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INTRODUCTION

Enteric ruminant methane is the most important 
greenhouse gas emitted from the pastoral industry. 
The agricultural sector contributed 4.6 billion t of CO2 
equivalent [GtCO2–eq]/yr in 2010 to global green-
house gas emissions, of which enteric ruminant fer-

mentation contributed 2 GtCO2–eq/yr (Tubiello et al., 
2013). Dairy cattle were the second highest source of 
enteric methane (19.44%) behind nondairy cattle at 
56.04% (FAOSTAT, 2013). Methane production rep-
resents an energy loss for ruminants with 2 to 12% of 
the GE intake being lost as enteric methane (Blaxter, 
1962; Johnson and Johnson, 1995). This arises from 
feed intake and composition, fermentation of feed 
including passage rate and rumen volume, the physi-
ological state of the animal, and variation between in-
dividual animals (Hristov et al., 2013a,b; Goopy et al., 
2013; Pinares-Patiño et al., 2013). Therefore, there are 
various mitigation strategies to reduce methane emis-
sions per animal and per unit of production. These in-
clude improved productivity and efficiency of the ani-
mal, reduced culling at herd or flock level, change in 
feed type, use of supplements, immunization against 
methanogenic archaea, and direct selection on meth-
ane trait for genetic improvement (Martin et al., 2010; 
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ABSTRACT: Enteric ruminant methane is the most 
important greenhouse gas emitted from the pastoral 
agricultural systems. Genetic improvement of live-
stock provides a cumulative and permanent impact on 
performance, and using high-density SNP panels can 
increase the speed of improvement for most traits. In 
this study, a data set of 1,726 dairy cows, collected 
since 1990, was used to calculate a predicted meth-
ane emission (PME) trait from feed and energy intake 
and requirements based on milk yield, live weight, 
feed intake, and condition score data. Repeated mea-
surements from laser methane detector (LMD) data 
were also available from 57 cows. The estimated 

heritabilities for PME, milk yield, DMI, live weight, 
condition score, and LMD data were 0.13, 0.25, 0.11, 
0.92, 0.38, and 0.05, respectively. There was a high 
genetic correlation between DMI and PME. No SNP 
reached the Bonferroni significance threshold for the 
PME traits. One SNP was within the 3 best SNP for 
PME at wk 10, 20, 30, and 40. Genomic prediction 
accuracies between dependent variable and molecu-
lar breeding value ranged between 0.26 and 0.30. 
These results are encouraging; however, more work 
is required before a PME trait can be implemented in 
a breeding program.
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Wall et al., 2010). Of these, genetic improvement has a 
cumulative and permanent outcome.

High-density SNP panels have SNP selected to be 
equally distributed across the genome and all potential 
QTL are captured due to linkage disequilibrium with 
at least 1 of the SNP (Meuwissen et al., 2001). The 
ability to genotype thousands of SNP in single SNP 
panels has been used to map Mendelian traits, investi-
gate patterns of linkage disequilibrium, map QTL, in-
vestigate domestication, and implement genomic se-
lection for genetic gain (Kijas et al., 2009). Genomic 
selection was proposed by Meuwissen et al. (2001), 
where estimates are calculated on the effect each SNP 
has on a trait; the sum of the SNP effects can then be 
used to predict the animals’ genetic worth. Combined 
with EBV, an overall genomic breeding value can be 
generated, which could potentially lead to doubling 
the rate of genetic gain already achieved through us-
ing EBV calculated from phenotypic data alone. The 
greatest benefits are for those traits that are hard to 
measure, measured late in life, or sex limited.

Enteric methane is an exemplar of a difficult trait 
to measure and methane emissions are not routinely 
measured as part of day to day management. A re-
cent review by Pickering et al. (2013) stated that al-
though there has been some research in quantifying 
methane emissions in certain environments, there is 
still significant work required before selection for re-
duced methane emissions could be incorporated into 
breeding programs. Measurement of enteric methane 
is costly using current respiration chamber techniques, 
but identifying a low-cost measurement technique or 
appropriate proxy still requires an initial evaluation 
against existing protocols. There is also insufficient 
knowledge about the correlations between predictor 
traits and methane emissions. Finally, the knowledge 
around genetic relationships between methane and 
production traits is incomplete.

The aim of this study was to calculate predicted 
methane emission (PME) trait in British dairy cows 
and investigate its genetic relationship with key pro-
duction traits. Laser methane detector (LMD) data was 
available for a subset of the animals and the correla-
tion between PME and laser data was also investigated. 
Finally, using EBV across the lactation, a genomewide 
association study (GWAS) was undertaken to identify 
genomic regions that may be associated with methane 
emissions. To undertake this work, the predicted meth-
ane equation from de Haas et al. (2011) was used.

MATERIAL AND METHODS

Blood sample collection was conducted in accor-
dance with U.K. Home Office regulations (PPL number 

60/4278 Dairy Systems, Environment and Nutrition) 
and procedures were approved by the Scotland’s Rural 
College (SRUC) Animal Experimentation Committee. 
Otherwise, the study was restricted to routine on-farm 
observations and measurements that did not inconve-
nience or stress the animals.

Data

Data on 1,726 animals were obtained from the 
Langhill herd records collected since 1990 and has 
been well documented (e.g., Pollott and Coffey, 
2008; Bell et al., 2010). The herd was located on the 
University of Edinburgh Langhill farm (Edinburgh, 
East Scotland, UK) until 2001 when it moved to 
the SRUC Dairy Research Centre on Crichton farm 
(Dumfries and Galloway, South West Scotland, UK) 
with data collection recommencing in 2002 after a pe-
riod of acclimatization. The Langhill herd consisted of 
2 genetic lines of cows selected for either weight of fat 
plus protein milk solids (S]) or selected to remain close 
to the average U.K. genetic merit for fat plus protein 
(C). During the study period, the cows were housed 
together and cows from the C and S lines were divided 
into either a high or low concentrate–based diet (feed 
group). Before 2001, this was approximately 1,500 and 
2,500 kg concentrate per lactation for the low (n = 360) 
and high (n = 394) group, respectively. From 2002, the 
herd was divided into 2 contrasting management sys-
tems, a high-forage (HF) and low-forage (LF) system. 
In the HF system (n = 316), the cows grazed when suf-
ficient herbage was available and were fed a complete 
diet containing between 70 and 75% forage in the DM 
when grass heights fell below set values and in the win-
ter months. In the LF system (n = 305), the cows were 
housed throughout the year and were fed a complete 
diet containing between 45 and 50% forage in the DM. 
The LF diet contained approximately 1,200 kg concen-
trate while the HF diet contained approximately 3,000 
kg concentrate in a year. The forage component of the 
complete diet consisted of grass silage, maize silage, 
and whole crop (Chagunda et al., 2009).

The data included daily milk yield (MY; 1,431,949 
observations) summed from daily morning and after-
noon milking while on the Langhill farm and 3 times 
a day milking on the Crichton farm. Protein, fat, and 
lactose milk composition was measured weekly. Live 
weight (LW) and BCS were measured weekly across 
the lactation (or average LW across the week based on 
weights 3 times a day after milking on the Crichton 
farm) and daily feed intake measures were undertak-
en for 3 to 4 consecutive days a week. Feed intake 
was measured through Calan Broadbent gates (before 
and including 2001) or HOKO automatic gates (after 
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Genetic parameters for methane 13

2001). Morning, middle, and afternoon MY and feed 
intake measurements deviating by more than 3 SD 
from the average in that lactation were discarded.

The models formulated by Coffey et al. (2001) 
were used to estimate the amount of energy consumed 
and required for maintenance in megajoules per day. 
This was converted into daily DMI (kg DMI/d) con-
sumed and required for maintenance by dividing by 
the ME of the feed used.

Predicted Methane Emission

Estimation of a PME was centered on the equation 
generated by de Haas et al. (2011), which was modified 
and calculated for each animal as follows: PME (g/d) = 
feed intake (kg of DM/d) × 18.8 (MJ/kg DM) × 0.06 × 
[1 + 0.018 × (level of intake – 1)]/0.05565 (MJ/g).

The equation by de Haas et al. (2011) was altered 
for a British fed dairy cow rather than a Dutch system, 
that is, the average GE of ruminant diets was taken as 
18.8 MJ/kg DM and the correction for the level of feed 
intake as a multiple of maintenance was 1 + 0.018 × 
(level of intake – 1) (Alderman and Cottrill, 1993). The 
energy generated by methane of 0.05565 MJ/g (IPCC, 
2006) and the methane production level (MJ/d) of 0.06 
× GE intake as recommended by the Intergovernmental 
Panel on Climate Change (2000) for dairy cattle in de-
veloped countries remained the same.

Predicted methane emission was calculated daily 
and then averaged for each week of lactation. Predicted 
methane emission for lactations 1 to 5 and wk 1 to 44 
were used to estimate genetic parameters.

Laser Methane Detector

Laser methane detector data was available on 57 
cows born from 2004 to 2009 and was measured in 
2010, 2011, and/or 2012. A point measure in mg/kg 
per meter was taken every 0.5 sec within a period of 
1 to 5 min up to 3 times a day, 30 min apart, on 3 dif-
ferent days (Chagunda et al., 2013). Cows were ran-
domly measured either in early, mid, or late lactation. 
Measurements were done at a distance of 1 m from the 
cows nostrils.

Each measurement of 1 to 5 min shows a cyclic 
pattern of troughs and peaks, with the peaks reflecting 
bouts of eructation. The peaks within a period were 
identified and the average of each peak was taken as 
the period emissions in mg/kg. Then, where possible, 
average daily methane emission for each week of lac-
tation was estimated for each cow measured.

Statistical Analysis

Variance component estimation was performed fit-
ting a bivariate model. The bivariate model between 
LMD data and PME consisted of a mixed linear model 
for LMD data and a random regression animal model 
for PME using ASReml (Gilmour et al., 2009). The 
model for LMD data was

yijkl = laci + myrk(wkj) + animall + eijkl,

in which laci refers to the effect of the lactation i, 
myrk(wkj) is the interaction between year of measure-
ment k and jth week in lactations, animall is the random 
effect of lth animal, and eijkl is the random error term. 
The random regression model fitted for PME was

2 2 2

0 0 0

Ø Ø Øtijk i jtk k jtk k jtk k tijk
k k k

y F u p e
= = =

= + + + +å å åβ
,

in which Fi refers to the fixed effects of genetic groups, 
feed groups, Holstein percentage, year of calving by 
month of calving, and linear and quadratic effects of age 
at calving; βk are the fixed regression curves from fit-
ting polynomials of order 2 on weeks of lactation nested 
within lactation number; ujk and pjk are second order 
polynomials for animal and permanent environmental 
effect, respectively; and etijk is the random error term.

Bivariate runs between PME with MY, DMI, LW, 
and BCS were also performed. The same random 
regression model fitted for PME was also fitted for 
MY, DMI, and LW in the bivariate analysis. The EBV 
were calculated for PME at wk 10, 20, 30, 40, and 
44 from the PME–LMD bivariate analysis for the ge-
nomic analyses below. The bivariate results were used 
as LMD data may adjust PME beneficially, although 
it was hypothesized this would be minimal given the 
limited LMD data set. Software Mix99 (Lidauer et al., 
1999) was used to calculate reliabilities for PME at wk 
10, 20, 30, 40, and 44 and LMD data.

A separate bivariate between PME and LMD data 
was performed to calculate repeatability of measures 
across weeks within a lactation and across lactations. 
Fixed effects for both traits were the same as above. 
Animal and permanent environmental effects were fit-
ted for both traits. The terms βk, ujk, and pjk were not 
fitted for PME.

A pedigree file was constructed and consisted of 
2,131 records. There were 157 sires and 923 dams 
with progeny.

Genotyping

High-quality genomic DNA samples were isolated 
from heparinized blood. Of the 2,131 animals available 
in the pedigree, 731 animals had been genotyped with 
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the Illumina BovineSNP50 BeadChip (Illumina Inc., 
San Diego, CA) containing 54,001 SNP. Genotyping 
results were processed through a quality control pipe-
line before analysis. Animals were discarded if they 
had a call rate < 96% (n = 27) and SNP were discarded 
if they had a call rate < 97%, appear nonautosomal 
(including pseudoautosomal), had a minor allele fre-
quency = 0, and were on chromosome X. This re-
moved 5,044 of the 54,001 SNP genotyped.

Genomewide Association Analysis and Genomic 
Prediction

Dependent variables (y) of the 731 animals geno-
typed were calculated taking into account the individu-
als’ own and descendants’ information. Parent average 
effects were removed from the EBV using the method 
described by Garrick et al. (2009), assuming all genet-
ic variation was explained by the markers (c = 0). The 
resulting values are deregressed by the reliabilities of 
their EBV with parent contributions removed.

Data was filtered on breed and reliability before 
analysis. Animals were discarded if they were less 
than 75% Holstein. Only those y values with reliabili-
ties greater than or equal to 0.8 h2 were used as pheno-
types. There were 462, 461, 246, 432, and 402 y val-
ues for PME at wk 10, 20, 30, 40, and 44, respectively, 
used for genomic prediction and GWAS. For estimat-
ing accuracy of genomic prediction, individuals with 
y values were further assigned into training and vali-
dation sets based on birth year (Table 1); for GWAS, 
all animals (training and validation) were used in the 
analysis. The first birth year for validation animals was 
2003. Analyses were performed using R software (R 
Core Team, 2013). To estimate SNP effects (bi), fixed 
heritabilities, obtained from the PME–LMD bivariate 
analysis, of 0.06, 0.06, 0.07, 0.13, and 0.17 for PME 
at wk 10, 20, 30, 40, and 44, respectively, were used 
assuming additive genetic variance (σ2

u) was equal to 
the value used to calculate the EBV. The bi were calcu-
lated using the genomic BLUP model, with a genomic 
relationship matrix (G1) of VanRaden (2008):

G1 = ZZ′/[2∑pi(1 – pi)],

in which Z is the SNP matrix –2pi, 1 – 2pi, and 2 – 2pi 
for BB, AB, and AA, respectively, and pi is the fre-
quency of the A allele of the ith SNP in the population. 
A linear mixed model was fitted to y, including the 
first 6 principal components (PC) of G1 to account for 
population stratification. Animal effects distributed as 
N(0, G1σ2

u) was fitted as a random term and residual 
effects distributed as N(0, R), in which R is a diagonal 

matrix with diagonal elements (1 – r2)/r2, in which r2 
is the reliability of y.

Significant values for bi were calculated assuming bi 
followed a normal distribution with mean 0 and variance

var = [2pi(1 – pi)m × varbi]/∑[2pi(1 – pi)],

in which m is the number of SNP. The –log10(P) values 
were graphed in a Manhattan plot using positions from 
bovine genome version 4.6. To account for multiple 
testing, a genomewide nominal significance thresh-
old for type 1 error of less than 5% was approximated 
using the Bonferroni correction (Rice, 1989), 0.05/
nSNP equal to P-value of 1.02 × 10–6 or –log10(P) of 
approximately 6. This is stringent as it assumes that 
each SNP genotype is independent. A lower nominal 
threshold at P < 0.001 [–log10(P) = 3] was also used.

To estimate the accuracy of genomic prediction, 
molecular breeding values (MBV) were obtained by 
multiplying bi by SNP genotype (BB = 0, AB = 1, and 
AA = 2) and summing overall SNP within an individual. 
Assuming that the effective heritability (hg2) is equal 
to the average r2, prediction accuracy was estimated as 
cor(y, MBV)/hg, weighted by 1/(1 – r2) using animals 
in the validation set.

RESULTS

A summary of the raw data is presented in Table 2. 
From the overall data set, there were 1,678 cows with 
1,144,665 daily MY observations for wk 1 to 44 up to 
the first 5 lactations of their life. After calculating av-
erage daily measurements for each week of lactation, 
this equated to 177,019 observations for MY, 96,588 
observations for DMI, and 67,304 PME observations. 
There were only 45 animals with PME and LMD mea-
surements (total of 97 individual LMD observations) 
for the same weeks.

Milk yield followed the standard lactation curve, 
with a sharp increase in early lactation, reaching a 
peak of average daily MY of 35.14 kg/d in wk 6 and a 
subsequent gradual decrease to 20.43 kg/d at wk 44 of 
lactation (Fig. 1). Predicted methane reached a maxi-

Table 1. Number of animals genotyped on the Illumina 
BovineSNP50 BeadChip (Illumina Inc., San Diego, CA) 
and assigned to training and validation sets for each trait
Trait Training Validation Total no.
Predicted methane emission wk 10, g/d 227 235 462
Predicted methane emission wk 20, g/d 227 234 461
Predicted methane emission wk 30, g/d 108 138 246
Predicted methane emission wk 40, g/d 210 222 432
Predicted methane emission wk 44, g/d 191 211 402
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Genetic parameters for methane 15

mum by wk 11, with an average daily PME of 245.30 
g/d. The curve then stayed at around this level for the 
remaining weeks of lactation. Dry matter intake fol-
lowed a curve similar to PME, with the curve settling 
out at a maximum of average daily DMI of 17.29 kg/d 
by wk 11. For LW, there was an initial drop of ap-
proximately 10 kg to average of 583.89 kg at wk 4 and 
then a gradual increase to an average LW of 647.22 at 
wk 44. For BCS, there was a decrease from average of 
2.55 to 2.10 at wk 15 and then a gradual increase to an 
average BCS of 2.49 at wk 44.

There were limited LMD data, with animals ran-
domly measured in either early, mid, or late lactation. 
There were no measurements available for wk 26, 28 
to 38, and 41 (Fig. 2).

Genetic Analysis

A summary of heritability estimates for all traits 
plus genetic and phenotypic correlations with PME 
across lactation is shown in Table 3. These are repre-
sented graphically in supplementary material (Fig. 1–3). 
Heritability for PME was relatively stable across lacta-
tion (Fig. 3), with a mean heritability of 0.13 and peak 
heritability at wk 44 of 0.30. Genetic correlation was 
close to 1 with DMI across the whole lactation. This 
is as expected because the calculation of PME relies 

heavily on feed intake. The genetic correlation with MY 
followed the lactation curve for PME in Fig. 1 above, 
with a closer relationship at wk 44. For LW the genetic 
correlation slowly decreased as moved through lacta-
tion, with a final correlation at wk 44 of 0.62. For both 
BCS and LMD data, the genetic correlation started as 
positive with peak correlation at wk 4 and 14, respec-
tively; the correlation became negative by wk 18 and 
33, respectively. The phenotypic correlation between 
PME and DMI and BCS was relatively flat across lac-
tation. For MY, phenotypic correlation increased and 
became relatively stable by week 12 (rp = 0.59–0.58); 
the phenotypic correlation started to decrease at wk 32. 
For LW, the phenotypic correlation decreased slowly 
through lactation.

A separate bivariate between PME and LMD data, 
fitting a repeatability model (instead of a random re-
gression model) fitted for PME, was performed to 
estimate repeatability of weekly measures within 
and across lactations. Heritability for PME and LMD 
data was 0.06 ± 0.02 and 0.11 ± 0.16, respectively. 
Repeatability within a lactation was 0.53 ± 0.01 and 
0.07 ± 0.08, respectively, and across lactations was 
0.38 ± 0.01 and 0.03 ± 0.08, respectively.

Figure 1. The lactation curves for predicted methane emission 
(PME; g/d; solid line), milk yield (MY; kg/d; dashed line), and DMI (kg/d; 
dotted line) up to wk 44 of lactation. 

Table 2. Number of animals, observations, mean, and SD for each trait
Trait Cows No. daily No. weekly Mean SD
Milk yield, kg/d 1,678 1,144,665 177,019 28.50 8.88
Predicted methane emission, g/d 1,305 274,211 67,304 230.59 61.31
DMI, kg/d 1,337 376,849 93,588 16.33 4.36
Laser methane data, mg/kg 57 1,308 173 180.22 46.99
Live weight, kg 1,629 565,804 150,916 606.70 73.08
BCS 1,588 144,892 126,122 2.32 0.50

Figure 2. The lactation curve for laser methane detection (LMD) 
data (mg/kg) up to wk 44 of lactation. 

D
ow

nloaded from
 https://academ

ic.oup.com
/jas/article-abstract/93/1/11/4700954 by SR

U
C

 – Scotland’s R
ural C

ollege user on 04 July 2019



Pickering et al.16

Genomewide Association Analysis

Population Structure. Principal components were 
fitted to account for any population stratification. The 
first 6 PC (Table 4) were sufficient to account for ap-
proximately 40% of the genetic variation contained in 
the genomic relationship matrix. The first 2 PC cal-
culated for all animals that were genotyped and had 
breeding values for PME traits (n = 647) are shown 
in Fig. 4. The first PC separated the 2 selection lines 
(C and S) while the second PC further separated the 
control line animals by familial relationships.

Association Analysis. The quantile–quantile plots 
(Supplementary Fig. 4) showed that the deviation of 
the observed –log10(P) values from the expected val-
ues was insignificant (lambda ranged between 0.99 and 
1.04). The SNP seen to be deviating from (were higher) 
the expected values (0–1 line) were interpreted as SNP 
associated with the trait of interest, as the SNP are de-
parting from the null hypothesis of no genetic associa-
tion and no linkage disequilibrium between SNP. There 
were 35, 41, 33, 38, and 39 SNP that reached the nomi-
nal genomewide significance threshold of P < 0.001 for 
PME at wk 10, 20, 30, 40, and 44, respectively.

There were 8 SNP above a threshold of –log10(P) 
of 4 for PME at wk 10, 20, 30, 40, and 44 on BTA4 

(rs41591564 and rs110492803), BTA5 (rs42384792), 
BTA7 (rs110349600), BTA11 (rs41620644), BTA15 
(rs41763705), BTA22 (rs110837838), and BTA23 
(rs109661590; Fig. 5A–5E; Supplementary Table 1). 
There was 1 SNP (rs110349600) located on BTA7 that 
was within the best 3 SNP [–log10(P) between 4.12 and 
4.45] for PME at wk 10, 20, 30, and 40 (was rank 10 
for PME at wk 44). The minor allele frequency (B al-
lele) was 0.15 and the average SNP effect was –0.43 g/d 
(range –0.62 to –0.16 g/d for each extra A allele). There 
were 2 genes within 100 kb of this SNP: the RUN and 
FYVE domain containing 1 (RUFY1; Online Mendelian 
Inheritance in Man [OMIM] number 610327) and 
Heterogenoeous Nuclear Ribonucleoprotein H1 
(HNRNPH1; OMIM number 601035). The region also 
overlapped 10 QTL previously reported in the literature, 
including QTL for fat thickness at the 12th rib, marbling 
score, milk β-casein percentage, milk fat percentage, 
milk fat yield, maternal weaning weight, birth weight, 
dystocia, scrotal circumference, and stillbirth.

The Pearson correlation between the SNP –log10(P) 
values for the traits ranged between 0.87 and 0.93 when 
between 2 immediate traits, that is, PME at wk 10 and 
20, but decreased as time increased between the 2 traits, 
that is, 0.60 for PME at wk 10 and 44 (Table 5).

Genomic Prediction

The accuracies of the 6 traits calculated as the weight-
ed accuracy of the correlation between MBV and y were 
0.29, 0.30, 0.28, 0.30, and 0.26 for PME at wk 10, 20, 30, 
40, and 44, respectively. The accuracies were compared 
to the theoretical accuracies using Eq. [8] from Goddard 
(2009), following the assumptions of an effective pop-
ulation size of 99 (Table S1 in The Bovine HapMap 
Consortium, 2009), number of animals available per trait, 
and genome length of 30 M. The theoretical accuracies 
were 0.15, 0.14, 0.08, 0.14, and 0.11 for PME at wk 10, 
20, 30, 40, and 44, respectively. The accuracy estimates 
obtained in this study are higher than those theoretically 

Figure 3. Genetic variance (solid line; SE range 95.80–312.82) and 
heritability (h2; dashed line; SE range 0.03–0.05) of predicted methane 
emission for each week of lactation, averaged across all bivariate runs.

Table 3. Minimum, maximum, and mean values for heritability (h2) and genetic (rg) and phenotypic (rp) cor-
relations for all traits for wk 1 to 44 of lactation in bivariate ASReml analysis with predicted methane emission 
(PME; g/d)

 
Traits1

h2 rg rp
Minimum Maximum Mean Minimum Maximum Mean Minimum Maximum Mean

PME 0.05 ± 0.03 0.30 ± 0.06 0.13 ± 0.04
DMI 0.05 ± 0.03 0.28 ± 0.05 0.11 ± 0.03 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00
MY 0.20 ± 0.03 0.35 ± 0.04 0.25 ± 0.04 0.42 ± 0.10 0.71 ± 0.17 0.55 ± 0.12 0.41 ± 0.01 0.59 ± 0.02 0.55 ± 0.01
LW 0.89 ± 0.03 0.93 ± 0.03 0.92 ± 0.03 0.62 ± 0.03 0.93 ± 0.08 0.84 ± 0.05 0.40 ± 0.02 0.53 ± 003 0.49 ± 0.02
BCS 0.25 ± 0.03 0.46 ± 0.05 0.38 ± 0.04 –0.11 ± 0.16 0.44 ± 0.20 0.07 ± 0.18 0.07 ± 0.02 0.11 ± 0.03 0.09 ± 0.02
LMD data 0.05 ± 0.07 –0.50 ± 0.78 0.59 ± 0.98 0.21 ± 0.90

1DMI is expressed in kilograms per day; MY = milk yield (kg/d); LW = live weight (kg); LMD = laser methane detector (mg/kg). 
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Genetic parameters for methane 17

calculated. The reason for the higher accuracies is the 
theoretical values are for “unrelated” animals, that is, ap-
proximately 10 generations or more distant. In this study, 
the validation animals were 5 yr removed, at maximum, 
from the youngest animals in the training set and there-
fore have higher estimated accuracies as expected from 
theory. In practice, the validation animals would have an 
ancestor 1 to 3 generations distant in the training data set.

DISCUSSION

The objective of this study was to evaluate the 
use of PME in a British dairy data set and whether 
this trait could be used for genomic selection. Enteric 
CH4 emissions are not routinely measured within pro-
duction systems; therefore, for genetic improvement, 
either an industry reference herd requires complete 
phenotyping for CH4 to establish a training set for 
genomic prediction or, alternatively, a proxy is de-
veloped, which can be used for genetic selection. The 
work of de Haas et al. (2011) has previously investi-
gated the use of PME as a proxy for dairy cows. We 
modified their equation to suit a British fed dairy cow 
and combined it with laser methane detection data in a 
bivariate run to produce estimated breeding values for 
PME for subsequent use in a GWAS.

The limitations of the PME equation are well de-
scribed by de Haas et al. (2011). These included that 
the equation relies on the variation in feed intake of 
the animals; uses the Intergovernmental Panel on 
Climate Change Tier 2 method, which is not suit-
able for differing diets (although only 2 different di-
ets were used here, high or low concentrate; and was 
taken into account when calculating daily DMI using 
equations from Coffey et al., 2001); and assumes CH4 
emission per unit feed GE is constant and indepen-
dent of the variation in animals’ ability to ferment its 
feed. Methane conversion rates (Ym) are not varied in 
the equation and therefore this predicted measure can 
capture only the variation in methane emissions due 

to feed efficiency and not any potential variation that 
exists in the methane conversion factor. Furthermore, 
it is not the same as measuring methane itself and we 
were limited in the data to accurately assess the cor-
relation between PME and LMD data.

The low repeatability of LMD data is likely due 
to the paucity of the data for LMD data. There is also 
limited data on the relationship between LMD data and 
respiration chambers, which are considered the refer-
ence method for methane measurement. For dairy cattle, 
correlation coefficients were 0.80 and 0.47 for an indi-
rect open-circuit and an open-circuit respiration cham-
ber, respectively (Chagunda and Yan, 2011; Chagunda 
et al., 2013). Until it can be demonstrated that LMD 
data is repeatable in the current context and additional 
data is available, it is not recommended that LMD data 
be used as a measurement of methane emissions in ge-
netic selection programs. Therefore, only GWAS and 
genomic prediction results for PME are presented here. 
The PME equation relies heavily on DMI, as seen by 
the close to unity genetic and phenotypic correlations 
of PME to DMI. This relationship was also seen by de 
Haas et al. (2011). The PME equation does not allow for 
varying Ym of the animal. The initial hope of this study 
was that the LMD data could be used to beneficially 
modify the PME EBV estimates to take account of the 
heavy influence on DMI. Due to the limited LMD data 
set, this was not achieved and the correlation between 
PME EBV from the univariate and bivariate analyses 
ranged between 0.99 and 1.00.

Due to the high correlation between PME and DMI, 
this is equivalent to selecting for altered residual feed 

Table 4. The breed genotypic variance explained by 
the first 6 principal components (PC) for each trait
Trait PC1 PC2 PC3 PC4 PC5 PC6
Predicted methane  
  emission wk 10, g/d

0.19 0.07 0.06 0.04 0.03 0.03

Predicted methane  
  emission wk 20, g/d

0.19 0.07 0.06 0.04 0.03 0.03

Predicted methane  
  emission wk 30, g/d

0.18 0.07 0.06 0.04 0.04 0.03

Predicted methane  
  emission wk 40, g/d

0.18 0.07 0.06 0.04 0.04 0.03

Predicted methane  
  emission wk 44, g/d

0.19 0.07 0.06 0.04 0.04 0.03

Figure 4. First 2 principal components (PC) calculated for all ani-
mals with genotypes, separated by genetic line controls (black) and se-
lected for kilograms of fat plus protein (gray).
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intake (RFI). Fitzsimons et al. (2013) and Pickering et 
al. (2013) have looked at the relationship between RFI 
and methane and suggest that selection for improved 
RFI would reduce methane emissions. Fitzsimons et 
al. (2013) indicated a decrease in methane by 23 g/d 
was associated with each 1 kg DM/d decrease in RFI. 
Expressed in percentages, this means a 10% decrease 
in DMI (kg DM/d) would result in a 6.1% decrease in 
methane (g/d). Work by Basarab et al. (2012) and ex-
panded in Pickering et al. (2013) suggested that the car-
bon intensity of 4 different calf- and yearling-fed beef 
production systems would reduce by 8.85%, compared 
to baseline scenario, when there was a 10% reduction in 
DMI (equivalent to 10% improvement in feed efficien-
cy) via selection for low RFI. In summary, selection for 
RFI slightly increases methane emissions per unit of 
DMI but decreases overall daily emissions per animal.

One SNP on chromosome 7 was identified to be 
likely associated with PME, as it appeared in the top 3 
SNP for the traits PME at wk 10, 20, 30, and 40. There 
were 2 genes within 100 kb of this SNP, RUFY1 and 
HNRNPH1. RUFY1 is expressed in brain, kidney, liv-
er, lung, placenta, and testis and participates in early 
endosomal membrane trafficking (Yang et al., 2002). 
HNRNPH1 belongs to a set of polypeptides that bind 
heterogeneous nuclear RNA, produced by RNA poly-
merase II (Masuda et al., 2008). The heterogeneous 

nuclear ribonucleoprotein H-binding motif “UGGG” 
is overrepresented close to the 3′ end of introns, caus-
ing alternative splicing of the downstream exon. There 
has been little previous research on identifying re-
gions associated with methane emissions. As part of 
their study on PME, de Haas et al. (2011) performed 
a GWAS on cumulative PME from wk 1 to 30. There 
were no similarities between that study and the results 
presented here. A study in sheep involving the Ovine 
SNP50K bead chip identified peaks near Tetraspanin14 
(9) and Peroxisomal Biogenesis Factor (OAR 15) for 
gross methane (g/d) and methane yield (g/kg DMI), re-
spectively (Rowe et al., 2014). However, these regions 
did not reach Bonferroni significance. It is unclear 
how the 2 genes identified in this study could be in-
volved in methane emission or, alternatively, they sim-
ply reflect differences in intake. However, the regions 
that reached –log10(P) value of 4 are tabulated here 
(Supplementary Table 1) so that future researchers can 
combine these results in meta-analyses.

The accuracy between MBV and y for the PME 
traits ranged between 0.26 and 0.30. This is approxi-
mately equivalent to a measurement on an individual 
animal. These accuracies are similar to the accuracy 
between predicted breeding value and true breed-
ing value obtained by de Haas et al. (2011) for PME 
(0.37 and 0.21 for direct genomic values and EBV, 
respectively) and slightly lower than those obtained 
by Verbyla et al. (2010) for energy balance (0.52 and 
0.37 for direct genomic values and EBV, respectively). 
Accuracies for gross methane and methane yield in 
sheep data set were 0.37 and 0.43, respectively (Rowe 
et al., 2014). These are realistic starting values, given 
the limited data set and the accuracy of the measure-
ment technique.

Methane emissions are a difficult trait to measure. 
Currently, there are numerous ways to measure the 
methane emission trait or its proxies. However, use of 
different measurement techniques generates individual 
data sets that are hard to combine given our current poor 
knowledge of repeatability and heritability of these 
traits and their genetic correlation with each other. An 
international initiative is currently underway devising 

Table 5. Pearson correlations (±SE) between the –
log10(P) values for predicted methane emissions 
(PME) at wk 10 (PME10), 20 (PME20), 30 (PME30), 
40 (PME40), and 44 (PME44)
Trait PME20 PME30 PME40 PME44
PME10 0.87 ± 0.002 0.72 ± 0.003 0.69 ± 0.03 0.61 ± 0.004
PME20 0.93 ± 0.002 0.80 ± 0.003 0.64 ± 0.004
PME30 0.89 ± 0.002 0.74 ± 0.003
PME40 0.92 ± 0.002

Figure 5. Manhattan plot of –log10(P) values of SNP for predicted 
methane emissions at 10 (A), 20 (B), 30 (C), 40 (D) and 44 (E) wk. Ordered 
on the bovine genome version 4.6 map. The dash line represents P < 0.001 
significance.
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strategies to measure methane that would enable inter-
national meta-analysis (Pickering et al., 2013). The data 
and results presented here are an attempt to provide 1 
such data set. It currently could be combined with the 
data from de Haas et al. (2011) but both these data sets 
need a robust phenotypic and genetic correlation with 
actual methane emissions to be combined with data sets 
where these traits are measured directly. This includes 
knowledge about how these rankings change with feed-
ing level with 2 feeding levels offered in the current 
study while the study of de Haas et al. (2011) was ad 
libitum. The LMD measurements undertaken as part 
of this study were insufficient both in number and fre-
quency to derive these relationships.

Conclusions

This study has looked at using PME and LMD data 
both for genetic parameter estimates and for potential 
use for genetic prediction. The current quantity of data 
from the LMD data is not suitable for genomic predic-
tion. Predicted methane emission has been shown to be 
heritable and can be predicted via genomic selection 
with moderate accuracy and therefore could be used. 
However, its validity depends on the use of phenotypic 
equations derived from altering food intake in a small 
number of individuals to derive a methane feed intake 
relationship and has implicit assumptions that this same 
relationship holds for both phenotypic and genetic re-
lationships for these traits when animals are fed under 
a variety of conditions. Additional work is required to 
validate these predictions.

LITERATURE CITED
Alderman, G., and B. R. Cottrill. 1993. Energy and protein re-

quirements of ruminants: An advisory manual prepared by 
the AFRC technical committee on responses to nutrients. 
CAB International, Wallingford, UK.

Basarab, J., V. Baron, O. Lopez-Campos, J. Aalhus, K. Haugen-
Kozyra, and E. Okine. 2012. Greenhouse gas emissions from 
calf- and yearling-fed beef production systems, with and 
without the use of growth promotants. Animal 2:195–220.

Bell, M. J., E. Wall, G. Russell, and G. Simm. 2010. Effect of breed-
ing for milk yield, diet, and management on enteric methane 
emissions from dairy cows. Anim. Prod. Sci. 50:817–826.

Blaxter, K. L. 1962. The energy metabolism of ruminants. 
Academic Press, London, UK.

The Bovine HapMap Consortium. 2009. Genome-wide survey of 
SNP variation uncovers the genetic structure of cattle breeds. 
Science 324:528–532.

Chagunda, M. G. G., D. A. M. Römer, and D. J. Roberts. 2009. 
Effect of genotype and feeding regime on enteric methane, 
non-milk nitrogen and performance of dairy cows during the 
winter feeding period. Livest. Sci. 122:323–332.

Chagunda, M. G. G., D. Ross, J. Rooke, T. Yan, J.-L. Douglas, 
L. Poret, N. R. McEwan, P. Teeranavattanakul, and D. J. 
Roberts. 2013. Measurement of enteric methane from rumi-
nants using a hand-held laser methane detector. Acta Agricult. 
Scand. Sect. A. 63:68–75.

Chagunda, M. G. G., and T. Yan. 2011. Do methane measurements 
from a laser detector and an indirect open-circuit respiration 
calorimetric chamber agree sufficiently closely? Anim. Feed 
Sci. Technol. 165:8–14.

Coffey, M. P., G. C. Emmans, and S. Brotherstone. 2001. Genetic 
evaluation of dairy bulls for energy balance traits using ran-
dom regression. Anim. Sci. 73:29–40.

de Haas, Y., J. J. Windig, M. P. L. Calus, J. Dijkstra, M. de Haan, A. 
Bannink, and R. F. Veerkamp. 2011. Genetic parameters for 
predicted methane production and potential for reducing enteric 
emissions through genomic selection. J. Dairy Sci. 94:6122–6134.

FAOSTAT. 2013. Emissions – Agriculture – Enteric fermenta-
tion. http://faostat3.fao.org/browse/G1/GE/E. (Accessed 18 
March 2013.)

Fitzsimons, C., D. A. Kenny, M. H. Deighton, A. G. Fahey, and 
M. McGee. 2013. Methane emissions, body composition and 
rumen fermentation traits of beef heifers differing in residual 
feed intake. J. Anim. Sci. 91:5789–5800.

Garrick, D. J., J. F. Taylor, and R. L. Fernando. 2009. Deregressing 
estimated breeding values and weighting information for ge-
nomic regression analyses. Genet. Sel. Evol. 41:55.

Gilmour, A. R., B. J. Gogel, B. R. Cullis, and R. Thompson. 2009. 
ASReml user guide release 3.0. VSN International Ltd., 
Hemel Hempstead, UK.

Goddard, M. E. 2009. Genomic selection: Prediction of accura-
cy and maximisation of long term response. Genetica (The 
Hague) 136:245–257.

Hristov, A. N., J. Oh, J. L. Firkins, J. Dijkstra, E. Kebreab, G. 
Waghorn, H. P. S. Makkar, A. T. Adesogan, W. Yang, C. 
Lee, P. J. Gerber, B. Henderson, and J. M. Tricario. 2013a. 
Mitigation of methane and nitrous oxide emissions from ani-
mal operations: 1. A review of enteric methane mitigation op-
tions. J. Anim. Sci. 91:5045–5069.

Hristov, A. N., T. Ott, J. M. Tricario, A. Rotz, G. Waghorn, A. T. 
Adesogan, J. Dijkstra, F. Montes, J. Oh, E. Kebreab, S. J. 
Oosting, P. J. Gerber, B. Henderson, H. P. S. Makkar, and 
J. L. Firkins. 2013b. Mitigation of methane and nitrous ox-
ide emissions from animal operations: 3. A review of animal 
management mitigation options. J. Anim. Sci. 91:5095–5113.

Intergovernmental Panel on Climate Change (IPCC). 2000. 
Agriculture. In: L. G. M. F. J. T. Houghton, B. Lim, K. 
Treanton, I. Mamatry, Y. Bonduki, D. J. Griggs, and B. A. 
Callanders, editors, Good practice guidance and uncertainty 
management in national greenhouse gas inventories. OECD, 
Paris, France. http://www.ipcc-nggip.iges.or.jp/public/gp/eng-
lish/. (Accessed 3 July 2013.)

Intergovernmental Panel on Climate Change (IPCC). 2006. Chapter 
10: Emissions from livestock and manure management. In: S. 
Eggleston, L. Buendia, K. Miwa, T. Ngara, and K. Tanabe, edi-
tors, 2006 IPCC guidelines for national greenhouse gas inven-
tories, Vol. 4: Agriculture, Forestry and Other Land Use. IPCC. 
www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/
V4_10_Ch10_Livestock.pdf. (Accessed 3 July 2013.)

Johnson, K. A., and D. E. Johnson. 1995. Methane emissions from 
cattle. J. Anim. Sci. 73:2483–2492.

D
ow

nloaded from
 https://academ

ic.oup.com
/jas/article-abstract/93/1/11/4700954 by SR

U
C

 – Scotland’s R
ural C

ollege user on 04 July 2019



Pickering et al.20

Kijas, J. W., D. Townley, B. P. Dalrymple, M. P. Heaton, J. 
F. Maddox, A. McGrath, P. Wilson, R. G. Ingersoll, R. 
McCulloch, S. McWilliam, D. Tang, J. McEwan, N. Cockett, 
V. H. Oddy, F. W. Nicholas, and H. W. Raadsma, for the 
International Sheep Genomics Consortium. 2009. A genome 
wide survey of SNP variation reveals the genetic structure of 
sheep breeds. PLoS ONE 4(3):E4668.

Lidauer, M., I. Stranden, and E. Mäntysaari. 1999. Mixed mod-
el equations solver. MIX99 manual. Animal Production 
Research, Jokioinen, Finland.

Martin, C., D. P. Morgavi, and M. Doreau. 2010. Methane mitigation 
in ruminants: From microbe to the farm scale. Animal 4:351–365.

Masuda, A., X. M. Shen, M. Ito, T. Matsuura, A. G. Engel, and K. Ohno. 
2008. hnRNP H enhances skipping of a non-functional exon P3A 
in CHRNA1 and a mutation disrupting its binding causes con-
genital myasthenic syndrome. Hum. Mol. Genet. 17:4022–4035.

Meuwissen, T., B. Hayes, and M. Goddard. 2001. Prediction of 
total genetic value using genome-wide dense marker maps. 
Genetics 157:1819–1829.

Pickering, N. K., Y. de Haas, J. Basarab, K. Cammack, B. Hayes, 
R. S. Hegarty, J. Lassen, J. C. McEwan, S. Miller, C. S. 
Pinares-Patiño, G. Shackell, P. Vercoe, and V. H. Oddy. 2013. 
Consensus methods feeding low methane emitting animals. A 
white paper prepared by the Animal Selection, Genetics and 
Genomics Network of the Livestock Research Group of Global 
Research Alliance for reducing greenhouse gases from agri-
culture. http://www.asggn.org/publications,listing,95,mpwg-
white-paper.html. (Accessed 20 December 2013.)

Pinares-Patiño, C. S., S. M. Hickey, E. A. Young, K. G. Dodds, S. 
MacLean, G. Molano, E. Sandoval, H. Kjestrup, R. Harland, N. 
K. Pickering, and J. C. McEwan. 2013. Heritability estimates 
of methane emissions from sheep. Animal 7(s2):316–321.

Pollott, G. E., and M. P. Coffey. 2008. The effect of genetic merit and 
production system on dairy cow fertility, measured using proges-
terone profiles and on-farm recording. J. Dairy Sci. 91:3649–3660.

R Core Team. 2013. R Foundation for Statistical Computing, 
Vienna, Austria.

Rice, W. R. 1989. Analyzing tables of statistical tests. Evolution 
43:223–225.

Rowe, S., J. C. McEwan, S. M. Hickey, R. A. Anderson, D. 
Hyndman, E. Young, H. Baird, K. G. Dodds, C. S. Pinares-
Patiño, and N. K. Pickering. 2014. Genomic selection as a 
tool to decrease greenhouse gas emission from dual purpose 
New Zealand Sheep. In: Proc. 10th World Congr. Genet. 
Appl. Livest. Prod., Vancouver, Canada.

Tubiello, F. N., M. Salvatore, S. Rossi, A. Ferrara, N. Fitton, and 
P. Smith. 2013. The FAOSTAT database of greenhouse gas 
emissions from agriculture. Environ. Res. Lett. 8:015009.

VanRaden, P. M. 2008. Efficient methods to compute genomic pre-
dictions. J. Dairy Sci. 91:4414–4423.

Verbyla, K. L., M. P. L. Calus, H. A. Mulder, Y. de Haas, and R. 
F. Veerkamp. 2010. Predicting energy balance for dairy cows 
using high-density single nucleotide polymorphism informa-
tion. J. Dairy Sci. 93:2757–2764.

Wall, E., G. Simm, and D. Moran. 2010. Developing breeding 
schemes to assist mitigation of greenhouse gas emissions. 
Animal 4:366–376.

Yang, J., O. Kim, J. Wu, and Y. Qiu. 2002. Interaction between 
tyrosine kinase Etk and a RUN domain- and FYVE domain-
containing protein RUFY1. A possible role of ETK in regula-
tion of vesicle trafficking. J. Biol. Chem. 277:30219–30226.

D
ow

nloaded from
 https://academ

ic.oup.com
/jas/article-abstract/93/1/11/4700954 by SR

U
C

 – Scotland’s R
ural C

ollege user on 04 July 2019


