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1. Introduction 23 

Nitrous oxide (N2O) is a powerful greenhouse gas (GHG) which accounts for 8 % of total global 24 

GHG emissions (Reay et al., 2012) and has a global warming potential 298 times greater than 25 

that of CO2 (Forster et al., 2007). The breakdown of N2O to NO in the stratosphere also results 26 

in the depletion of stratospheric ozone (Crutzen and Lelieveld, 2001). Although N2O is a 27 

naturally occurring gas, there has been an increase in atmospheric concentration of 16 % since 28 

1750 which is primarily attributed to emissions from fertilized agricultural soils (Davidson, 29 

2009). Global annual emissions from agricultural soils are currently estimated to be around 4 Tg 30 

N2O-N (Reay et al., 2012). 31 

The production of N2O by fertilised arable soils is associated with the application of inorganic N 32 

fertilisers and manures or soil disturbance, which cause an increase in soil concentrations of 33 

ammonium (NH4
+) and nitrate (NO3

-); which is responsible for the subsequent production of 34 

N2O as a byproduct of the microbial processes of nitrification and denitrification (Chapuis-Lardy 35 

et al., 2007; Inselbacher et al., 2011). Emissions from fertilised soils have high spatial and 36 

temporal variability  (Flechard et al., 2007; Lilly et al., 2003) due to the influence of multiple 37 

factors such as soil water filled pore space (WFPS), soil compaction, pH and temperature on the 38 

N2O source processes (Bessou et al., 2010; Castellano et al., 2010; Pierzynski et al., 2005; Smith 39 

et al., 2003). The high spatial and temporal variability of N2O emissions from agricultural soils 40 
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makes it difficult to accurately assess annual fluxes. It has been suggested that a solution to this 41 

problem is the use of high frequency long path length measurement techniques such as eddy 42 

covariance (Flechard et al., 2007). However, such methods require large areas and are typically 43 

of limited value in plot based field experiments where manipulation treatments are compared, 44 

and emission factors (EFs) need to be calculated (as an unfertilised control area is needed too). 45 

An alternative approach, used in this study, is the use of static chambers with high temporal and 46 

spatial replication (Chadwick et al., 2014). Previous studies of N2O emissions from agricultural 47 

soils using the static closed chamber technique often involved the use of only a small number of 48 

replicate chambers per treatment and a low sampling frequency over a short period of time. For 49 

example, a number of studies have used six or less static chambers per treatment (Ball et al., 50 

1999; Clayton et al., 1997; Dobbie et al., 1999; Dobbie and Smith, 2003; Smith et al., 2012). 51 

Previous studies have also often been based on short measurement periods ranging from 5 days 52 

to 6 weeks after fertiliser application (Skiba and Ball, 2002; Skiba et al., 2002; Smith et al., 53 

2012). Furthermore, previous studies have not always adequately captured temporal dynamics 54 

where gas samples were taken at intervals of 2-4 weeks (Rees et al., 2013). 55 

The relationship between the amount of N fertiliser applied and the magnitude of N2O emissions 56 

is quantified through the use of an EF (EF1) which expresses the quantity of N2O-N emitted as a 57 

proportion of the N fertiliser applied. The EF calculation also accounts for background emissions 58 

which are largely due to mineralisation of crop residues (IPCC, 2006). Bouwman (1996) 59 

reviewed experiments of at least a year in length and recommended an EF (EF1) of 1.25 % of the 60 

N applied to express the relationship between applied N fertiliser and N2O emissions. The IPCC 61 

subsequently used this as a “default EF” to enable calculation of countries’ N2O emissions from 62 

soils receiving inorganic fertiliser N (IPCC, 1996). This value has since been revised downwards 63 
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on the basis of more recent evidence to give an EF of 1 % of N applied for use in the Tier 1 64 

methodology for calculating N2O emissions (IPCC, 2006). However many countries including 65 

the UK have not yet adopted the 1 % EF in their national inventory calculations. This default EF 66 

attempts to estimate typical emissions across large spatial areas and time periods, however there 67 

is concern that local soil and climatic conditions, and the type and rate of fertiliser used can lead 68 

to significant variance from average conditions (Smith et al., 2012). The use of a 1.25 % EF has 69 

been controversial in Scotland where it has been demonstrated that large changes in soil WFPS 70 

may result in Scottish EFs which are atypical of the whole of the UK (Dobbie et al., 1999; 71 

Dobbie and Smith, 2003). This is reflected in calculated N2O EFs ranging from 0.17 – 7 % for a 72 

range of N sources for Scottish agricultural soils (Clayton et al., 1997; Dobbie et al., 1999; Smith 73 

et al., 1998a). To improve the accuracy of agricultural N2O reporting it is necessary for  74 

investigation into the effects of controlling variables on N2O emissions and the appropriateness 75 

of utilising a 1.25 % EF, or the new 1 % EF, regardless of location, and this is particularly 76 

relevant in areas of the UK which may experience extreme or unusual climatic conditions. 77 

 78 

Mitigation of agricultural N2O emissions is necessary if we are to limit the contribution of 79 

agriculture to climate change. The use of nitrification inhibitors (NIs) such as dicyandiamide 80 

(DCD) which act to decrease N2O emissions by deactivating the ammonia monooxygenase 81 

enzyme used in the primary stage of nitrification (Amberger, 1989) have proved successful in 82 

mitigating agricultural N2O emissions (Di and Cameron, 2003; Di et al., 2007) and have also 83 

demonstrated the potential to increase crop yields (Abalos et al., 2014). However, there has been 84 

little investigation into the effectiveness of DCD in UK agricultural systems and more research 85 

in this area is required. Another N2O mitigation option which requires further investigation is the 86 
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use of split applications of N fertiliser. Split applications result in the application of smaller 87 

individual doses of fertiliser, which reduces surplus N in the soil and decreases the potential for 88 

loss of N via transformation to N2O or leaching, in addition to being more suitable for crop 89 

requirements (Burton et al., 2008), potentially increasing the nitrogen use efficiency of fertilisers. 90 

Reducing the amount of surplus N is an important method of decreasing N2O emissions as it not 91 

only has positive impacts on the environment but is also financially beneficial for the farmer. 92 

Altering the amount or type of fertiliser applied is another means by which surplus N may be 93 

decreased, and research has indicated that the use of urea rather than ammonium nitrate (AN) 94 

fertiliser may result in lower N2O emissions (Dobbie and Smith, 2003; Smith et al., 2012).  95 

Although it is important to minimise N2O emissions from agricultural soils, it will also be 96 

necessary in the future to produce greater quantities of food, meaning that crop yield must not be 97 

negatively impacted by mitigation options. Emission intensities i.e. the amount of N2O produced 98 

per unit of crop yield, are therefore a vital indicator of the potential of any N2O mitigation option 99 

(Van Groenigen et al., 2010), although research into this area has thus far been limited. 100 

This work forms part of a nationwide project to assess the effect of a range of organic and 101 

inorganic nitrogen fertiliser treatments on N2O emissions from agricultural soils with the results 102 

being used to improve agricultural management systems and to reduce uncertainty in the UK 103 

agricultural greenhouse gas inventory (GHG, 2013). More specifically, the aims are to: 104 

i). Compare N2O emissions, calculated EFs and emission intensities from different inorganic 105 

fertiliser treatments 106 

ii). Investigate the efficacy of potential N2O mitigation options. 107 
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iii). Assess the appropriateness of the use of the standard 1.25 % or 1 % EF for the area under 108 

investigation. 109 

2. Materials and Methods 110 

2.1 Site description 111 

The experiment began in April 2011 at Gilchriston in south east Scotland (Grid reference: 112 

NT479658). Gilchriston is a commercial arable farm, selected for its location in one of the 113 

principal geoclimatic zones which support arable production in the UK. The site characteristics 114 

are described in Table 1. Soil pH, organic matter and bulk density were calculated using field 115 

measurements, other soil information was obtained from Hipkin (1989). 116 

2.2 Experimental design 117 

Nitrogen fertiliser treatments were compared that  ranged from a control (0 kg N ha-1) to 200 kg 118 

N ha-1 and included the recommended application rate for the area of 120 kg N ha-1 (Defra, 119 

2010). The fertiliser was applied either in the form of ammonium nitrate (AN) or urea. Fertiliser 120 

was applied in two doses (three doses for one treatment) in April and May 2011, by hand to the 121 

entire plot, to simulate agronomic practice. The NI DCD was applied at a rate of 10 kg ha-1 as a 122 

spray an hour after the application of AN and urea. Further details of treatments are presented in 123 

Table 2. The experimental layout consisted of 10 m x 3 m plots replicated three times for each 124 

treatment in a randomized block design. For the duration of the experiment, pesticides were 125 

applied according to standard recommendations, and P2O5 and K2O were applied to all plots at 126 

rates of 60 kg ha-1 and 90 kg ha-1, respectively, in order to satisfy crop demand. 127 

2.3 Gas and soil sampling, measurements and analysis 128 
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Nitrous oxide fluxes were measured at the experimental site over a one year period (7th April 129 

2011 – 30th March 2012) using the static closed chamber technique (Chadwick et al., 2014; 130 

Clayton et al., 1994) and with a methodology that was consistent with Global Research Alliance 131 

guidelines (de Kleine and Harvey, 2012). Although the N2O results are referred to as “annual” 132 

emissions, the precise number of days this period represents is 358 days. The intense N2O 133 

sampling frequency was based on the assumption that most of the total direct N2O emissions 134 

occur within the first month following each dose of fertiliser application (Dobbie et al., 1999). 135 

The sampling strategy therefore involved around 50 % of the total N2O measurements occurring 136 

during this period of expected high emissions in order to capture the variations between 137 

treatments.  138 

 139 

Five circular chambers made of opaque polypropylene (200 mm diameter, 300 mm height and 140 

soil surface area coverage of approximately 0.126 m²) were installed per plot, resulting in the use 141 

of 15 chambers per treatment. Chambers were installed by cutting a 5 cm deep slot into the soil 142 

and inserting the base of the chamber into this slot. Soil was tightly packed around the base of 143 

the chamber (on the outside) to ensure a good seal. The chambers were left in place for the whole 144 

experiment except when agricultural operations such as harvest deemed removal necessary. 145 

Extensions were added to the tops of the chambers during the growing season in order to avoid 146 

damaging the plants within the chambers. On each sampling occasion, aluminium lids were 147 

clipped onto the top of each chamber and the chamber remained covered for 40 minutes. The 148 

headspace was then sampled through a small sampling port in the lid using a syringe and gas 149 

samples were transferred to pre-evacuated 20-22 ml glass vials. Ambient and ‘linearity check’ 150 

gas samples were also collected. The linearity check involved collecting samples at 10 minute 151 
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intervals from 3 randomly selected chambers (1 from each block) throughout the sampling 152 

period. Sampling was conducted between 10:00 and 12:00 h to ensure consistency. See 153 

Chadwick et al. (2014) for further methodology information.  154 

 155 

Gas samples were analysed for N2O concentrations using an Agilent 7890A Gas Chromatograph 156 

(GC) fitted with an electron capture detector (Agilent Technologies, Berkshire, UK) and a CTC 157 

Analytics COMBI PAL autosampler (CTC Analytics, Hampshire, UK). The GC response was 158 

calibrated using certified N2O gas standards (0.35, 1.1, 5.1, 10.7 ppm) and the N2O limit of 159 

detection was 0.025ppm. Air temperature was recorded on every N2O sampling occasion and 160 

chamber height was also measured for use in N2O flux calculations. Daily N2O fluxes were 161 

calculated using linear regression which assumes a linear increase in N2O concentration in a 162 

known volume over a known period of time, and the ideal gas law (Saggar et al., 2008). 163 

Cumulative N2O fluxes from each chamber were calculated using the trapezoidal rule (area 164 

under the curve) to interpolate fluxes between sampling points. For each treatment, cumulative 165 

fluxes were calculated using the mean of the 5 chambers per plot, in order to calculate a 166 

treatment mean cumulative emission value and associated standard error. 167 

 168 

Composite soil samples consisting of five cores (0-10 cm depth) collected at random locations 169 

using a 30 mm diameter auger were taken from each block on each N2O sampling occasion for 170 

soil gravimetric water content (GWC) determination, i.e. one soil moisture content measurement 171 

per block on each occasion. Composite soil samples from each plot were also collected in this 172 

way at approximately monthly intervals throughout the one-year experiment for soil mineral N 173 

content determination, i.e. generating one sample per plot. Fresh soil samples were sieved 174 
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(<4mm)  and extracted using 2M KCl (soil to extractant ratio 1:2) for determination of  soil 175 

ammonium (NH4
+-N) and nitrate (NO3

--N) contents using  a Skalar San++ continuous flow 176 

autoanalyser (Skalar, York, UK). Soil bulk density was determined for each block through 177 

collection of intact soil samples using metal rings on frequent occasions throughout the 178 

experiment. Soil bulk density and GWC were used to calculate soil WFPS (%) on each gas 179 

sampling occasion (Robertson, 1999). 180 

A meteorological station at the site recorded daily rainfall. Air and 10-cm depth soil 181 

temperatures were also recorded using a temperature probe (RS Components, Northamptonshire, 182 

UK) on each N2O sampling occasion.  183 

The crop was harvested on 22nd August 2011 using a small plot harvester which harvested an 184 

area of 15m2 from each plot. Just prior to harvest, a random sample of 100 tillers per plot was 185 

also collected by hand. This was threshed and weighed to determine the ratio of grain to straw 186 

and chaff. The % dry matter and N content of the grain, and the mixed straw and chaff, from 187 

each plot was determined.  188 

2.4 Emission Factor calculation 189 

Emission factors, which express the N2O-N emitted from each treatment as a percentage of the 190 

total N applied, were calculated (subtracting control values from each of the 3 blocks from 191 

corresponding treatment values as appropriate before calculating mean treatment EFs) using the 192 

following equation:  193 

𝐸𝐹 = �
𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒  𝑎𝑛𝑛𝑢𝑎𝑙 𝑁2𝑂𝑓𝑙𝑢𝑥 (𝑘𝑔 𝑁2𝑂-𝑁) − 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑎𝑛𝑛𝑢𝑎𝑙 𝑁2𝑂 𝑓𝑙𝑢𝑥 𝑓𝑟𝑜𝑚 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 (𝑘𝑔 𝑁2𝑂-𝑁)

𝑁 𝑎𝑝𝑝𝑙𝑖𝑒𝑑  (𝑘𝑔𝑁) � × 100 
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EFs were calculated for three separate timescales: 1). An annual EF was calculated as 194 

recommended by Bouwman (1996). 2). A “seasonal” EF was calculated  which included N2O 195 

data up until harvest to take into account the effects of crop growth on N2O emissions and  the 196 

time taken for  soil mineral N levels to return to “background” levels. 3). A “five week” EF was 197 

calculated for the 5 weeks following the first fertiliser application. This time scale was chosen as 198 

it has been reported that the majority of emissions take place during the 4 weeks following 199 

fertiliser application (Dobbie et al., 1999) and would therefore enable clearer identification of 200 

treatment effects. However, due to dry weather during this period there were very low N2O 201 

emissions from all treatments, so it was extended to 5 weeks to include the large peak in 202 

emissions which occurred during May. 203 

       204 

2.5 Statistical analysis 205 

Statistical data analyses were carried out using Genstat (16.1). The occurrence of any significant 206 

differences in measurements between treatments was tested using one-way analysis of variance 207 

(ANOVA) with blocks. Data were checked for normality before ANOVAs were applied and 208 

analysis of residuals was used to determine outliers. Two outliers were identified during the 209 

analysis of the cumulative N2O data and the annual and seasonal EFs, these were from blocks 2 210 

and 3 of the AN 40 treatment. These outliers were subsequently excluded from the analysis. 211 

Treatment effects were deemed significant if p ≤ 0.05. Regression analysis was performed to 212 

determine the relationship between nitrogen applied and the cumulative annual emission.  The 213 

REML procedure was used for this analysis with nitrogen level, specified as a variate, as the 214 

fixed factor, and the block was specified as the random factor. REML regression was also used 215 

to analyse the relationship between the daily N2O emissions and the % WFPS with the block 216 
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specified as the random factor.  In this case, the emissions were transformed using natural 217 

logarithms.  Due to large negative emissions, 25 g N2O-N ha-1 d-1 was added to the emissions 218 

before transformation.  On analysis of the residual plots, one outlier was identified and removed 219 

from the analysis (Block 2 on 7th July). 220 

 221 

3. Results 222 

3.1 Nitrous oxide fluxes  223 

Nitrous oxide fluxes showed high temporal variation with most emissions occurring during a few 224 

intermittent flux episodes, and also varied widely between treatments (Figure 2).  Emission 225 

maxima of 170-190 g N2O-N ha-1 d-1 from the AN 160 and AN 200 treatments occurred 13 days 226 

after the second fertiliser application in May 2011. Total N2O emissions were higher in August 227 

than any other month with a maximum cumulative monthly value of 0.013 kg N2O ha-1 from the 228 

CON treatment. Negative N2O fluxes were occasionally observed during the experimental period 229 

with the largest negative flux of -18 g N2O-N ha-1 d-1 occurring for the AN 80 and urea 120 + NI 230 

treatments in July.  231 

Cumulative N2O emissions for the one year study period showed marked treatment effects 232 

(Figure 3), with a general increase in cumulative N2O emissions associated with larger N 233 

applications. During the 1 way ANOVA with blocks, 2 outliers were observed from the analysis 234 

of the residuals. These were the cumulative emissions from blocks 2 and 3 of the AN 40 235 

treatment and these were subsequently removed from the analysis. Maximum cumulative 236 

emissions were recorded from the AN 200 treatment with a value of 3.82 kg N2O ha-237 

1.  Cumulative emissions from the AN 200 treatment were significantly higher (p=0.009. SED =  238 
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0.605) than from the CON, urea 120, urea 120 + NI, AN 120 + NI, AN 40 and AN 80 treatments. 239 

The lowest cumulative N2O emissions were from the Urea 120 + NI treatment with a value of 240 

1.32 kg N2O ha-1. This was a non significant 45 % reduction in cumulative emissions in 241 

comparison to the urea 120 treatment. There was a significant 38 % decrease in cumulative 242 

emissions from the AN 120 + NI treatment in comparison to the AN 120 treatment; however 243 

there was no significant difference between the AN 120 + NI and that AN (3 splits) . Cumulative 244 

N2O emissions from the AN (3 splits) and urea 120 treatments showed a trend for lower 245 

emissions than from the AN 120 treatment by 11 % and 26 %. 246 

 247 

3.2 Environmental conditions 248 

The weather during the experimental period was atypical for this region, with a dry spring, 249 

followed by an unusually wet summer which coincided with low temperatures (Figure 1a and b). 250 

The high N2O emissions observed during the summer corresponded with the occurrence of most 251 

of the large rainfall events during this period (Figures 1 and 2). The May emission peak occurred 252 

in a relatively dry period (the soil WFPS was 38 %) but during the peak in emissions in August 253 

the soil was considerably wetter (soil WFPS values of ~50 %). Despite the high rainfall, only 4 254 

% of the measurement days had 50-70 % WFPS with all of the remaining days having < 50 % 255 

WFPS. A WFPS value of >60-70 % is generally associated with denitrification conditions, and 256 

hence with greater N2O fluxes (Davidson, 1991). 257 

3.3 Emission factors 258 

Emission factors for each time period (annual, seasonal and 5 weeks) were calculated (Table 2). 259 

The maximum annual EF was 1.35 from the AN 120 treatment and the mean annual EF was 260 
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0.69, in comparison to the mean seasonal EF of 0.40 and the mean 5 week EF of 0.44. Two 261 

negative EFs were obtained for the annual and seasonal urea 120 + NI treatment. These represent 262 

positive emissions which are lower than the unfertilised control due to the EF calculation method 263 

used, in which control fluxes are subtracted from treatment fluxes. There were no significant 264 

differences between EFs for all treatments at any of the three timescales (EF annual, p=0.082; EF 265 

seasonal, p= 0.082; EF 5 wk, p = 0.209). 266 

3.4 Soil mineral N 267 

Soil NO3
--N and NH4

+-N concentrations increased following fertiliser application with a peak in 268 

NO3
--N concentration of 68 kg N ha-1 in the AN 200 treatment and  a peak in NH4

+-N 269 

concentration of 57 kg N ha-1  in the urea 120 + NI treatment, just over a month after the final 270 

fertiliser application (Figure 4). As expected the mineral N concentrations increased as the 271 

application rate of AN fertiliser increased. The NI treatments acted to significantly increase 272 

NH4
+-N concentrations (p< 0.05) and significantly decrease NO3

--N concentrations (p<0.05) in 273 

comparison to the non-NI amended treatments. Following peak soil NO3
--N and NH4

+-N 274 

concentrations, values decreased to < 5 kg N ha1. The concentrations of both NO3
--N and NH4

+-275 

N were consistently below 5 kg N ha-1 in the period between August 2011-March 2012. 276 

 277 

3.5 Crop yield and yield scaled emissions 278 

Crop yield (grain harvest at 15 % dry matter) ranged from a minimum of 1.46 t ha-1 for the 279 

control treatment to 9.30 t ha-1 for the AN 200 treatment (Figure 5a). Significantly greater crop 280 

yield was obtained from the AN 160 and AN 200 treatments (p<0.001, SED =  0.1682) than 281 

from all other treatments. The crop yield obtained was dependent on the amount of N fertiliser 282 
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applied, with greater crop yield obtained for larger applications of N fertiliser. Crop yield was 283 

significantly decreased by 9 %  and 10 %, respectively for the AN 120 + NI  and the urea 120 + 284 

NI treatments in comparison to their non NI amended counterparts  and there was significantly 285 

lower crop yield from the AN (3 splits) treatment in comparison to the AN 120 treatment. Yield 286 

scaled emissions generally decreased with increasing rates of N fertiliser application from a 287 

maximum of 1.15 kg N2O ton-1 grain for the control treatment, to a minimum of 0.18 kg N2O 288 

ton-1 grain for the urea 120 + NI treatment (Figure 5b). There was a significant effect of 289 

treatment on yield scaled emissions (p=0.002, SED=0.1742) which showed that the control 290 

treatment had significantly higher emission intensities than the fertiliser treatments. 291 

 4. Discussion 292 

4.1 Linearity of N2O emissions with N application 293 

This study demonstrated the value of a high intensity sampling strategy in assessing variability in 294 

N2O emissions between fertiliser treatments. Greater applications of N fertiliser generally 295 

resulted in higher cumulative N2O emissions due to the increase in soil NO3
- and NH4

+ contents. 296 

There was a strong linear relationship (p<0.001) between the amount of N fertiliser applied and 297 

the magnitude of the cumulative N2O emissions (Figure 6).   Treatments AN 80 and AN 120 298 

demonstrated smaller variability in N2O emissions between blocks in comparison to the other 299 

treatments. The IPCC Tier 1 EF approach assumes that N2O emissions are a linear function of N 300 

application (Philibert et al., 2012) and our results support this assumption, in contrast to some 301 

suggestions that the relationship between N input and N2O emissions may be non-linear (Hoben 302 

et al., 2011; McSwiney and Robertson, 2005).  303 

 304 
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4.2 Cumulative N2O emissions and environmental controls 305 

Cumulative annual emissions from all treatments were particularly high in comparison to 306 

comparable experiments in this area. McTaggart et al. (1997)  and Smith et al. (1998a) measured 307 

N2O emissions from spring barley crops fertilised with 120 kg N ha-1 in South East Scotland in 308 

1993 and 1994-1995 respectively and reported emissions of  0.8 kg N2O-N ha-1, considerably 309 

lower than the 3.28 kg N2O-N ha-1 reported for the AN 120 treatment from our experiment. The 310 

lower frequency of measurements carried out by McTaggart et al. (1997) and Smith et al. 311 

(1998a) may explain their reported lower emissions. The high emissions observed during this 312 

experiment contrasts with work by Smith et al. (1998a), which reported that emissions from 313 

Scottish sites were generally small due to low spring and summer temperatures which reduces 314 

the production of N2O. Most of the N2O emissions are expected to occur in the four weeks 315 

following fertiliser application (Bouwman, 1996) and the mean soil temperature recorded during 316 

this period for our experiment was 13.3 °C, only 0.6 °C lower than the maximum mean monthly 317 

soil temperature observed in July which will have promoted high N2O production. 318 

Previous work by Dobbie et al. (1999), Flechard et al. (2007), Jones (2007) and Rees et al. 319 

(2013) has demonstrated that the key factors affecting N2O emissions from N fertilised 320 

agricultural soils are % soil WFPS, soil temperature and soil mineral N. However, there are 321 

threshold levels of these factors and if this threshold is not exceeded by any of these variables 322 

then N2O production may be limited (Dobbie and Smith, 2003; Topp et al., 2013). During the 323 

period immediately following fertiliser application and the subsequent summer months when soil 324 

mineral N contents and temperature were not limiting to N2O production, the primary variable 325 

affecting emissions was % soil WFPS . This limiting effect was clearly demonstrated in this 326 

experiment in the period between the first fertiliser application and the large peak in emissions 327 
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approximately four weeks later. During this period the mean soil temperature of 13°C would not 328 

have been limiting to N2O production, however, low % soil WFPS would have been (Figures 1 329 

and 2). A large rainfall event in early May (Figure 1) increased % soil WFPS from a mean value 330 

of 27 % to 39 % which increased N2O emissions (Figures 1 and 2). During the peaks in N2O 331 

emissions in August, % soil WFPS values were approximately 46 % (Figures 1 and 2), however, 332 

at this time soil mineral N had returned to below what is considered a threshold level of 5 mg N 333 

kg-1  (5.95 kg N ha-1), which implies that soil WFPS has greater control over the potential for 334 

N2O production than soil mineral N contents. The relationship between flux response and % soil 335 

WFPS was analysed for the highest N fertiliser treatment for this experiment. When N2O data 336 

from the one year  measurement period is used, including periods in which soil NO3
-  is below 5 337 

mg N kg-1, there is a significant positive relationship between N2O and soil WFPS (p<0.001) 338 

(Figure 7a). When periods in which soil NO3
-  <5 mg N kg-1 are removed (Figure 7) there is also 339 

a significant positive relationship between N2O and soil WFPS (p<0.001) (Figure 7b), in 340 

agreement with Dobbie et al. (1999) who also found a significant relationship (p<0.05) when the 341 

same limitations were applied.  342 

The observation of a significant relationship between N2O emissions and % soil WFPS, even 343 

when soil NO3
- was < 5mg N kg-1 is in contrast to previous studies of Scottish arable sites which 344 

found no relationship between these variables below an NO3
- threshold of 5mg N kg-1 (Clayton 345 

et al., 1997; Dobbie et al., 1999; Smith et al., 1998a). The relationship between N2O flux and % 346 

soil WFPS is related to the dominance of either nitrification or denitrification as the N2O 347 

producing processes. Davidson (1991) suggested that denitrification predominates at soil WFPS 348 

>60 % and that at values <60 %, nitrification is the dominant process. In this study, despite 349 

greater than average annual rainfall, the 60 % WFPS threshold was never exceeded. This 350 
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combined with the return of NH4
+ concentrations to background levels prior to the NO3

- 351 

concentrations suggests that nitrification may have been the dominant N2O production process. 352 

 353 

4.3 Emission intensities 354 

Crop yield increased with increasing rates of AN fertiliser application as expected due to the 355 

greater availability of NO3
- and NH4

+ in the soil for uptake by the growing crop. However, it is 356 

important to consider the amount of N2O produced per unit of yield (yield scaled emissions, or 357 

yield intensity). This allows assessment of a greater part of the treatment’s “life cycle” than just 358 

taking into account N2O emissions, as ultimately for a fertiliser to be financially viable it must 359 

produce sufficient crop yield. The recommended fertiliser application rate of 120 kg N ha-1, 360 

which was used in this experiment had yield scaled emissions of 0.39 kg N2O ton-1 grain. The 361 

optimum fertiliser application rate would produce a high crop yield but minimal N2O emissions, 362 

and the results of this experiment demonstrate that the optimum fertiliser application would be 363 

AN 160 kg N ha-1. This application rate provided a higher crop yield than the 120 kg N ha-1 364 

application rate, but lower N2O emissions, resulting in lower yield scaled emissions of 0.35 kg 365 

N2O ton-1 grain. Yield scaled emissions decreased with increasing rates of N fertiliser 366 

application at low application rates from 1.15 kg N2O ton-1 grain for the control treatment to 0.28 367 

kg N2O ton-1 grain for the AN 80 treatment. Although the yield scaled emissions from the AN 80 368 

treatment are relatively similar to the yield scaled emissions from the optimum AN 160 369 

treatment, it must be considered that crop yields from the AN 160 treatment are 40 % higher, 370 

therefore it is advantageous to produce greater crop yields whilst not significantly increasing 371 

yield scaled emissions. The yield scaled emission results obtained are in contrast to the results of 372 
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a meta analysis carried out by Van Groenigen et al. (2010), which reported the lowest emission 373 

intensities following N application of 180-190 kg N ha-1. We found no significant difference in 374 

yield scaled emissions from applications of 40 -200 kg N ha-1 despite significantly greater crop 375 

yields at N application rates of 160 and 200 kg N ha1. Our yield scaled emission results indicate 376 

that we must avoid under fertilising crops if we are to minimise the risk of enhancing N2O 377 

emissions whilst simultaneously obtaining poor crop yields. 378 

  4.4 Mitigation option effects on N2O emissions and crop yield 379 

The decrease in N2O emissions through the use of the NI (DCD) is an important finding of this 380 

research. The use of DCD has proven effective in reducing N2O emissions in previous studies 381 

conducted on grassland and spring barley sites in New Zealand and the UK (Di and Cameron, 382 

2002, 2003; Di et al., 2007, 2010; McTaggart et al., 1997). However little work has been 383 

undertaken to examine the effectiveness of DCD on arable soils in Scotland. A previous field 384 

study in the UK investigating the effectiveness of DCD in reducing N2O emissions from N 385 

fertilised arable crops found a 36 % reduction in emissions from spring barley when DCD was 386 

used (McTaggart et al., 1997). The successful inhibition of nitrification by DCD in this study is 387 

evident due to the significantly increased levels of NH4
+-N in the soils from the NI treatments 388 

and decreased soil NO3
--N contents, in combination with the decreased N2O emissions. DCD 389 

was more effective in reducing emissions from the AN 120 + NI treatment than from the urea 390 

120 + NI treatment. This is in contrast to previous work which has demonstrated greater 391 

decreases in N2O emissions when DCD was applied to urea fertilised soils in comparison to AN 392 

fertilised soils (McTaggart et al., 1997), as would be expected due to the higher quantities of soil 393 

NH4
+-N found in the urea treatment. 394 
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The potential of a 3 split AN fertiliser application and urea application (urea 120) to decrease 395 

cumulative N2O emissions in comparison to the AN 120 treatment was also apparent as 396 

emissions were significantly decreased by 11 % and 26 % respectively. The decrease in N2O 397 

emissions associated with the use of a 3 split fertiliser application suggests that the nitrogen use 398 

efficiency was increased. However, the mitigation effect was reasonably small and this might be 399 

explained by the fertiliser application relatively early in the growing season. The lower N2O 400 

emissions from the urea 120 application in comparison to the AN 120 application is in agreement 401 

with the findings of Dobbie and Smith (2003) and Smith et al. (2012). However, the results of 402 

this study must be assessed with caution as ammonia (NH3) emissions were not measured. Smith 403 

et al. (2012) reported that 22 % of urea N applied to arable soil is emitted as NH3, in comparison 404 

to <3 % of ammonium nitrate N. The decrease in N2O emissions associated with the urea 405 

application in this study may therefore be a reflection of greater loss of NH3 than from the AN 406 

treatment resulting in lower soil mineral N concentrations and subsequently decreased potential 407 

for N2O emissions. Evidence for this can be seen in the soil NH4
+ concentrations where the 408 

initially high NH4
+ concentration in the urea 120 treatment rapidly decreased to lower than the 409 

levels seen in the AN 120 treatment, perhaps indicating volatilisation of NH3. The decreased 410 

N2O emissions associated with the AN 120 (3 splits) and urea treatments were not associated 411 

with increased crop yields as may be expected if greater retention of N within the soil was taking 412 

place. Again, this supports the suggestion that considerable quantities of N could have been lost 413 

in the form of NH3 from the urea treatment. 414 

 415 

A particularly interesting finding of this research is the significant decrease in crop yield 416 

associated with the NI treatments. It was hypothesised that crop yield would be maintained or 417 
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increased during this experiment due to decreased rates of nitrification and reduced emissions of 418 

N2O and therefore maintenance of higher levels of NH4
+ in the soil, providing greater N 419 

availability for crop growth (Di and Cameron, 2002). However, it has been suggested that plants 420 

may preferentially uptake NO3
- from the soil due to greater ease of transport of NO3

- through the 421 

soil compared with NH4
+ which is more tightly bound to the soil particles (Hofman and van 422 

Cleemput, 2004). If the NI prevented conversion of NH4
+ to NO3

-  by nitrification,  then crop N 423 

uptake and growth may suffer. The decrease in crop yield caused by the addition of a NI could 424 

have implications for the adoption of NIs as an N2O mitigation strategy by the farming 425 

community, despite the financial benefits for the farmer associated with decreased loss of N 426 

through N2O emissions. The yield results observed in this experiment are in contrast to those 427 

demonstrated in previous work in which DCD acted to increase crop or pasture yield (Di and 428 

Cameron, 2002;  Liu et al., 2013; Pain et al., 1994) or had no effect on crop yield (Weiske et al, 429 

2001). The decrease in N2O emissions combined with the decrease in crop yield observed from 430 

the NI treatments resulted in a large (non significant) reduction in yield scaled emissions in 431 

comparison to the non NI amended treatments by 31 % for the AN 120 + NI treatment and 40 % 432 

for the urea 120 + NI treatment.  433 

4.5 Sampling period effects on N2O emissions and emission factors 434 

This research demonstrated the considerable contribution of background emissions to emissions 435 

recorded from applied treatments. Cumulative emissions from the control treatments represent 43 436 

% of annual emissions from the highest N fertiliser treatment and 51 % of emissions from the 437 

AN 120 treatment which are within the range of previously reported data. McTaggart et al. 438 

(1997)  reported background emissions that contributed 75 %  of the emissions from spring 439 

barley fertilised with 120 kg N ha-1, and Smith et al. (2012) reported 26-67 % contribution of 440 
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control treatments to emissions from N fertilised treatments. This evidence suggests that 441 

background emissions from unfertilised arable crops can be high and represents a considerable 442 

proportion of the overall flux from fertilised crops. Smith et al. (2012) suggested that this high 443 

background flux from arable sites is due to mineralisation of crop residues which is also likely to 444 

have occurred at our experimental site following harvest of the previous oilseed rape crop.  445 

Background emissions could also be considered as those occurring after the return of soil mineral 446 

N to background levels, which in this experiment occurred during August 2011. Emissions after 447 

this time could reflect crop residue inputs, N deep within the soil profile, remineralised fertiliser 448 

N or treatment effects from previous fertiliser events, all of which may confound emissions from 449 

the treatments of interest. Our work demonstrated the greatest cumulative monthly emissions in 450 

August with mean cumulative N2O-N emissions of 1.35 kg N2O-N ha-1.  Previous research has 451 

often not measured N2O emissions for an entire year. For example, McTaggart et al. (1997) 452 

measured emissions from sowing until early June and although Smith et al. (1998a) measured 453 

N2O emissions for a year from fertilisation, measurements were suspended during a period of 454 

low fluxes in the summer and resumed again after autumn cultivation. If we had not taken 455 

measurements during the summer, this period of high emissions would not have been recorded. 456 

The large emissions during the summer months are suggested to be due to underlying natural 457 

“background” variation in N2O fluxes over space and time.  458 

Although Bouwman (1996) and the IPCC recommend the use of N2O emissions data from at 459 

least 12 months of measurements in order to calculate EFs to achieve an accurate reflection of 460 

management practices, we have calculated EFs over three timescales to analyse the effects of 461 

background N2O emissions on EFs. There were interesting variations between the seasonal and 462 

annual EFs with annual EFs (-0.28 – 1.35 %) generally being greater than seasonal EFs (-0.04 – 463 
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0.86 %) (Table 2) due to the contribution of emissions over the winter period. Calculating EFs 464 

over a longer time period did not always result in a greater EF, for example larger EFs were 465 

commonly obtained over the 5 week calculation period in comparison to the seasonal period. 466 

This is due to control emissions representing a lower proportion of total emissions immediately 467 

following fertiliser application, and the subtraction of these from treatment emissions during the 468 

EF calculation thereby causes greater calculated EFs. The question of which EF is more 469 

appropriate to use depends on the desired outcome. Our findings indicate that, despite most 470 

emissions usually occurring during the 5 week period after fertiliser application, the 5 week EF 471 

calculation is inappropriate, when environmental conditions (e.g. rainfall and temperature) after 472 

this time period are conducive to N2O production. This work illustrated that there can be further 473 

significant N2O emissions which should be included in EF calculations to accurately reflect N2O 474 

EFs for arable soils. However, the decision to use a seasonal or annual EF is more complex. If it 475 

is desirable to calculate an EF which accurately reflects the effects of specific treatments on N2O 476 

fluxes from arable soils then the results of this work suggest that a seasonal EF should be used in 477 

order to remove the effects of background N2O fluxes which are likely to be unrelated to the 478 

applied treatments. Seasonal EFs may therefore provide a more accurate indication of the 479 

emissions attributable to fertilisation and specific treatments which makes the use of year long 480 

EFs for this purpose questionable. However, this would require removal of a large part of the 481 

data set, which Smith et al. (2012) suggests would usually decrease the magnitude of calculated 482 

EFs by 30 % in comparison to those which include a full year’s data.  483 

4.6 Comparison to IPCC “default EF” and previously reported values 484 

The mean EFs calculated in this experiment are considerably lower than the IPCC’s standard 485 

EF1 value of 1.25 % which is currently applied to much of the UK, and also lower than the new 486 
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EF of 1 %. Mean annual and seasonal EFs were calculated for the purpose of comparison to the 487 

IPCC standard value and as such only treatments within the normal range of fertilisation were 488 

included (AN 80, AN 120, AN 160, Urea 120). In our study the mean annual EF from these 489 

treatments was 0.79 % and the mean seasonal EF was 0.56 %. The EFs of the NI amended 490 

treatments were lower than the mean annual EF, due to the decreased N2O emissions associated 491 

with these treatments, however the AN (3 splits) treatment EF was higher than the mean annual 492 

EF although lower than the EF of the equivalent AN 120 treatment. The AN 120 treatment is 493 

representative of the amount of N fertiliser which would be commercially applied in comparable 494 

situations in Scotland. The annual EF for this treatment is 1.35 % which is greater than the IPCC 495 

Tier 1 EF of 1.25 % or 1 %. Previous research into EFs from spring barley in Eastern Scotland 496 

found EFs of 0.6 - 0.7 % (McTaggart et al., 1997; Smith et al., 1998 a,b), demonstrating a much 497 

smaller range of EFs than those found in this experiment. It is suggested that the large range of 498 

EFs obtained from this experiment are due to the range of fertiliser application rates, intense 499 

sampling frequency and unexpectedly large emissions from the control plots. Also, the unusual 500 

weather conditions over the study period which involved large amounts of rainfall over the 501 

summer months during which time the treatment effects were no longer occurring, resulted in 502 

large emissions which were not associated with individual treatments.  503 

Smith et al. (1998a) compared EFs from Scottish arable and grassland sites to the data plotted by 504 

Bouwman (1996) and found that N2O emissions as a proportion of applied N, from the Scottish 505 

sites, and in particular from the Scottish arable sites, are generally lower than from the rest of the 506 

UK. This difference has been suggested to be due to lower temperatures in Scotland resulting in 507 

lower N2O emissions (Smith et al., 1998a). However, if just the EF calculated for the standard 508 

fertiliser application rate (AN 120) is considered, then the EF is higher than the IPCC’s 1.25 % 509 
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default EF and the new 1 % EF. Again, this is suggested to be due to the unusual weather 510 

conditions experienced during the experimental period. Overall, the range of EFs obtained from 511 

this experiment appear to support the movement from the IPCC’s 1.25 % EF to the 1 % EF when 512 

factors such as the climatic conditions are taken into account. It must also be considered that the 513 

experiment was only one year in length, and that to obtain a more accurate view of EFs from 514 

these treatments, more experiments of this type would be required in order to take into account 515 

variables such as soil and climate. 516 

 517 

5. Conclusion 518 

This research demonstrated that area based emissions of N2O are linearly related to N input, 519 

supporting the IPCC’s approach to calculating EFs. Soil % WFPS was shown to have a 520 

significant effect on the magnitude of N2O emissions and to have greater control over N2O 521 

production than soil mineral N. For this typical Scottish spring barley crop and soil system 522 

receiving mineral fertiliser, the optimum fertiliser application rate is 160 kg N ha-1, as indicated 523 

by the calculated N2O emission intensities of all treatments. Emission intensity results also 524 

highlight the need to avoid under-fertilisation of crops if crop yields are to be maintained whilst 525 

minimising N2O emissions. The use of a NI, split fertiliser applications and urea instead of AN, 526 

showed the potential to reduce N2O emissions, however, the amendment of treatments with a NI 527 

and 3 split treatment also decreased crop yield, raising questions over their suitability as N2O 528 

mitigation options in arable agriculture and prompting the need for further investigation. The 529 

importance of the contribution of background emissions to calculated EFs was demonstrated and 530 

the need for year long measurements of N2O emissions is questioned. Calculated annual EFs 531 
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were generally lower than the IPCC’s default Tier 1 EF of 1.25 % and the new value of 1 %, but 532 

largely support movement to, and use of, this new EF value, although further research in other 533 

locations is required to assess its suitability for use throughout the UK.  534 
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