak apex, along with the 

selected characteristic ions were used for compound detection and abundance measurement 

in a processing method created in Xcalibur™.  A summed selected ion chromatogram (SIC) 

for all of the chosen ions within the appropriate time window was then generated and 

integrated.  This value constituted the raw abundance of each compound.  Processed data 

were checked for correct peak assignment and adjusted where necessary.  Compounds were 

identified by comparison of their mass spectra and retention indices (Table 1) with those of 

reference standards where indicated in Table 1.  Tentative identifications of the remaining 

compounds was made by comparison with entries in MS libraries (Palisade 600k, Palisade 

Corporation, USA; NIST05, National Institute of Standards, USA), and by reference to 

published data (see Supporting Information, Table S1, for a list of references). 

Sampling of root volatiles in headspace using Tenax TA and automated thermal 

desorption-gas chromatography-mass spectrometry (ATD-GC-MS) 

Plant growth.    At the 2-3 true leaf stage plants were transplanted, one per vessel, to the 

centre of 2 L Quickfit® flanged culture vessels (FV2L) lined with oven bags (25 cm x 38 cm; 

Tesco, UK) containing a 3:1 Levington M2 compost:sand mixture.  Glasshouse conditions 

were as described for experiments using SPME.  Vessels were watered when required. 
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Sampling vessels.  Following transplanting, a five socket Quickfit® lid (MAF2/2) was placed 

on each vessel (Figs 3a and 3b) by gently passing the plant leaves through the centre socket.  

The flanged surface was covered with a thin layer of PTFE tape to provide a seal between the 

vessel and lid. The vessels were then placed in a 4 L container and watered immediately 

through the lid’s side sockets, and then only when required thereafter.  Plants were grown 

until 6-8 true leaves were established before preparing the vessel for headspace volatiles 

trapping using two adsorbent tubes per vessel.  Controls were vessels containing compost 

without a plant, from which headspace samplings were similarly made using two adsorbent 

tubes per vessel. 

Experimental design.  Sampling vessels containing plants had four replicates.  Control 

vessels without plants were replicated twice. Vessels, including controls, were arranged in the 

glasshouse using a completely randomised design. 

Induction of root volatiles.   At the 6-8 true leaf stage plants in sampling vessels were 

infested with 150 freshly laid Delia. radicum eggs as described above for sampling by SPME. 

Vessels without plants were similarly infested with 150 D. radicum eggs. 

Root volatiles sampling.  Volatiles were collected at two time points, once 12 days before 

infestation with Delia. radicum and once immediately upon commencement of larval feeding, 

24 hours after infestation (see supplementary information, Table S4).  Collections were for 48 

hours under glasshouse conditions.  Passive headspace sampling (Fig. 3b) was carried out 

using Silcosteel™ coated stainless steel absorbent tubes (89 mm x 6 mm), packed with 200 

mg of Tenax TA (2.6-diphenylene oxide polymer resin, 60-80 mesh, surface area 35 m
2
/g;

Markes International, UK).  The tubes were preconditioned by passing a stream of dry helium 

through them at 20 mL/min for 18 h (overnight) at 240°C, a procedure used successfully in 

our laboratories over many years (Robertson et al., 1993).  Conditioning activated the 

adsorbent phase and reduced the chemical background to an acceptable level.  The inward-

pointing ends of the adsorbent tubes positioned in the headspace were capped with diffusion 

caps with a sampling membrane (Perkin Elmer, Cambridge, UK) to restrict uptake of water 

by the adsorbent.  DiffLok™ caps (Markes International, UK) were attached to the outward-

pointing ends of tubes to prevent inward diffusion from the ambient environment.  

Immediately prior to volatiles collection, the contact joint between the vessel and lid flanges 
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was fastened with a metal clip to secure the two pieces of glassware together.  The space 

between the plant stem and inside wall of the centre socket was filled with cotton wool.  Prior 

to collection of volatiles from plants or controls, the headspace in each vessel was flushed 

with air, cleaned by passage through a Puritube column of activated charcoal, at a rate of 200 

mL/min for 30 min.  Two of the culture vessel lid’s side sockets were sealed with stoppers 

while the remaining pair were closed off with cone/screw-thread adaptors (Quickfit® ST 

52/13) coupled to adsorbent tubes.  In both cases, PTFE tape was wrapped around the sealing 

surface.  Following collection of volatiles, the adsorbent tubes were loaded onto an ATD 

autosampler for analysis of trapped volatiles by GC-MS. 

ATD-GC-MS.  Root volatiles were analysed using a UNITY™ thermal desorber with an 

UltrA TD™ autosampler (Markes International, UK) coupled to an Agilent 5975B GC-MS 

system (Agilent Technologies, UK).  Sample tubes were heated at 240°C for 5 min in the 

primary desorption step to transfer the trapped compounds from the Tenax tube to a 

cryofocussing trap, also containing Tenax, maintained at −10°C.  Subsequently, during 

secondary desorption, the cold trap was rapidly heated from −10°C to 240°C to transfer the 

volatiles onto a DB-1701 GC column (60 m x 0.25 mm x 1 µm film thickness; Agilent 

Technologies, UK) through a transfer line heated at 150°C.  The oven temperature was 

initially 40°C increasing to 240°C at 5°C/min, and was then maintained at 240°C for 20 min. 

Helium carrier gas flow through both the ATD system and GC-MS was controlled by the 

ATD pneumatics at a constant pressure of 20 psi, which was equivalent to a flow rate in the 

analytical column of approximately 0.5 mL/min at 240°C.  After a 2 min solvent delay, EI 

(70 eV) mass spectra were acquired at 1.33 scans/sec over the mass range 20-300 u with a 

source temperature of 230°C.  Data were acquired using the MSD Chemstation software 

(G1710DA, Rev. D.03.00; Agilent Technologies, UK).  Chemstation raw data files were 

converted to the Xcalibur™ format before processing.  Specific characteristic ions for each 

compound were selected for compound detection and measurement of raw abundance in a 

processing method created in Xcalibur™, as described for the SPME-GC-MS data (Table 1). 

Where compounds were common with those in the SPME-GC-MS Xcalibur™ processing 

method, the same ions were used.  The basis for compound identification etc. was as 

previously described.  Variation between the two techniques in the calculated relative 

retention index (RRI) values for the same compounds are a consequence of the differences in 
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the sample introduction techniques, the use of different carrier gas flow modes and also to a 

lesser extent the lengths of GC column and stationary phase film thickness used. 

Statistical analysis 

A summary table showing mean abundances and standard errors (SE) for all volatiles for all 

experiments is shown in Supporting Information Table S5, and the full data sets are given in 

Tables S6 – S9. 

Processed (raw abundance) data for volatiles detected in experiments using SPME for in situ 

sampling of volatiles within perforated PTFE sampling tubes and stainless steel mesh covered 

PTFE sampling tubes was investigated using principal component analysis (PCA) of the 

combined data sets using GenStat 16th Edition (VSN International Ltd., UK). PCA identifies 

the largest sources of variation amongst the samples and the volatiles which drive these. PCA 

can be carried out using either the sample variance–covariance matrix or the sample 

correlation matrix: the former focuses on the most abundant metabolites, whereas the latter 

standardises each metabolite, dividing by the standard deviation.  All PCAs were performed 

on the correlation matrix. Data acquired from experiments using passive headspace sampling 

with Tenax were similarly subject to PCA.  Given the limited number of datasets produced 

from the experiments and the dependency structure of plant replicatess over time (repeated 

analyses from the same plant), and among sampling wells within plant replicatess, it was not 

possible to construct a robust statistical model for testing even with a mixed model approach. 

For many of the volatiles there were also samples in which their abundances were below the 

level of detection pre-damage, further reducing the ability of restricted maximum likelihood 

methods (REML) to estimate parameters.  
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Results and discussion 

Method development 

The general experimental design described in the Experimental section was selected 

following a series of preliminary experiments using both perforated tubes and those covered 

with stainless steel mesh.  In its initial form the sampling system used four sampling tubes in 

which two pairs of SPME fibres of different chemistries could be used simultaneously in a 

cross arrangement with each pair positioned at opposite sides of the plant to account for the 

heterogeneous distribution of roots in substrate/soil (Hinsinger et al., 2005; Weidenhamer et 

al., 2009).   

The sampling concept was first evaluated by mechanically damaging the plant roots.  

From a visual inspection of the unprocessed data (not shown) it was found that a wide range 

of induced root-derived volatiles could be detected, which were similar in composition to 

those previously reported to arise from root damage to Brassica plants (Ferry et al., 2007; 

Soler et al., 2007; Pierre et al., 2011; Crespo et al., 2012; Danner et al., 2012; van Dam et al., 

2012).  This established the general feasibility of the in situ sampling approach using a pre-

positioned sampling well, and also provided a potential yardstick by which to assess the 

effectiveness of subsequent experiments using Delia. radicum larvae to induce root volatiles 

associated with root damage. 

Further experiments showed that when plants were infested with eggs of Delia. 

radicum many of the same volatiles detected following mechanical damage were 

subsequently detected in the sampling wells at considerably enhanced levels in comparison 

with samples taken pre-infestation.  This suggested that herbivory-induced root volatile 

production following egg hatch was being detected in situ and that the sampling system was 

sufficiently sensitive to do so.  Furthermore, by collecting samples at repeated intervals from 

the same sampling wells it was possible to show the dynamic progress of volatile signal 

production following infestation.  This is illustrated by the temporal abundance profiles for 

several key volatiles trapped simultaneously from a single plant over a 20 hour period at 

approximately weekly intervals on fibres with the PDMS/DVB and 

Carboxen/polydimethylsiloxane (CAR/PDMS) chemistries in a dual use experiment (Fig. 4). 

The sampling schedule and full dataset including all volatiles detected are shown in 

Supporting Information, Tables S10 and S11.  This was one of several ‘look see’ dual-use 
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experiments where different sampling regimes (timing and duration) were evaluated.  The 

data from these other experiments were reviewed visually and not processed.  The low 

background level of damage induced volatiles observed before induction of damage probably 

arose from the effects of normal root growth through the growth medium.  It was found that 

addition of sand to the compost growth medium (1 to 3 ratio) increased the observed 

backround level of these compounds, but not to the levels seen following induced damage. 

Although CAR/PDMS fibres appeared to trap larger quantities of volatiles, both fibre types 

were similarly able to detect and characterise the dynamic changes following infestation (Fig 

4).  However, PDMS/DVB fibres were found to give better chromatographic resolution 

during GC-MS analysis.  Furthermore the shorter fibre conditioning period of 30 min, as 

opposed to 60 min for CAR/PDMS, integrated more effectively with the analysis when using 

the fibre conditioning station, increasing sample throughput.  Since combined use of two 

fibres did not offer any advantage, it was decided to use PDMS/DVB fibres in subsequent 

development and validation of the method. 

From our preliminary methods development experiments where several samples were 

taken over extended periods prior to infestation with larvae or mechanical damage (e.g. Fig. 

4), we never observed the type of dramatic increase in volatiles production we found 

following damage.  Indeed some compounds were not detected at all pre-damage.  From this 

we concluded that although volatiles production might increase with time due to plant 

growth, this would likely be small compared to the changes post-damage.  Consequently we 

considered that the pre-damage volatiles profile would serve as a damage-free control and in 

the subsequent validation experiments, samples taken immediately pre-damage served this 

purpose.  Plant-free pots were used as controls to determine the chemical background due to 

the growth medium.  However, it is possible that processes such as root maturation and 

senescence contributed to the increase in volatiles production following infestation with 

larvae or mechanical damage. 

Method validation 

Sampling of root volatiles in situ using SPME 

Our results demonstrate that porous tubes in situ next to growing plant roots can support an 

SPME fibre holder in position while protecting the fragile fibre and protective fibre sheath 

during sampling of root volatiles.  Sampling approaches using SPME with both perforated 

and mesh covered PTFE sampling tubes were found to have comparable sensitivity for 
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detecting volatiles released by broccoli roots.  In addition, each method simililarly detected 

temporal changes in broccoli root volatiles emissions following damage by larvae of Delia. 

radicum. 

Excluding contaminants related to fibre chemistry and impurities such as plasticizers, 

over the course of the experiments a maximum of around 120 compounds were detected in 

the root volatiles profiles from samples entrained using SPME within each of the different 

designs of PTFE sampling tube from damaged and undamaged plants (Table 1).  Sulphur 

compounds including alkyl sulphides and isothiocyanates (24-26 examples) were most 

numerous followed by hydrocarbons including C6-C17 n-alkanes (12-14 examples).  Lesser 

amounts of aldehydes (7) including n-homologues (C6-C11), ketones (6-8) and terpenes (5-6) 

were present with only a few examples each of alcohols (2), acids and esters (3), alkyl furans 

(1-2) , nitriles (1), and other components (3-4).  In addition there were a substantial number 

(18-19) of unknown compounds. 

Comparison of chromatographic profiles from intact roots with roots damaged by 

larval feeding showed that injured root tissue was particularly associated with an increase in 

the number and abundance of compounds detected (Figs 5a, 5b; Supporting Information, Figs 

S1, S2 for expanded annotated chromatograms; Table 1). 

Principal among these were the sulfur containing volatiles such as the alkyl sulphides 

methanethiol (3), dimethyl sulphide (6) dimethyl disulphide (DMDS) (25), dimethyl 

trisulphide (DMTS) (60) and, 2,4-dithiapentane (2,4-DTP) (43), and the isothiocyanates butyl 

isothiocyanate and 2-butyl isothiocyanate (53 and 54) which are characteristic of plants in the 

Brassicaceae family (Stoewsand 1995; Edmands et al., 2013).  Bar charts showing raw 

abundance measurements + standard errors for these and several other related compounds 

before and after damage are shown in Fig 6.  These findings agree with those reported from 

previous studies of the effect of Delia. radicum larval infestation on emission of induced 

volatiles from Brassica roots (Ferry et al., 2007; Soler et al., 2007; Pierre et al., 2011; Crespo 

et al., 2012, Danner et al., 2012; van Dam et al., 2012). 

Principal components analysis (PCA) further revealed that for both methods samples 

collected from undamaged roots (date 1) and 24 hours following infestation with Delia. 

radicum (date 2) were compositionally similar.  However, samples collected one week post-

infestation (date 3), while still similar for the two methods, were very different from those 

collected earlier due to the presence of induced volatiles related to larval feeding damage 

(Fig. 7a).  A plot of PC 1 versus PC 2 shows separation of samples from collection date 3 

from samples from collection dates 1 and 2 mainly on PC score 2.  PC 1 and PC 2 accounted 
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for 17.5 and 15.8% of the total variance, respectively.  Compounds characteristic of post 

infestation date 3 have high negative loadings for PC 2  and consisted primarily of sulphur 

compounds including those mentioned above.  A selected list of loadings for PC2 is shown in 

Table 2 and the full list is given in Supporting Information, Table S12).  Compounds with 

high positive loadings on PC2 were predomonantly n-alkanes in the range C6-C14 and n-

aldehydes in the range C6-C12.  These were present in samples and controls before and after 

inoculation with larvae at broadly similar levels of abundance, although in some instances 

their abundance was greater pre-inoculation.  Taken together, these components constitute the 

chemical background of the system, possibly associated with the growth matrix (compost). 

There may also be a contribution from brief exposure of fibres to general laboratory and 

glasshouse atmosphere during sample handling. 

Although the profiles of root volatiles detected using both methods were similar, PCA 

did reveal differences relating to tube type.  PC 1 versus PC 4 shows separation of samples 

and controls collected in perforated tubes from those collected in mesh covered tubes on PC 

score 4 (Fig. 7b).  PC 1 and PC 4 accounted for 17.5 and 8.5% of the total variance, 

respectively.  However, there was no clear evidence in these results of tube type compound 

selectivity or discrimination based on compound class, molecular weight, vapour pressure, or 

polarity.  Volatiles that mainly contributed to the observed difference were from a number of 

classes and are shown in the loadings for PC 4 (selected list in Table 2, full list in Supporting 

Information, Table S12).  The separation hints that the perforated tubing may in some way 

favour trapping of the longer alkanes and aldehydes (high positive loadings), whereas the 

mesh covered tubes may favour trapping of shorter homologs (high negative loadings). 

A pilot experiment using microporous PTFE tubing as an alternative to stainless steel 

mesh for sampling in situ using SPME, where roots were only damaged mechanically, 

showed that broccoli root volatiles could be detected pre- and post-mechanical damage, using 

this type of commercially available porous tubing (Fig. 5c; Supporting Information, Fig. 

S3a).  Overall, the range of compounds identified was similar to those found using the other 

tube designs for sampling in situ (Table 1).  PCA showed that there was some overlap among 

root volatiles samples and controls collected pre-infestation and post-infestation.  A plot of 

PC 1 versus PC 2 (Fig. 8) shows separation of three post-damage samples, two from plant 2 

(P2) and one from plant 1 (P1) from three of the pre-damage samples (P1, P1, P2), the pre-

damage controls (C) and to a lesser extent the post-damage controls (C) on PC score 1.  The 

pre- and post-damage controls also separate on PC 1.  In addition, a single post-damage 

sample from plant 1, sampling well 2 (P1) is separated from the other samples along PC score 
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2. PC 1 and PC 2 accounted for 29.4 and 24.9% of the total variance, respectively.

Compounds that contributed the most to the differences were predominantly sulphur 

containing damage-induced volatiles with high negative loadings on PC1 and PC2 (selected 

list in Table 3, full list in Supporting Information, Table S13).  Among those driving 

separation along PC1, as shown in (Fig 5c, Supporting Information,Fig. S3a), were dimethyl 

disulphide (25), dimethyl trisulphide (60) and S-methyl methanethiosulphonate (100). 

Separation along PC2, shown in Fig. S3b for sample P1, sampling well 2, was largely driven 

by a different group of compounds, primarily isothiocyanates, including 4-methylthiobutyl 

isothiocyanate (117) and 2-phenylethyl isothiocyanate (118).  Some compounds such as 

dimethyl disulphide (25), 2-methybutyl isothiocyanate (79) and 3-methylbutyl isothiocyanate 

(80) contributed to separation along both PC scores but to differing extents.  Mean raw 

abundance measurements + standard errors for these compounds before and after damage are 

shown in Fig. 6.  Differences between the post-damage samples from plant 1, which were 

collected from sampling wells on opposite sides of the plant, may reflect non-uniformity in 

the extent of root mechanical root damage.  In the initial stages of method development we 

found that release of large amounts of isothiocyanates was a characteristic of severe 

mechanical damage to roots. 

Mean abundances and standard errors for individual compounds entrained using 

SPME within perforated PTFE tubing, mesh covered PTFE tubing and PTFE tubing covered 

with micropourous PTFE are shown in Supporting Information, Table S5.  Raw data sets for 

experiments conducted using the three sampling techniques are listed in Supporting 

Information, Tables S6, S7 and S8 respectively. 

Sampling of root volatiles in headspace using Tenax TA 

During method development the range of compounds detected using our passive in situ 

sampling approach with SPME-GC-MS, was compared with that detected using an 

alternative sampling method in which the headspace above the growing substrate of similar 

plants was sampled passively using Tenax TA and analysed by ATD-GC-MS.  Brassica root 

volatiles have been sampled previously in above ground headspace (Crespo et al., 2012; 

Danner et al., 2012 and van Dam et al., 2012).  However, their method differed substantially 

in that volatiles were sampled actively and analysed on-line using proton-transfer-reaction 

mass spectrometry (PTR-MS).  Overall the distribution by compound classes trapped on 

Tenax was similar to those collected using SPME, however fewer compounds (57) were 

present (Table 1).  The major difference was a reduction in the number of sulphur compounds 
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(16), ketones (4) and terpenes (1) and unknowns (2) detected within the headspace samples. 

Marked differences were seen in the abundance of volatiles detected before and after feeding 

damage by Delia. radicum larvae using ATD-GC-MS (Fig. 5d; Fig S4).  In particular, 

elevated levels of dimethyl sulphide (6) dimethyl disulphide (DMDS) (25), methyl 

thiocyanate (29), dimethyl trisulphide (DMTS) (60), 2,4-dithiapentane (2,4-DTP) (43), butyl 

isothiocyanate (53) and 2-butyl isothiocyanate (54) were detected following damage (Fig. 6). 

PCA showed distinct separation of post- and pre-infestation samples as seen in a plot 

of PC 1 versus PC 3 (Fig. 9).  PC 1 and PC 3 accounted for 46.6 and 10.2% of the total 

variance, respectively.  Compounds that contributed to the separation observed have high 

positive loadings for PC 1 (selected list in Table 4; full list in Supporting Information, Table 

S14), and were composed largely of volatiles that are typically enhanced following Delia. 

radicum root feeding including those mentioned above.  Although fewer sulphur volatiles 

(headspace) were trapped on Tenax following feeding damage than was the case when using 

SPME during the in situ sampling methods, the sulphur compounds showing the greatest 

enhancement were the same. 

Mean abundances and standard errors for individual compounds trapped on Tenax are 

shown in Supporting Information, Table S5, and the raw data set is listed in Table S9. 

A new in situ method for sampling plant root volatiles 

Distinct from methods that sample root volatiles from plants removed from their growing 

container or substrate (Rasmann et al., 2011; Robert et al., 2012; Ghimire et al., 2013) or 

excised roots (Rasmann et al., 2005; Ferry et al., 2007; Gfeller et al., 2013), in situ SPME 

sampling methods such as the one developed in this study permit non-invasive collection of 

root volatiles.  Crucially, this avoids disturbing the root system, which could potentially 

misrepresent the profile of volatiles emitted by the roots due to inadvertent damage.  Since 

our method involved transplantation of young plants into pre-prepared growth vessels, 

sufficient time was allowed between transplantation and volatiles collection for the root tips 

and root hairs to recover from the traumatic replanting event.  The pattern of volatiles 

collected would then reflect normal growth and the subsequent effects of induced damage 

and not be a carry-over from damage caused during the transplantation process. Although 

SPME has previously been used for collection of volatiles below ground (Jassbi et al., 2010; 

Weissteiner et al., 2012), this involved excavation of sampling recesses 10 cm from the stems 

of growing plants, and it is unclear how damage was avoided. 
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Different from headspace entrainment of root volatiles either trapped from whole 

plants in an enclosure (Soler et al., 2007; Pierre et al., 2011; van Dam et al., 2010) or at/just 

above soil level (Crespo et al., 2012; Danner et al., 2012; van Dam et al., 2012), our in situ 

SPME sampling methods facilitate collection from the immediate vicinity of growing roots. 

In the method using SPME described by Jassbi et al., 2010 a relatively wide hole (3 x 10 cm) 

was excavated adjacent (10 cm) to the stem of a growing plant and a polypropylene sampling 

enclosure (50 mL volume) was partly inserted in the hole such that the SPME fibre was 

exposed above the hole.  The total volume of the headspace (hole + enclosure) was 

approximately 100 – 120 mL.  Our pre-positioned device has an internal volume of 3.4 mL, 

consequently the fibre is located much closer to the source of volatiles, furthermore the 

design allows for root growth around the sampling enclosure.  On disassembly of the 

sampling apparatus after the completion of experiments it was found that root systems were 

intimately associated with the sampling tubes, with lateral roots extending beyond the 

immediate sampling region.  The diffusion of root derived volatiles below-ground is 

influenced by the chemical properties of the volatile, the physicochemical properties of the 

growing substrate and the activity of subterranean microorganisms (Insam and Seewald 2010; 

Effmert et al., 2012).  Differences in concentrations of volatiles can, therefore, occur over 

short distances below-ground (D'Alessandro and Turlings 2006; Hiltpold and Turlings 2008). 

Because in situ SPME sampling allows volatiles sampling next to roots, loss of signal due to 

diffusion, degradation or adsorption within the surrounding substrate is likely to be 

minimised.  This may be a contributing factor to the reduction in the number of volatiles, 

particularly sulphur compounds, trapped in the above surface headspace using Tenax in our 

experiments. 

A soil probe developed by Ali et al., (2012) for in situ analysis of herbivore induced 

volatiles from citrus roots (Citrus paradisi Macf. x Poncirus trifoliata L. Raf.) employed 

flow-through dynamic sampling via a vacuum pump and adsorbent traps for entrainment and 

solvent elution for compound isolation.  Eilers et al. (2015) recently described a three 

chamber mesocosm in which volatile root-derived compounds were sampled passively in situ 

by adsorption onto polydimethysiloxane (PDMS) tubes.  However, the sampling tubes were 

inserted into the growth matrix once plants had become established, and were subsequently 

removed prior to analysis of volatiles by thermal desorption and GC-MS.  In contrast, our in 

situ SPME methods use passive non-invasive sampling and solvent free extraction in 

combination with a relatively simple design for ease of assembly, portability and use.  These 

features make them highly suitable for remote out-of-lab sampling (e.g. glasshouse or field). 
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Single point in time collection, and repeated sampling from the same spatial location to 

investigate temporal patterns in root volatiles is possible using these methods (Fig. 4).  The 

option of repeated sampling, in particular, is of key relevance for dynamic root-insect 

interactions, where changing below-ground signal concentrations which are spatially distinct 

can cause important behavioural effects on below-ground herbivores (in preparation).  The 

use of the sampling system to detect and follow the dynamics of volatiles production from 

roots undergoing Delia. radicum induced herbivory, has the potential to be used to study such 

interactions in a full field trial over extended periods of time.  An evaluation of the 

practicality of using the in situ method within a field situation will be described in a 

subsequent paper (Deasy et al., 2016). 

From a functionality perspective, the perforated PTFE tubes were easier to construct, 

more robust during use and suitable for cleaning and re-use compared to the stainless steel 

mesh covered PTFE tubes.  The aim of testing the microporous PTFE tubing was to 

determine whether manually perforated tubes could be replaced with a prefabricated version. 

It was envisaged, ideally, that microporous PTFE tubing should have similar dimensions and 

structural properties to the PTFE tubing used for making the perforated tubes.  However, we 

were unable to source tubing with these properties.  The tubing that was used was quite 

flaccid and unable to support itself.  Therefore the microporous PTFE tubing was supported 

over a pre cut window in a PTFE tube, similar to how the stainless steel mesh covered tubes 

were assembled.  However, in use these sampling tubes were less effective than either the 

perforated or mesh-covered tubes, consequently we discontinued their evaluation prior to 

testing with root fly larvae.  Future research could continue to explore the potential of using 

more rigid microporous PTFE tubing to create a more refined method for in situ root volatiles 

collection.  Although separate undamaged plants were not used as controls during evaluation 

of this methodology, use of such controls is highly recommended for future application of 

this technique. 

Quantification of volatiles by SPME is possible by adding appropriate standard 

mixtures for calibration into the sample (Shirey 2006), but can be both difficult and 

impractical to achieve (Tholl et al., 2006).  In situ SPME experiments here employed 

qualitative measurements using raw signal levels without internal standards.  This approach 

was sufficient for the fulfilment of the aims of these experiments, that is, the non-invasive 

sampling and identification of volatile compounds emitted by broccoli roots and the detection 

of time-dependent changes pre- and post-root damage.  Although quantification was beyond 

the scope of this work, development of an applicable quantification method is planned for 
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future studies.  Possible methods might include addition of a standard/mixture of standards 

into the growing substrate (Higashikawa et al., 2013) or into an in situ sampling tube 

immediately prior to exposing the fibre for collection.  Alternatively, it may be possible to 

briefly expose the pre-loaded fibre in a headspace vial containing a standards mixture just 

before desorption.  Key considerations would be identifying the correct volume of standard 

compound to apply to avoid overloading the fibre, and reproducibility.  It should also be 

noted that the characteristics of the compounds and growing substrate are likely to impact 

recovery of volatiles. 

Since we ultimately wanted to trial the method with field grown plants, we concluded 

that passive sampling with SPME would be simpler to manage.  The method was considered 

to have the benefit of relatively low cost, simplicity, and did not require the use of additional 

specialised equipment such as an ATD sampler, pumps and filters for active entrainment. 

However, SPME does have drawbacks.  Passive trapping of volatiles on an SPME fibre is not 

a particularly sensitive technique since it involves establishment of an equilibrium between 

volatiles in the the gas phase (sampling device) and those in the liquid phase (fibre). 

Consequently only a small proportion of the volatiles present in the sampling volume will be 

collected on the fibre, in comparison with active entrainment on a porous polymer such as 

tenax, and their composition may differ from that in the surrounding volume.  Use of a low 

sampling volume, as in our device, may increase the proportion of trapped volatiles and 

accelerate attainment of equilibrium.  In our experiments, a high loading of insects was used 

to maximise the extent of damage.  We have not tested the method yet with lower numbers of 

insects.  It might be necessary to further develop the sampling system to increase the capture 

of volatiles by increasing the number of perforations or to re-evaluate the use and design of 

sampling tubes employing stainless steel mesh.  In our preliminary dual use experiments 

using DVB/PDMS and carboxen/PDMS fibres, there was some indication that the latter may 

trap more volatiles.  Thus use of carboxen/PDMS or a tri adsorbent SPME fibre combination 

such as carboxen/PDMS/DVB might increase trapping efficiency and should be investigated 

further.  It is likely also that use of a more sensitive mass spectrometer than the quadrupole 

used in this investigation, such as a GC-Time of Flight (TOF) MS instrument, might increase 

the overall sensitivity of the method.  We had previously found in studies of the development 

of off flavours in food, that use of passive headspace sampling using SPME in combination 

with a GC-(TOF) MS instrument provided levels of sensitivity comparable to use of active 

entrainment on Tenax and ATD-GC-MS employing a quadruple mass analyser (Cognat et al., 

2012).  The variously perforated ¼ inch PTFE tubes used in our sampling system can be 
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directly coupled to standard ¼ inch diameter sorbent tubes using appropriate fittings as an 

alternative approach for passive or active sampling in-situ.  Although we did not persue this, 

evaluation of the sampling device for active entrainment could be investigated.  Manual 

aspiration of a small volume of air (5-10 mL) from the PTFE tube through a sorption tube 

containing Tenax or other sorbant might be practical using a syringe as an alternative to a 

powered pumping system.  There may also be scope for development of the device as a 

sampling probe.  This would require provision of a robust permanent seal at one end of the 

PTFE tubing to prevent coring on insertion into the growth medium, since the end caps used 

in our method to seal the open tubing would not be adequate for this purpose. 

Overall, each of the tube types tested combined with SPME-GC-MS similarly 

characterised the chemical differences between the profiles of volatiles emitted by intact and 

damaged roots.  The main distinguishing feature between the methods was robustness.  For 

this reason, perforated PTFE tubes were selected as the most suitable sampling method for 

use in subsequent field studies (Deasy et al., 2016).  This technique has potential for wide 

application in chemical ecology/root/soil research. 
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Table 1.  Compounds identified in broccoli root volatiles samples by SPME-GC-MS and ATD-GC-MS before and after larvae-induced or mechanical 

damage.  Samples were trapped in situ within (1) perforated PTFE tubes, (2) stainless steel mesh covered PTFE tubes, (3) microporous PTFE tubing covered 

PTFE sampling tubes, and (4) within above ground headspace using Tenax TA.   

SPME ATD 

No. Compound MW Selected Ions tR RRI tR RRI Collection method 

1 Sulphur dioxide 64 48, 64 1.17 556 4.66 452 1 2 3 4 

2 Acetaldehyde 44 41, 42, 43, 44, 45, 46 5.12 480 nd nd nd 4 

3 Methanethiol 48 44, 45, 46, 47, 48, 49, 50 1.23 564 5.14 481 1 2 3 4 

4 1-Propanethiol 76 76 1.43 592 1 2 nd nd 

5 Pentane
a
 72 43, 57, 72 5.44 500 nd nd nd 4 

6 Dimethyl sulphide
a
 62 47, 61, 62 1.43 592 6.54 568 1 2 3 4 

7 Carbon disulphide
a
 76 32, 38, 44, 64, 76, 78, 80 5.56 569 nd nd nd 4 

8 Hexane
a
 86 43, 56, 57, 71, 86 1.49 600 7.06 600 1 2 3 4 

9 Acetone
a
 58 58 1.50 601 6.89 590 1 2 3 4 

10 3-Methylfuran 82 39, 50, 51, 53, 54, 81, 82 8.69 661 nd nd nd 4 

11 2,3-Dimethyl-2-butene 84 69, 84 1.71 630 1 nd 3 nd 

12 2-Methylfuran 82 39, 50, 51, 53, 54, 81, 82 1.90 656 nd nd 3 nd 

13 2-Butanone
a
 72 72 2.10 684 9.50 691 1 2 3 4 

14 2,3-Butanedione
a
 86 86 9.55 693 nd nd nd 4 

15 Heptane
a
 100 43, 56, 57, 71, 100 2.22 700 9.74 700 1 2 3 4 

16 Unknown 718 41, 42, 43, 45, 55, 56, 57, 70 10.39 718 nd nd nd 4 

17 2-Methyl-1-Propanol 74 31, 33, 39, 41, 42, 43, 74 10.82 731 nd nd nd 4 

18 S-Methyl thioacetate 90 42, 43, 44, 45, 46, 47, 48, 75, 90 3.03 765 1 nd nd nd 

19 Isobutyronitrile
a
 69 39, 41, 42, 52, 53, 54, 68 11.56 752 nd nd nd 4 

20 Acetic acid 758
a
 60 43, 45, 60 11.77 758 nd nd nd 4 

21 Acetic acid 775
a
 60 43, 45, 60 3.16 775 1 nd 3 nd 

22 3-Pentanone
a
 86 39, 42, 56, 57, 58, 86 3.23 781 1 2 3 nd 

23 2,4-Dimethylfuran 96 39, 41, 43, 53, 65, 67, 81, 95, 96 12.12 768 nd nd nd 4 
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SPME ATD 

No. Compound MW Selected Ions tR RRI tR RRI Collection method 

24 Octanea 114 43, 57, 71, 85 3.47 800 13.26 800 1 2 nd 4 

25 Dimethyl disulphide
a
 94 45, 46, 47, 61, 64, 79, 94, 96 3.60 808 14.24 824 1 2 3 4 

26 Acetic acid 808a 60 43, 45, 60 3.61 808 nd 2 nd nd 

27 3-Methyl-1-butanol 88 39, 41, 42, 43, 55, 57, 70 14.94 841 nd nd nd 4 

28 3-Methylbutyronitrile 83 39, 41, 42, 43, 44, 55, 68 15.42 853 nd nd nd 4 

29 Methyl thiocyanate
a
 73 45, 46, 47, 58, 72, 73 4.30 850 16.04 868 1 2 3 4 

30 Acetic acid 862a 60 43, 45, 60 4.50 862 nd nd 3 nd 

31 Butyl acetate 116 41, 43, 55, 56, 57, 61, 73 16.41 877 nd nd nd 4 

32 1,3-Dithiethane 92 45, 77, 92, 94 4.80 881 1 nd nd nd 

33 Hexanal
a
 100 44, 56, 57, 72, 82, 100 4.81 881 16.92 889 1 2 3 4 

34 Nonanea 128 43, 56, 57, 71, 85 5.12 900 17.35 900 1 2 3 4 

35 Methyl ethyl disulphide 108 45, 46, 47, 64, 79, 80, 108 17.96 916 nd nd nd 4 

36 Unknown 929 65, 77, 79, 91, 92, 93, 105, 121, 136 18.47 929 nd nd nd 4 

37 1-Nonene 126 43, 56, 69, 84, 97 5.14 901 1 2 nd nd 

38 Isopropyl isothiocyanatea 101 39, 41, 42, 43, 59, 60, 86, 101 19.08 944 nd nd nd 4 

39 Acetic acid 905
a
 60 43, 45, 60 5.21 905 nd 2 nd nd 

40 Unknown 947 65, 77, 79, 91, 92, 93, 105, 121, 136 5.92 947 1 2 3 nd 

41 Methyl isopropyl disulphide 122 79, 80, 122 6.00 952 1 2 3 nd 

42 2-Methylcyclopentyl acetate 142 72, 84, 100 6.20 964 1 2 3 nd 

43 2,4-Dithiapentane
a
 108 45, 46, 47, 61, 63, 108, 110 6.21 965 20.78 988 1 2 3 4 

44 Camphenea 136 41, 77, 79, 91, 93, 107, 121, 136 6.28 969 1 2 3 nd 

45 Unknown 972 105, 120 6.34 972 1 2 3 nd 

46 Heptanala 114 43, 44, 55, 57, 70, 81, 86, 114 6.57 986 21.08 995 1 2 3 4 

47 2-(Methylthio)ethanol 92 61, 92 6.59 987 1 nd 3 nd 

48 Decanea 142 43, 57, 71, 85, 99, 113 6.81 1000 21.27 1000 1 2 3 4 

49 Unknown 1004 91, 120 6.87 1004 1 2 3 nd 

50 Unknown 1009 55, 69, 82, 98 6.96 1009 1 2 3 nd 

51 Unknown 1018 105, 120 7.11 1018 1 2 3 nd 
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SPME ATD 

No. Compound MW Selected Ions tR RRI tR RRI Collection method 

52 β-Myrcenea 136 69, 93, 121, 136 7.15 1021 1 2 3 nd 

53 Butyl isothiocyanate
a
 115 115 7.27 1028 22.95 1045 1 2 3 4 

54 2-Butyl isothiocyanate 115 86 7.27 1028 23.00 1046 1 2 3 4 

55 4-Isopropoxy-2-butanone 130 43, 45, 55, 71, 87 7.29 1029 1 2 3 nd 

56 Unknown 1030 91, 93, 105, 121, 136 7.31 1030 1 2 3 nd 

57 2-Ethylhexanal 128 41, 57, 72 7.33 1032 1 2 3 nd 

58 2-Pentylfuran 138 53, 81, 82, 138 7.37 1034 22.77 1040 1 2 3 4 

59 Methylstyrene 118 77, 78, 103, 117, 118 7.54 1045 1 nd 3 nd 

60 Dimethyl trisulphidea 126 45, 46, 47, 64, 79, 80, 111, 126, 128 7.54 1045 24.21 1078 1 2 3 4 

61 Unknown 1048 105, 120 7.59 1048 1 2 3 nd 

62 Limonenea 136 67, 68, 79, 93, 107, 121, 136 7.71 1055 23.95 1071 1 2 3 4 

63 Isobutyl isothiocyanate 115 57, 72, 73, 86, 100, 115 7.72 1055 1 2 3 nd 

64 S,S-Dimethyl dithiocarbonatea 122 47, 75, 94, 122 7.76 1058 1 2 nd nd 

65 1-Octen-3-one 126 39, 41, 42, 43, 55, 70, 83 7.94 1069 1 2 nd nd 

66 3-Octanone 128 43, 57, 71, 72, 99 8.00 1073 1 nd 3 nd 

67 Cymene
a
 134 119, 134 8.00 1073 1 2 3 nd 

68 Unknown 1079 57, 83, 84 8.10 1079 nd 2 3 nd 

69 Benzaldehyde
a
 106 50, 51, 77, 105, 106 8.14 1081 25.43 1111 1 2 3 4 

70 6-Methyl-5-hepten-2-one 126 55, 58, 69, 71, 108, 111, 126 8.19 1084 1 2 nd nd 

71 Octanal
a
 128 43, 44, 55, 56, 57, 67, 69, 81, 82, 84, 100 8.27 1089 25.02 1100 1 2 3 4 

72 Unknown 1090 193, 209 8.28 1090 1 2 3 nd 

73 E-Conophthorin 156 84, 87 8.43 1099 1 2 3 nd 

74 Undecanea 156 43, 57, 71, 127, 141 8.45 1100 25.02 1100 1 2 3 4 

75 Methoxy-phenyl-oxime 151 105, 133, 151 8.75 1120 24.43 1084 1 2 3 4 

76 4-Hydroxybutanoic acid 86 86 8.88 1128 27.01 1154 1 2 3 4 

77 2-Ethyl-1-hexanol 130 55, 57, 70, 83, 98, 112 8.94 1132 26.18 1132 1 2 3 4 

78 Hexanoic acida 116 36, 41, 43, 45, 55, 60, 73 26.36 1137 nd nd nd 4 

79 2-Methylbutyl isothiocyanate 129 41, 43, 57, 71, 72, 73, 100, 114, 129 9.43 1164 1 2 3 nd 
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SPME ATD 

No. Compound MW Selected Ions tR RRI tR RRI Collection method 

80 3-Methylbutyl isothiocyanate 129 41, 43, 55, 72, 101, 114, 129 9.43 1164 1 2 3 nd 

81 2-Methylbutyl isothiocyanate 1166 129 100 9.45 1166 1 2 3 nd 

82 3-Methylbutyl isothiocyanate 1168 129 114 9.49 1168 1 2 3 nd 

83 1-Octanol 130 41, 42, 43, 55, 56, 69, 70, 84 9.60 1176 1 2 3 nd 

84 Unknown 1176 71, 85, 100 9.60 1176 1 2 3 nd 

85 Unknown 1177 43, 67, 80, 95, 101, 123, 138 9.62 1177 1 2 3 nd 

86 2-Nonanone 142 43, 58, 71 9.76 1186 1 2 3 nd 

87 Nonanal
a
 142 43, 57, 70, 82, 98, 114 9.86 1193 28.71 1201 1 2 3 4 

88 Acetophenonea 120 51, 77, 105, 120 9.96 1199 29.52 1227 1 2 3 4 

89 Dodecane
a
 170 43, 55, 56, 57, 71, 85, 99 9.97 1200 28.68 1200 1 2 3 4 

90 Pentyl isothiocyanate 129 39, 41, 42, 43, 55, 72, 101, 129 10.10 1209 1 2 3 nd 

91 Phenol
a
 94 39, 66, 94 10.20 1216 29.10 1213 1 2 3 4 

92 Unknown 1230 43, 57, 69, 71, 83, 98 10.39 1230 1 2 3 nd 

93 Methyl methylthiomethyl disulphide 140 35, 45, 46, 47, 61, 63, 79, 93, 140, 142 10.54 1240 31.13 1278 1 2 nd 4 

94 Unknown 1244 43, 57, 67, 69, 79, 93, 107 10.60 1244 1 2 3 nd 

95 Camphor 152 41, 55, 69, 81, 95, 108, 109, 152 10.92 1267 1 2 3 nd 

96 4-Methylpentyl isothiocyanate 143 39, 41, 42, 43, 55, 56, 69, 72, 128, 143 11.03 1275 1 2 3 nd 

97 Borneol 139 95, 110, 121, 139 11.25 1290 1 nd nd nd 

98 Unknown 1294 81, 110 11.30 1294 1 2 3 nd 

99 Decanal
a
 156 43, 55, 57, 68, 69, 81, 82, 83, 95, 96, 112, 138 11.34 1296 32.12 1310 1 2 3 4 

100 S-Methyl methanethiosulphonate 126 40, 45, 46, 47, 63, 64, 95, 110 11.37 1299 32.81 1332 nd nd 3 4 

101 Tridecane
a

184 43, 57, 71, 85, 99, 113, 127, 141 11.39 1300 31.81 1300 1 2 3 4 

102 Hexyl isothiocyanate 143 110, 115 11.57 1313 1 2 3 nd 

103 Dimethyl tetrasulphide 158 45, 46, 47, 48, 64, 79, 80, 94, 158, 160 11.69 1322 1 2 nd nd 

104 Unknown 1334 61, 99, 145 11.85 1334 1 2 3 nd 

105 Benzoisothiazole or Benzothiazole 135 91, 108, 135 12.21 1361 35.27 1413 1 2 3 4 

106 Unknown 1370 74 81, 95, 123, 138 12.33 1370 1 2 3 nd 

107 Heptyl isothiocyanate 157 115, 124 12.44 1378 nd nd 3 nd 

John Wiley & Sons

Phytochemical Analysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

30

SPME ATD 

No. Compound MW Selected Ions tR RRI tR RRI Collection method 

108 Unknown 1398 41, 55, 69, 70, 83, 97, 111 12.70 1398 1 2 3 nd 

109 Tetradecane
a

198 43, 57, 71, 85, 99, 113, 127, 141 12.73 1400 34.92 1400 1 2 3 4 

110 Undecanala 170 55, 67, 68, 82, 96, 110, 126 35.31 1414 nd nd nd 4 

111 5-(Methylthio)pentanenitrile 129 39, 41, 45, 47, 48, 54, 55, 61, 82, 129 12.92 1415 1 2 3 nd 

112 3-Phenylpropionitrile 131 39, 50, 51, 63, 65, 77, 89, 91, 92, 131 13.40 1452 1 2 3 nd 

113 3-(Methylthio)propyl isothiocyanate 147 27, 31, 41, 45, 47, 61, 72, 101, 147 13.85 1488 nd 2 3 nd 

114 Pentadecanea 212 43, 57, 71, 85, 99, 113, 127, 141 14.01 1500 37.72 1500 1 2 3 4 

115 Unknown 1503 41, 43, 55, 56, 57, 69, 70, 71, 83, 97 14.05 1503 1 2 3 nd 

116 Hexadecanea 226 57, 71, 85, 99, 113, 127, 141, 155 15.20 1600 40.41 1600 1 2 3 4 

117 4-(Methylthio)butyl isothiocyanate 161 61, 72, 85, 115, 146, 147, 148, 161, 162, 163 15.47 1624 nd 2 3 nd 

118 2-Phenylethyl isothiocyanatea 163 39, 51, 63, 65, 72, 77, 91, 92, 105, 163 15.78 1651 1 2 3 nd 

119 Heptadecane
a

240 43, 57, 71, 85, 99, 113, 127, 141 16.34 1700 43.24 1700 1 2 3 4 

120 Unknown 1713 55, 57, 85, 91, 93, 105, 119, 120, 161, 189, 204 16.48 1713 1 2 3 nd 

Number, order of the compounds in the Xcalibur™ data processing method and also in the example chromatograms (Fig. 5); Compound, athese 

compounds were identified by comparison of their mass spectra and retention indices with those of pure standards.  Tentative identification of the remaining 

compounds was made by comparison with entries in the Palisade 600k and NIST05 mass spectral databases, and by comparison with published data (see 

Supporting Information, Table S1, for list of references);  MW, molecular weight;  Selected Ions, Ions used for automated compound identification 

and measurement of raw abundance using Xcalibur™;  tR, retention time (minutes); RRI, relative retention index; nd, not detected. 

RRI values were calculated by comparing retention times to n-alkanes (C5-C17).  Each alkane carbon number Cn was assigned a RRI value 100n. 

The RRI value for a compound was calculated by linear interpolation of the spacing of its retention time between two nearest adjacent retention 

index marker compounds.    This corresponds to the linear retention index formula for linearly temperature programmed GC separations 

(Schomburg, 1990). 
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Table 2.  Loadings for selected compounds on PC 2 and PC 4 from a PCA of broccoli root volatiles sampled on three dates, one pre-and two post-infestation 

with Delia radicum larvae (Fig.7).  Samples were trapped in situ using SPME either in perforated PTFE sampling tubes or PTFE tubes covered with stainless 

steel mesh.  Compounds and numbers listed correspond with those in Table 1.  The complete list of loadings can be found in Supporting Information, Table 

S12. 

PC 2 PC 4 

No. Compound  Loading No. Compound Loading 

89 Dodecane 0.20 119 Heptadecane 0.26 

101 Tridecane 0.19 55 4-Isopropoxy-2-butanone 0.18 

71 Octanal 0.17 86 2-Nonanone 0.18 

109 Tetradecane 0.16 119 Hexadecane 0.17 

87 Nonanal 0.15 95 Camphor 0.16 

99 Decanal 0.15 77 2-Ethyl-1-hexanol 0.14 

74 Undecane 0.15 83 1-Octanol 0.11 

8 Hexane 0.14 99 Decanal 0.11 

114 Pentadecane 0.12 75 Methoxy-phenyl-oxime 0.10 

116 Hexadecane 0.11 57 2-Ethylhexanal 0.10 

119 Heptadecane 0.11 58 2-Pentylfuran 0.10 

46 Heptanal 0.08 8 Hexane 0.09 

34 Nonane 0.05 109 Tetradecane 0.09 

33 Hexanal 0.02 70 6-Methyl-5-hepten-2-one 0.09 

24 Octane 0.02 87 Nonanal 0.05 

15 Heptane -0.05 114 Pentadecane 0.04 

25 Dimethyl disulphide -0.10 101 Tridecane 0.02 

118 2-Phenylethyl isothiocyanate -0.10 46 Heptanal −0.06 

48 Decane -0.14 71 Octanal −0.08 

6 Dimethyl sulphide -0.17 74 Undecane −0.08 

43 2,4-Dithiapentane -0.17 22 3-Pentanone −0.09 

81 2-Methylbutyl isothiocyanate 1166 -0.21 91 Phenol −0.11 

3 Methanethiol -0.22 25 Dimethyl disulphide −0.13 

64 S,S-Dimethyl dithiocarbonate -0.22 33 Hexanal −0.15 

60 Dimethyl trisulphide -0.22 24 Octane −0.16 

53 Butyl isothiocyanate -0.22 69 Benzaldehyde −0.17 

54 2-Butyl isothiocyanate -0.23 13 2-Butanone −0.19 
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Table 3.  Loadings for for selected compounds on PC 1 and PC 2 from a PCA of broccoli root volatiles sampled pre-and post-mechanical damage (Fig. 8).  

Samples were trapped in situ using SPME in PTFE sampling tubes covered with microporous PTFE tubing.  Compounds and numbers listed correspond with 

those in Table 1.  The complete list of loadings can be found in Supporting Information, Table S13. 

PC 1 PC 2 

No. Compound Loading No. Compound Loading 

114 Pentadecane 0.18 33 Hexanal 0.10 

74 Undecane 0.15 71 Octanal 0.09 

101 Tridecane 0.15 69 Benzaldehyde 0.09 

116 Hexadecane 0.15 8 Hexane 0.09 

46 Heptanal 0.14 22 3-Pentanone 0.07 

109 Tetradecane 0.14 34 Nonane 0.05 

71 Octanal 0.13 15 Heptane 0.05 

87 Nonanal 0.13 89 Dodecane 0.04 

119 Heptadecane 0.13 74 Undecane 0.03 

89 Dodecane 0.12 119 Heptadecane 0.03 

34 Nonane 0.12 63 Isobutyl isothiocyanate −0.009 

69 Benzaldehyde 0.09 100 S-Methyl methanethiosulphonate −0.01 

113 3-(Methylthio)propyl isothiocyanate 0.07 25 Dimethyl disulphide −0.02 

117 4-(Methylthio)butyl isothiocyanate 0.07 54 2-Butyl isothiocyanate −0.02 

118 2-Phenylethyl isothiocyanate 0.07 53 Butyl isothiocyanate −0.02 

79 2-Methylbutyl isothiocyanate 0.06 6 Dimethyl sulphide −0.02 

80 3-Methylbutyl isothiocyanate 0.06 116 Hexadecane −0.03 

29 Methyl thiocyanate 0.04 3 Methanethiol −0.05 

43 2,4-Dithiapentane 0.06 60 Dimethyl trisulphide −0.15 

60 Dimethyl trisulphide -0.04 113 3-(Methylthio)propyl isothiocyanate −0.20 

3 Methanethiol -0.07 96 4-Methylpentyl isothiocyanate −0.20 

63 Isobutyl isothiocyanate -0.07 90 Pentyl isothiocyanate −0.20 

41 Methyl isopropyl disulphide -0.07 117 4-(Methylthio)butyl isothiocyanate −0.20 

100 S-Methyl methanethiosulphonate -0.08 118 2-Phenylethyl isothiocyanate −0.20 

25 Dimethyl disulphide -0.10 79 2-Methylbutyl isothiocyanate −0.20 

6 Dimethyl sulphide -0.10 80 3-Methylbutyl isothiocyanate −0.20 

54 2-Butyl isothiocyanate -0.10 43 2,4-Dithiapentane −0.20 

53 Butyl isothiocyanate -0.11 29 Methyl thiocyanate −0.20 
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Table 4.  Loadings for selected compounds on PC 1 from a PCA of broccoli root volatiles trapped in above ground headspace pre-and post-infestation with 

Delia radicum larvae using Tenax TA (Fig. 9).  Compounds and numbers listed correspond with those in Table 1. The complete list of loadings can be found 

in Supporting Information, Table S14. 

No. Compound Loading No Compound Loading 

3 Methanethiol 0.18 38 Isopropyl isothiocyanate 0.15 

15 Heptane 0.18 93 Methyl methylthiomethyl disulfide 0.15 

60 Dimethyl trisulfide 0.17 35 Methyl ethyl disulfide 0.15 

71 Octanal 0.17 46 Heptanal 0.15 

99 Decanal 0.17 101 Tridecane 0.13 

29 Methyl thiocyanate 0.17 24 Octane 0.12 

43 2,4-Dithiapentane 0.17 17 2-Methyl-1-Propanol 0.12 

100 S-Methyl methanethiosulphonate 0.16 14 2,3-Butanedione 0.11 

87 Nonanal 0.16 88 Acetophenone 0.11 

25 Dimethyl disulfide 0.16 34 Nonane 0.11 

110 Undecanal 0.16 33 Hexanal 0.10 

6 Dimethyl sulfide 0.16 48 Decane 0.10 

8 Hexane 0.16 69 Benzaldehyde 0.10 

53 Butyl isothiocyanate 0.16 109 Tetradecane 0.05 

28 3-Methylbutyronitrile 0.16 114 Pentadecane 0.03 

54 2-Butyl isothiocyanate 0.16 116 Hexadecane 0.01 

31 Butyl acetate 0.16 119 Heptadecane −0.03 
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Figure Legends 

Figure 1. (a) Perforated PTFE sampling tubes. ( b) Stainless steel mesh covered PTFE 

sampling tubes.  (c) Microporous PTFE tubing covered PTFE sampling tubes.  (d) 

Construction of sample tubes showing: 1, Length of PTFE tubing; 2, Perforated region; 3, 

Slot cut in tube; 4, Mesh covering slot held in place with PTFE tape; 5, Microporous PTFE 

tubing covering slot held in place with PTFE tape. 

Figure 2.  (a) Schematic diagram of SPME fibre inserted into an in situ sampling tube.  1, 

PTFE collection tube;  2, 3 L collection container; 3, ¼” PTFE ferrule; 4, silicone rubber 

ring; 5, PTFE end cap; 6, 4 L container; 7, SPME fibre assembly attached to a fibre holder; 8, 

O-ring insert of a Merlin Microseal™ Septum; 9, 50 mm length of 5 mm Ø drinking straw. 

(b) Sampling of root volatiles in situ using SPME with two sampling tubes.  (c) SPME fibre 

holder with fibre and custom-made in situ root volatiles sampling attachments (O-ring insert 

of a Merlin Microseal™ Septum and 50 mm length of 5 mm Ø drinking straw) assembled. 

(d) The upper O-ring assembly (1) of a used (worn) Merlin Microseal™ (2) is separated from 

the main body and trimmed at the position shown to create the O-ring (3) used in the 

sampling attachment.  A suitably pierced and trimmed chemically inert rubber disk could be 

used in place of the microseal septum, but it must grip the SPME fibre protective needle as 

shown in the upper image. 

Figure 3. (a) Schematic diagram of vessel for headspace sampling of root volatiles using 

sample tubes containing Tenax TA.  1, 2 L Quickfit® culture vessel; 2, Oven bag; 3, Five 

socket Quickfit® lid; 4, 4 L container; 5, Adsorbent tube in screw thread adaptor; 6, 

Diffusion cap with membrane; 7, DiffLok™ cap.  (b) Headspace sampling of root volatiles 

with two Tenax TA sampling tubes. 

Figure 4.  Time course plots for selected sulfur containing compounds detected following 

Delia radicum larval feeding damage to broccoli roots using SPME fibres in stainless steel 

mesh covered PTFE sampling tubes located in situ during pilot studies.  Sampling began at 

the 5-6 true leaf stage of plant growth.  Volatiles were collected simultaneously from a single 

plant using DVB/PDMS and Carboxen/PDMS SPME fibres at elapsed times of 1, 8, 14, 20, 

27, 34 and 41 days.  Plant-free control samples were also collected using DVB/PDMS and 
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Carboxen/PDMS fibres at 1, 14, 20 and 41 days elapsed time.  Plants were infested with 

Delia radicum eggs, due to hatch within 24 hours, at the 16-18 true leaf stage (day 18, 

indicated by the vertical line and arrow).  A sampling schedule and full raw data sets can be 

found in Supporting Information, Tables S10 and S11. Numbering of compounds 

corresponds to those in Table1. 

Figure 5.  Example GC-MS total ion chromatograms (TIC) for broccoli root volatiles.  

Samples were collected in situ for 24 hours using a PDMS/DVB SPME fibre within PTFE 

sampling tubes that were (a) perforated or covered with (b) stainless steel mesh or (c) 

microporous PTFE tubing.  Samples were collected (a, b) 24 hours pre-damage and 24 hours 

and 8 days post-damage by Delia radicum larvae or (c) 24 hours pre- and post-mechanical 

damage.  Samples were also collected over 48 hours in above surface headspace using Tenax 

TA tubes (d) 12 days pre- and 48 hours post- damage by Delia radicum larvae.  Sulfur 

containing compounds showing particular enhancement following damage are numbered as 

in Table 1.  Expanded versions of these chromatograms can be found in Supporting Information, Figs 

S1-S4. 

Figure 6.  Sulfur containing volatiles trapped over 24 h in situ from roots of broccoli using 

SPME within perforated PTFE tubing, stainless steel mesh-covered PTFE tubing or PTFE 

tubing covered with micropourous PTFE.  Volatiles were also trapped over 48 h from above 

ground headspace on Tenax.  Collections were made at the indicated times (in days) before 

(UD) and post damage (PD) by Delia radicum larvae, or following mechanical damage 

(micropourous tubes only).  Larval damage was taken to commence 24 h after infestation of 

plants with D. radicum eggs. 

Figure 7.  Principal component analysis (PCA) scores plots of broccoli root volatiles (n = 3) 

and controls (n = 1) entrained in situ using SPME within two PTFE collection tubes per 

sampling container.  Sampling tubes were perforated (P) or covered with stainless steel mesh 

(M).  PC1 versus PC2 (a) shows separation of samples collected from roots and controls 24 

hours pre-infestion (black) and 24 hours (red) and 8 days (green) post-infestation with Delia 
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radicum larvae (collection dates 1, 2 and 3).  PC1 versus PC 4 (b) shows separation of 

samples based on sampling tube type. 

Figure 8.  PCA score plot of PC1 versus PC2 for broccoli root volatiles sampled in situ 

within PTFE sampling tubes covered with microporous PTFE tubing using SPME pre-and 

post-mechanical damage.  Pre-damage collections were made from two plants P1, P2 and a 

control C using two tubes per sampling container immediately prior to damaging roots.  Post-

damage collections from the same plants P1, P2 and control C, were made 24 h following 

mechanical damage to roots. 

Figure 9.  PCA score plot of PC1 versus PC3 for broccoli root volatiles sampled 12 days pre-

and 24 hours post-infestation with Delia radicum larvae using Tenax TA.  Pre-damage 

collections were made from four plants denoted as P1-P4 and two controls C1, C2 using two 

Tenax TA tubes per sampling vessel prior to infesting roots (mean of two tubes used for 

PCA).  Post-damage collections were from the same plants denoted P1-P4 and controls C1, 

C2 immediately upon commencement of larval feeding 

Table Titles and footnotes 

Table 1.  Compounds identified in broccoli root volatiles samples by SPME-GC-MS and 

ATD-GC-MS before and after larvae-induced or mechanical damage.  Samples were trapped in 

situ within (a) perforated PTFE tubes, (b) stainless steel mesh covered PTFE tubes, (c) 

microporous PTFE tubing covered PTFE sampling tubes, and (d) within above ground 

headspace using Tenax TA. 

Footnotes 

Number, order of the compounds in the Xcalibur™ data processing method and also in the 

example chromatograms (Fig. 5); Compound, athese compounds were identified by comparison of 

their mass spectra and retention indices with those of pure standards.  Tentative identification of the 
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remaining compounds was made by comparison with entries in the Palisade 600k and NIST05 mass 

spectral databases, and by comparison with published data (see Supplementary Material, Table S1, for 

list of references);  MW, molecular weight;  Selected Ions, ions used for automated compound 

identification and measurement of raw abundance using Xcalibur™;  tR, retention time 

(minutes); RRI, relative retention index;  nd, not detected. 

RRI values were calculated by comparing retention times to n-alkanes (C5-C17).  Each alkane 

carbon number Cn was assigned a RRI value 100n. The RRI value for a compound was 

calculated by linear interpolation of the spacing of its retention time between two nearest 

adjacent retention index marker compounds.  This corresponds to the linear retention index 

formula for linearly temperature programmed GC separations (Schomburg, 1990). 

Table2.  Loadings for selected compounds on PC 2 and PC 4 from a PCA of broccoli root 

volatiles sampled on three dates, one pre-and two post-infestation with Delia radicum larvae 

(Fig.7).  Samples were trapped in situ using SPME either in perforated PTFE sampling tubes 

or PTFE tubes covered with stainless steel mesh.  Compounds and numbers listed correspond 

with those in Table 1.  The complete list of loadings can be found in Supporting Information, 

Table S12. 

Table3.  Loadings for for selected compounds on PC 1 and PC 2 from a PCA of broccoli root 

volatiles sampled pre-and post-mechanical damage (Fig. 8).  Samples were trapped in situ 

using SPME in PTFE sampling tubes covered with microporous PTFE tubing.  Compounds 

and numbers listed correspond with those in Table 1.  The complete list of loadings can be 

found in Supporting Information, Table S13. 

Table4.  Loadings for selected compounds on PC 1 from a PCA of broccoli root volatiles 

trapped in above ground headspace pre-and post-infestation with Delia radicum larvae using 

Tenax TA (Fig. 9).  Compounds and numbers listed correspond with those in Table 1. The 

complete list of loadings can be found in Supporting Information, Table S14. 
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Supporting Information 

Figures 

Figures S1-S4 are in the word file ‘Root volatiles method lab & glasshouse Supplementary 

Figures’. 

Figure S1.  Example Total Ion Chromatograms (TIC) for broccoli root volatiles collected 

pre-damage and 24 hours and 8 days post-damage by Delia radicum larvae using a 

PDMS/DVB SPME fibre in perforated PTFE sampling tubes located in situ and analysed by 

GC-MS.  I denotes impurity, peaks denoted F (fibre) are non-sample derived.  Compounds 

are numbered as in Table 1. Data is for plant 3 sampling well 2. 

Figure S2.  Example Total Ion Chromatograms (TIC) for broccoli root volatiles collected 

pre-damage and 24 hours and 8 days post-damage by Delia radicum larvae using a 

PDMS/DVB SPME fibre in stainless steel mesh covered PTFE sampling tubes located in situ 

and analysed by GC-MS.  I denotes impurity, peaks denoted F (fibre) are non-sample 

derived.  Compounds are numbered as in Table 1. Data is for plant 3 sampling well 2. 

Figure S3a.  Example Total Ion Chromatograms (TIC) for broccoli root volatiles collected 

pre- and immediately post-mechanical damage using a PDMS/DVB SPME fibre in 

microporous PTFE tubing covered PTFE sampling tubes located in situ and analysed by GC-

MS.  I denotes impurity, peaks denoted F (fibre) are non-sample derived. Compounds are 

numbered as in Table 1.  Data shown is for plant 2, sampling well 1. 

Figure S3b.  Example Total Ion Chromatograms (TIC) for broccoli root volatiles collected 

pre- and immediately post-mechanical damage using a PDMS/DVB SPME fibre in 

microporous PTFE tubing covered PTFE sampling tubes located in situ and analysed by GC-

MS.  I denotes impurity, peaks denoted F (fibre) are non-sample derived. Compounds are 

numbered as in Table 1. Data shown is for plant 1, sampling well 2. 

Figure S4.  Example Total Ion Chromatograms (TIC) for broccoli root volatiles collected in 

above surface headspace pre- and 48 hours post-commencement of Delia radicum larval 
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feeding using Tenax TA tubes and analysed by GC-MS.  I denotes impurity.  Compounds are 

numbered as in Table 1.  Data shown is for plant 4, sampling tube B. 

Tables 

Table S1 is in the word file ‘Supplementary material published refrerences for compound 

identification’.  Tables S2 to S11 are included in Excel workbook ‘Supplementary material 

table of abundance and SE_Glasshouse.xlsx’.  Individual tables are located in the specific 

spreadsheets indicated after the table title.  Tables S12 to S14 are in the word file Root 

volatiles method lab & glasshouse supplementary tables’. 

Table S1.  References from published data on Brassicaceae volatile compounds used for the 

identification of broccoli root volatiles. 

Table S2. Broccoli root volatiles collection, pre- and post-damage by Delia radicum larvae, 

using in situ perforated PTFE tubes or stainless steel mesh covered PTFE tubes analysed by 

SPME-GC-MS. (p) denotes plant, (c) denotes control (no plant).  In sheet ‘Sampling 

Schedules’. 

Table S3.  Broccoli root volatiles collection, pre- and post-mechanical damage, using in situ 

microporous PTFE tubing covered PTFE tubes analysed by SPME-GC-MS. (p) denotes 

plant, (c) denotes control (no plant).  In sheet ‘Sampling Schedules’. 

Table S4. Headspace collection of broccoli root volatiles pre- and post-damage by Delia 

radicum larvae using adsorbent tubes packed with Tenax TA analysed by ATD-GC-MS. (p) 

denotes plant (vessel with plant), (c) denotes control (vessel without plant).  In sheet 

‘Sampling Schedules’ 
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Table S5.  Means and SE for abundance of compounds in broccoli root volatiles.  Samples 

were entrained in situ using SPME from undamaged and damaged roots using different 

sampling methods.  In sheet ‘Abundance & SE’. 

Table S6.  Raw abundance data for broccoli root volatiles entrained in situ on PDMS/DVB 

SPME fibres within perforated PTFE tubing.  In sheet ‘Perforated tubes raw data’. 

Table S7.  Raw abundance data for broccoli root volatiles entrained in situ on PDMS/DVB 

SPME fibres within PTFE tubing covered in stanless steel mesh. In sheet ‘Stainless mesh 

tubes raw data’. 

Table S8.  Raw abundance data for broccoli root volatiles entrained in situ on PDMS/DVB 

SPME fibres within PTFE tubing covered in microporous PTFE. In sheet ‘Microporous tubes 

raw data’. 

Table S9.  Raw abundance data for broccoli root volatiles entrained on Tenax TA from 

above-ground headspace.  In sheet ‘Tenax TA tubes raw data’. 

Table S10. Preliminary time course experiment.  Broccoli root volatiles collection, pre- and 

post-damage by Delia radicum larvae, using in situ stainless steel.  In sheet ‘Time course 

sampling schedule’. 

Table S11.  Time course experiment.  Raw abundance data for broccoli root volatiles 

entrained in situ on PDMS/DVB and Carboxen/PDMS SPME fibres within PTFE 

tubingcovered in stanless steel mesh.   In sheet ‘Time course raw data’. 

Table S12.  Loadings for PC 2 and PC 4 from a PCA of broccoli root volatiles sampled on 

three dates, one pre-and two post-infestation with Delia radicum larvae (Fig. 7).  Samples 

were entrained in situ using SPME either in perforated PTFE sampling tubes or PTFE tubes 
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covered with stainless steel mesh.  Compounds and numbers listed correspond with those in 

Table 1. 

Table S13.  Loadings for PC 1 and PC 2 from a PCA of broccoli root volatiles sampled pre-

and post-mechanical damage (Fig. 8).  Samples were entrained in situ using SPME in PTFE 

sampling tubes covered with microporous PTFE tubing.  Compounds and numbers listed 

correspond with those in Table 1. 

Table S14.  PC 1 loadings from a PCA of broccoli root volatiles entrained in above ground 

headspace pre-and post-infestation with Delia radicum larvae using Tenax TA (Fig. 9).  

Compounds and numbers listed correspond with those in Table 1. 
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Figure 1. (a) Perforated PTFE sampling tubes. ( b) Stainless steel mesh covered PTFE sampling 

tubes.  (c) Microporous PTFE tubing covered PTFE sampling tubes.  (d) Construction of sample tubes 

showing: 1, Length of PTFE tubing; 2, Perforated region; 3, Slot cut in tube; 4, Mesh covering slot 
held in place with PTFE tape; 5, Microporous PTFE tubing covering slot held in place with PTFE 

tape. 
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Figure 1.  (a) Schematic diagram of SPME fibre inserted into an in situ sampling tube.  1, PTFE 

collection tube;  2, 3 L collection container; 3, ¼” PTFE ferrule; 4, silicone rubber ring; 5, PTFE end 
cap; 6, 4 L container; 7, SPME fibre assembly attached to a fibre holder; 8, O-ring insert of a Merlin 

Microseal™ Septum; 9, 50 mm length of 5 mm Ø drinking straw.  (b) Sampling of root volatiles in

situ using SPME with two sampling tubes.  (c) SPME fibre holder with fibre and custom-made in situ 

root volatiles sampling attachments (O-ring insert of a Merlin Microseal™ Septum and 50 mm length 

of 5 mm Ø drinking straw) assembled.  (d) The upper O-ring assembly (1) of a used (worn) Merlin 

Microseal™ (2) is separated from the main body and trimmed at the position shown to create the O-
ring (3) used in the sampling attachment.  A suitably pierced and trimmed chemically inert rubber 

disk could be used in place of the microseal septum, but it must grip the SPME fibre protective needle 

as shown in the upper image. 
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Figure 1.  (a) Schematic diagram of vessel for headspace sampling of root volatiles using sample 

tubes containing Tenax TA.  1, 2 L Quickfit® culture vessel;  2, Oven bag;  3, Five socket Quickfit® 

lid;  4, 4 L container;  5, Adsorbent tube in screw thread adaptor;  6, Diffusion cap with membrane;  

7, DiffLok™ cap.  (b) Headspace sampling of root volatiles with two Tenax TA sampling tubes. 
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Figure 4.  Time course plots for selected sulfur containing compounds detected following Delia radicum larval 

feeding damage to broccoli roots using SPME fibres in stainless steel mesh covered PTFE sampling tubes 

located in situ during pilot studies.  Sampling began at the 5-6 true leaf stage of plant growth.  Volatiles were 

collected simultaneously from a single plant using DVB/PDMS and Carboxen/PDMS SPME fibres at elapsed 

times of 1, 8, 14, 20, 27, 34 and 41 days.  Plant-free control samples were also collected using DVB/PDMS and 

Carboxen/PDMS fibres at 1, 14, 20 and 41 days elapsed time.  Plants were infested with Delia radicum eggs, 

due to hatch within 24 hours, at the 16-18 true leaf stage (day 18, indicated by the vertical line and arrow).  A 

sampling schedule and full raw data sets can be found in Supporting Information, Tables S10 and S11. 

Numbering of compounds corresponds to those in Table1. 
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1

Figure 5.  Example GC-MS total ion chromatograms (TIC) for broccoli root volatiles.  Samples were 

collected in situ for 24 hours using a PDMS/DVB SPME fibre within PTFE sampling tubes that were (a) 

perforated or covered with (b) stainless steel mesh or (c) microporous PTFE tubing.  Samples were collected 

(a, b) 24 hours pre-damage and 24 hours and 8 days post-damage by Delia radicum larvae or (c) 24 hours pre- 

and post-mechanical damage.  Samples were also collected over 48 hours in above surface headspace using 

Tenax TA tubes (d) 12 days pre- and 48 hours post- damage by Delia radicum larvae.  Sulfur containing 

compounds showing particular enhancement following damage are numbered as in Table 1.  Expanded 

versions of these chromatograms can be found in Supporting Information, Figs S1-S4.  
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Figure 6.  Sulfur containing volatiles trapped over 24 h in situ from roots of broccoli using SPME within perforated PTFE tubing, stainless steel mesh-covered PTFE tubing or PTFE 

tubing covered with micropourous PTFE.  Volatiles were also trapped over 48 h from above ground headspace on Tenax.  Collections were made at the indicated times (in days) 

before (UD) and post damage (PD) by Delia radicum larvae, or following mechanical damage (micropourous tubes only).  Larval damage was taken to commence 24 h after 

infestation of plants with D. radicum eggs. 
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Figure 7.  Principal component analysis (PCA) scores plots of broccoli root volatiles (n = 3) 

and controls (n = 1) entrained in situ using SPME within two PTFE collection tubes per 

sampling container.  Sampling tubes were perforated (P) or covered with stainless steel mesh 

(M).  PC1 versus PC2 (a) shows separation of samples collected from roots and controls 24 

hours pre-infestion (black) and 24 hours (red) and 8 days (green) post-infestation with Delia

radicum larvae (collection dates 1, 2 and 3).  PC1 versus PC 4 (b) shows separation of 

samples based on sampling tube type. 
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Figure 8.  PCA score plot of PC1 versus PC2 for broccoli root volatiles sampled in situ within PTFE 

sampling tubes covered with microporous PTFE tubing using SPME pre-and post-mechanical 

damage.  Pre-damage collections were made from two plants P1, P2 and a control C using two tubes 

per sampling container immediately prior to damaging roots.  Post-damage collections from the same 
plants P1, P2 and control C, were made 24 h following mechanical damage to roots.  
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Figure 9.  PCA score plot of PC1 versus PC3 for broccoli root volatiles sampled 12 days pre- and 24 

hours post-infestation with Delia radicum larvae using Tenax TA.  Pre-damage collections were made 

from four plants denoted as P1-P4 and two controls C1, C2 using two Tenax TA tubes per sampling 

vessel prior to infesting roots (mean of two tubes used for PCA).  Post-damage collections were from 

the same plants denoted P1-P4 and controls C1, C2 immediately upon commencement of larval 

feeding. 
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GTOC abstract: 

A non-invasive method is described for in situ passive sampling of volatiles below-ground from 
roots of glasshouse-grown plants using SPME fibres located in pre-positioned sampling 
devices, consisting of perforated PTFE tubes or tubes covered with steel mesh.  When both 
designs of sampling device were evaluated with broccoli plants, similar temporal changes were 
observed in the production of sulphur containing root volatiles before and after induction of root 
damage by larvae of cabbage root fly, Delia radicum. 
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