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Abstract 

The agenda towards greenhouse gas mitigation within agriculture implies changes in farm 
management practices. Based on a survey of Scottish dairy farmers, this study investigates farmers’ 
perceptions of how different GHG mitigation practices affect the economic and environmental 
performance of their farms, and the degree to which those farmers have adopted those practices. 
The results of the farm survey data are used to identify promising mitigation practices for immediate 
policy support based on their potential for additional adoption by farmers, their perceived 
contribution to the farm’s financial and environmental performance and information on their cost-
effectiveness. The study demonstrates the usefulness of including adoption behaviour and farmers’ 
perception of mitigation practices to inform early stages of policy development. This would 
ultimately contribute to the robustness and effectiveness of climate change mitigation policies in the 
agricultural sector. 
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Highlights 

Best-Worst-Scaling is used to identify promising climate change mitigation practices 

Preference data needs to be combined with information on current adoption patterns  

The suggested practices in the dairy sector do not match current policy support 

Best-Worst-Scaling is a useful tool especially in early stages of the policy planning process 
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1. Introduction 1 

There has been an increasing policy interest in reducing greenhouse gas (GHG) emissions 2 

from agriculture in recent years (European Commission, 2008; Gerber et al., 2013; Scottish 3 

Government, 2009, 2013b; Smith et al., 2008; UNFCCC, 2008). This can be attributed to the 4 

contribution of the agricultural sector to GHG emissions globally and nationally, and to the 5 

cost-effectiveness of agricultural GHG mitigation relative to emission reductions in other 6 

sectors (DECC, 2013). Policy makers face a challenge to develop and implement effective 7 

GHG abatement strategies for agriculture. This requires identifying those mitigation practices 8 

that are cost-effective and promise considerable potential for abatement, followed by a choice 9 

of suitable policy mechanisms to encourage their uptake.  10 

A key tool for prioritising mitigation measures for policy support are marginal abatement cost 11 

curves (MACCs) for agriculture (Moran et al., 2011), combining both information on cost-12 

effectiveness and abatement potential of a large number of mitigation practices. MACCs 13 

show the cost of reducing GHG emissions by one additional (marginal) unit as total GHG 14 

abatement increases. Therefore, mitigation practices are arranged in the order of their cost-15 

effectiveness. The abatement potential is estimated against a baseline that represents 16 

business-as-usual adoption of mitigation practices. Despite recent methodological 17 

refinements (Eory et al., 2012), MACCs developed at the national scale often draw on 18 

aggregate information and are therefore mainly useful to provide rankings of mitigation 19 

practices that can inform high-level strategic decisions and provide a rationale for 20 

investments in GHG abatement within a particular sector of the economy. For example, the 21 

MACCs developed for the UK model large regions as one farm and thus largely ignore 22 

heterogeneity between farms and farm types. Further, outcomes of MACCs are sensitive to a 23 

large number of assumptions made via scientific expert judgment, for example regarding 24 

adoption rates, effectiveness and costs (Eory et al., 2014a under review). There is likely to be 25 
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significant heterogeneity of adoption patterns, effectiveness and costs across farms, which 26 

can influence overall cost-effectiveness depending on their distribution around the mean 27 

values applied in MACCs (De Cara and Jayet, 2000, Vellinga et al., 2011). Another result of 28 

MACC analysis is the significant mitigation potential of practices identified to have negative 29 

cost. These have been referred to as ‘win-win’ mitigation practices, the result of which has 30 

influenced several policy and industry documents (DSCF, 2008; TSB, 2013).  These 31 

mitigation practices would be expected to be adopted by profit-maximising farmers without 32 

requiring any incentive as they reduce the cost burden of production. However, the lack of 33 

uptake of practices with negative costs suggests that adoption behaviour is driven by a more 34 

complex set of motivating factors (Barnes et al., 2009; Barnes and Toma, 2012; Moran et al., 35 

2013) not accounted for in the MACC approach. Further, the currently developed MACCs 36 

only comprise a subset of the potential mitigation practices available in agriculture. 37 

Accordingly, when advancing agricultural mitigation policy, MACC approaches may be of 38 

limited use as they are based on strong assumptions regarding current adoption rates and 39 

largely lack up-to-date information on farmers' views regarding the farm management 40 

practices.  Consequently, the main aim of this paper is to contribute to filling the gap between 41 

national strategy development and implementation in agricultural GHG mitigation by 42 

complementing and substantiating the information entailed in MACCs with information on 43 

adoption rates and on farmers’ views regarding the farm management practices that are 44 

expected to result in considerable GHG emission reductions. Such information is important 45 

for informing targeting and for prioritisation of GHG mitigation practices for policy support, 46 

either via awareness raising campaigns or as part of positive financial incentive schemes 47 

within the agricultural policy architecture. 48 

Given the large number (>100) of potential GHG mitigation practices in the agricultural 49 

sector (Weiske, 2005), and the heterogeneity in farming systems, it is difficult to obtain 50 
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comprehensive information across the whole industry in a single study. The research 51 

presented in this paper thus focuses on GHG abatement in dairy farms in Scotland. Scotland 52 

provides an example of a country with highly ambitious GHG reduction goals (Scottish 53 

Government, 2009) relative to the rest of other developed country economies, and the 54 

dairying sector is more intensive and technically advanced (Barnes, 2008; Barnes et al., 2010; 55 

Hadley, 2006) and therefore indicate considerable GHG mitigation potential (Barnes and 56 

Toma, 2012). 57 

This paper presents results of a survey of dairy farmers aimed at deriving a ranking of 58 

mitigation practices that may be associated with their likely adoption. The methodological 59 

approach used to obtain rankings of mitigation practices is Best-Worst Scaling (BWS). In the 60 

type of BWS study applied here, respondents are asked to repeatedly choose from subsets of 61 

four to five different mitigation practices those that are perceived to be ‘best’ and ‘worst’ 62 

with respect to the farm’s financial and environmental performance. The suitability to 63 

accommodate a large number of mitigation practices (Louviere et al., 2013) is a main reason 64 

for using BWS in this study – direct rankings of a large number of items can be too difficult 65 

for respondents to perform. BWS has been shown to have a number of other advantages over 66 

alternative rating and direct ranking techniques. For example, BWS does not suffer from 67 

rating scale bias (Auger et al. 2007) and is likely to better discriminate among objects that are 68 

perceived to be of similar importance (Lee et al. 2007). However, some respondents may 69 

dislike having to make repeated trade-offs (Hein et al. 2008), i.e. to repeatedly select the 70 

‘best’ and ‘worst’ from different subsets of mitigation practices. 71 

In recent years, Best-Worst Scaling (BWS) has been applied in a range of contexts related to 72 

food choice and agricultural management to derive rankings of long ‘lists’ of objects (Cross 73 

et al., 2011; Erdem et al., 2012; Jones et al., 2013; Lagerkvist et al., 2012; Lusk and 74 

Briggeman, 2009). This study therefore contributes to the increasing body of literature 75 
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applying BWS to understand and inform agricultural decision making, and assesses the 76 

usefulness of the BWS methodology to identify priorities for policy support, especially at 77 

early stages of planning when policy makers are faced with a choice amongst a large number 78 

of options. To our knowledge, only one study that applied BWS was concerned with GHG 79 

mitigation options (Jones et al., 2013). The authors investigated perceptions of Welsh sheep 80 

farmers regarding the effectiveness and practicality of GHG mitigation options. A key 81 

advance of our study on Jones et al. (2013) is the explicit consideration of current adoption 82 

rates in the BWS choice model, which is expected to be of high significance for policy 83 

implications drawn from results. 84 

Specifically, this study aims to address the following questions. How do farmers rank 85 

mitigation practices with respect to their farm’s financial and environmental performance? 86 

How does current adoption affect rankings? How do rankings based on farmers’ perceptions 87 

of the impact of mitigation practices on their farm’s financial and environmental performance 88 

compare to cost-effectiveness and rankings in MACCs? In combination with available 89 

information on cost-effectiveness, the information on rankings of mitigation practices and 90 

adoption behaviour can be used to evaluate plans for policy support that are currently in 91 

development. Practices ranked highly by non-adopters with fairly low current adoption rates 92 

but high effectiveness should be considered for immediate policy support. Other, less 93 

preferred practices that are still deemed to be cost-effective may benefit from continued 94 

awareness raising campaigns, and may still be relevant to particular sub-groups of farmers.  95 

The paper proceeds with a description of GHG mitigation options in dairy farms and how 96 

GHG mitigation is embedded in the current policy framework and ongoing developments. 97 

This is followed by an introduction to BWS and the modelling approach taken. After 98 

describing the case study of Scottish dairy farms, the survey and the sampling procedure, we 99 

report the results of the survey data analysis and BWS modelling. We discuss the findings in 100 
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the light of the current policy framework, develop policy recommendations based on the 101 

study’s results and reflect on how rankings derived through BWS compare to previous 102 

MACC analyses. 103 

 104 

2. GHG mitigation and dairy farms: policy context 105 

Scotland is committed to GHG emission reductions of 42% by 2020, and an 80% reduction 106 

by 2050 compared to the 1990 baseline. Agriculture contributes approximately 20% to total 107 

emissions (Scottish Government, 2013a), and abatement in agriculture is pivotal for 108 

achieving this target: an emission reduction of 1.2 Mt CO2 equivalent by 2020 is expected for 109 

the agricultural sector (Scottish Government, 2013b). Climate change mitigation has also 110 

been highlighted to be a key part of the multi-functional role Scottish agriculture is expected 111 

to play (Pack, 2010), which is in line with general direction the Common Agricultural Policy 112 

(CAP) post-2013 is expected to take (EC, 2010). 113 

Dairy farming is an important agricultural activity both globally and in Scotland, and its 114 

importance is going to increase as per capita consumption of fresh milk and milk products is 115 

projected to grow by 10% in the next 10 years. This is more than the consumption of any 116 

other agricultural product group, including cereals, sugar, meat or fish (OECD-FAO 117 

Agricultural Outlook 2013-2022 database). In Scotland dairy farms occupy 4% of the 118 

agricultural land area (Shepherd et al., 2007), and fresh milk and milk products account for 119 

13% of the total Scottish agricultural output of £2.8 billion (Scottish Executive, 2013). At the 120 

same time, the dairy sector’s contribution to global warming is also notable: globally 4% of 121 

the total anthropogenic GHG emissions originate in the dairy product chain (Gerber et al., 122 

2010). Although the per litre GHG emissions of milk produced in Western Europe is only 123 

two-thirds of the global average (Gerber et al., 2010), the dairy product supply chain is 124 
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responsible for 3% of the total Scottish GHG emissions (Scottish Government, 2013a; 125 

Sheane et al., 2011). Importantly, dairy farming is well-placed to offer many opportunities to 126 

reduce GHG emissions. 127 

GHG emissions arising from land management associated with dairy farming can be reduced 128 

by altering nitrogen fertilisation practices, soil management, or crop types and varieties. The 129 

feed composition is another focal point of GHG mitigation efforts in the dairy sector: 130 

methane emissions from the rumen and both methane and nitrous-oxide emissions from 131 

manure can be significantly decreased by modifying the ration or by using feed additives (e.g. 132 

probiotics). Housing dairy cattle provides the basis for a set of GHG mitigation interventions 133 

related to improving manure management to reduce methane and nitrous-oxide emissions. 134 

Finally, the health and productivity of the animals and the herd structure affects the overall 135 

input use - milk production ratio, and therefore the GHG emissions embedded in the product. 136 

Dairy farmers represent the most technically advanced producers within the Scottish 137 

agricultural sector (Barnes et al., 2010) and not much is known regarding their current 138 

behaviour and preferences regarding management practices aimed at climate change 139 

mitigation (Vellinga et al., 2011). 140 

Currently there are three main pathways to provide policy support for increasing GHG 141 

abatement in the Scottish agricultural sector, using a mix of extension and awareness raising, 142 

regulation, and positive financial incentives. Farming for a Better Climate (FFBC) is an 143 

initiative aimed at increasing voluntary uptake of GHG mitigation and adaptation practices 144 

and is funded by the Scottish Government. The nitrogen use regulations in the designated 145 

Nitrate Vulnerable Zones (NVZs) are mandatory elements of cross-compliance under the 146 

CAP Single Farm Payment Scheme. They provide co-benefits in terms of N2O emission 147 

reduction. Finally, the Scotland Rural Development Programme (SRDP) is the discretionary 148 
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application of CAP Pillar 2 funds for financial support, and includes some measures with 149 

potential GHG co-benefits. 150 

 151 

3. Methodology 152 

BWS is based on respondents repeatedly choosing the best and worst object from ‘lists’ of 153 

objects that vary following an experimental design. The frequency of best and worst choices 154 

is indicative of the relative ‘importance’ respondents place on each object along a latent 155 

dimension of interest (utility scale). In this study, the objects are management practices that 156 

have been identified as GHG mitigation options in dairy farms, and the latent utility scale is 157 

the contribution of each GHG mitigation practice to the farm’s financial and environmental 158 

performance. The data on repeated best/worst choices of management practices allows us to 159 

derive ‘impact scores’ for each management practice on a 0-100 point scale. These scores 160 

reflect the farmers’ evaluations of mitigation practices with respect to their contribution to the 161 

farm’s performance. The interpretation of the scores is straightforward. If, for example, 162 

practice j1 receives a score of 5 and practice j2 a score of 10 for an individual, we can say that 163 

j2’s contribution to the farm’s performance is perceived to be twice as large as j1’s 164 

contribution – the probability of j2 being chosen as best is twice as large as those of j1. In 165 

deriving the ‘impact scores’, we consider that farmers differ regarding their perceptions of 166 

management practices. Some of this heterogeneity in perceptions can be explained by 167 

whether or not farmers have adopted a management practice at the time of the survey. This 168 

information is used to identify those practices that are ranked highly by non-adopters and 169 

exhibit fairly low current adoption rates and thus a relatively large potential for additional 170 

GHG mitigation.  171 
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In what follows, we provide a detailed description of the methodology and modelling 172 

approach used. BWS has been introduced by Jordan Louviere in 1987 (Flynn and Marley, 173 

2012) and can be related back to Thurstone’s (1927) method of paired comparison. Following 174 

random utility theory, the utility respondent n derives from choosing a mitigation practice i 175 

from list t with j= {1,2,…J} practices can be decomposed into an observed or deterministic 176 

component, Vni,t, and an unobserved random error term εni,t assumed to be identically and 177 

independently distributed (iid) across the sample population and related to the choice 178 

probability with a type I extreme-value distribution with constant error variance π2/6. 179 

𝑈𝑛𝑖,𝑡  =   𝑉𝑛𝑖,𝑡 + 𝜀𝑛𝑖,𝑡      (1) 180 

In our case, the deterministic part is specified to include the mitigation practice’s contribution 181 

to the latent utility scale and an interaction effect capturing differences in utility due to 182 

current adoption: 183 

𝑉𝑛𝑖,𝑡  =   𝛼𝑛𝑖𝐼𝑛𝑖,𝑡 +  𝛾𝑛𝑖𝐼𝑛𝑖,𝑡𝐴𝑛𝑖     (2) 184 

where α and γ are parameters to be estimated, Ini,t is an indicator variable for mitigation 185 

practice i being present in choice set t shown to farmer n, and Ani is a dummy variable taking 186 

one if farmer n currently adopts a mitigation practice, else zero 1 . The coefficient αni 187 

represents the utility that the mitigation practice i provides to farmer n. γni captures the 188 

difference in utility obtained from mitigation practice i resulting from its adoption by farmer 189 

n. 190 

1 The dummy variables relate to practices that a farmer may have already adopted and as such may introduce an 

endogeneity bias on the coefficients. To test the effect of this bias empirically we estimated both conditional 

logit and mixed logit models without the dummy variables for adoption. The population means for mitigation 

practices derived from these models were very similar to the ones that include the adoption dummies. This 

indicates that endogeneity – if present – has little impact on coefficients. 
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Under these assumptions, the probability that farmer n chooses mitigation practice i from 191 

choice set t with j = {1,2,…J} practices is described by a conditional logit model and has the 192 

following expression (McFadden, 1974): 193 

𝐿𝑛(𝑦𝑏𝑒𝑠𝑡 = 𝑖|𝛼𝑛, 𝛾𝑛, 𝑡)  =   exp (𝜆𝑉𝑛𝑖,𝑡)
∑ exp (𝜆𝑉𝑛𝑗,𝑡)𝐽
𝑗=1

 .    (3) 194 

λ is a scale term inversely proportional to error variance and normalised to one.  195 

Equation (3) can be used to model ‘best’ choices. Different models can be used to jointly 196 

model ‘best’ and ‘worst’ choices, each implying different ways of how respondents process 197 

information and proceed through the BWS task (Louviere et al., 2013).  In this study we 198 

employ a model specification that assumes a sequential decision process with best choice 199 

being followed by worst choice as proposed by Lanscar (2009) and first applied in Lanscar 200 

and Louviere (2008). The sequential process is more likely to follow the ‘true’ decision 201 

process and is therefore the preferred choice in the context of this study2. The sequential CL 202 

model entails a product of logit probabilities with each factor being a CL model of the best or 203 

worst choice in the sequence of best-worst choices.  204 

Let b be the mitigation practice chosen as ‘best’ with respect to the farm’s performance (ybest 205 

= b) from choice set t1 with j = {1,2,…J} practices, and w be the mitigation practice 206 

subsequently chosen as ‘worst’ (yworst = w) from choice set t2 containing the remaining J-1 207 

elements. The logit probability of observing this sequence can be expressed as (Lanscar et al., 208 

2013): 209 

𝐿𝑛(𝑦𝑏𝑒𝑠𝑡 = 𝑏,𝑦𝑤𝑜𝑟𝑠𝑡 = 𝑤|𝛼𝑛, 𝛾𝑛, 𝑡1, 𝑡2) =   exp�𝑉𝑛𝑏,𝑡1�

∑ exp�𝑉𝑛𝑗,𝑡1�
𝐽
𝑗=1

× exp�−𝑉𝑛𝑤,𝑡2�

∑ exp�−𝑉𝑛𝑗,𝑡2�
𝐽−1
𝑗=1

.  (4) 210 

2 The most common model is known as maxdiff (Sawtooth Software, 2007). In this model, respondents are 

assumed to evaluate all possible pairs of best-worst combinations, from which they choose the one that 

maximises utility on the unobserved utility scale. Results obtained from the maxdiff model specification are 

very similar to the ones described in this paper. 
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Of course, farmers may have different views regarding the contribution of mitigation 211 

practices to their farm’s performance. To accommodate this heterogeneity, we employ the 212 

mixed logit (MXL) model (McFadden and Train, 2000). In this model, each farmer has his or 213 

her own parameter 𝛼�𝑛𝑖  which deviates from the population 𝛼�𝑖  by the quantity ηni (𝛼�𝑛𝑖 =214 

 𝛼�𝑖 + 𝜂𝑛𝑖 ). ηni is a random term, which introduces the heterogeneity in α by varying 215 

according to a random distribution f(ηni│Ω)3.  216 

The unconditional probability of choosing practice b as ‘best’ and subsequently practice w as 217 

‘worst’ is the integral of the logit probabilities in equation 4 over all possible values of α. 218 

𝑃𝑛(𝛼𝑛|𝛺) =   ∫ 𝐿𝑛(𝛼𝑛|𝜂𝑛)𝑓𝛼𝑛
(𝜂𝑛|𝛺)𝑑𝜂𝑛    (5) 219 

This integral does not have a closed form and thus requires approximation through simulation 220 

(Train, 2003), in our case using 1,000 Halton draws.  221 

Using information from repeated best-worst choices of the same individual, we can obtain 222 

‘individual-specific’ parameter estimates from the individual’s conditional distribution based 223 

on their (sequence of) choices using Bayes Theorem as described in Hensher and Greene 224 

(2003). Rather than representing unique sets of parameters for each individual, ‘individual-225 

specific’ parameter estimates reflect the mean (standard deviation) estimate of those sub-sets 226 

of the sample that made the same choice facing identical choice sets. The ‘individual-227 

specific’ parameter estimates can be used to investigate differences in rankings of mitigation 228 

practices at the individual level.  229 

Sample-level or individual-specific coefficients indicate the relative impact of a management 230 

practice to be chosen as best and worst in the BWS task. These coefficients consist of both 231 

3In the application reported in this paper, we use a normal distribution. We tested several distributional forms, 

amongst them triangular and uniform distributions, but normal distribution yielded the highest Log-Likelihood 

values. More complex distributional forms such as Sb-Johnson that allows for bimodality were considered, but 

models did not converge. 
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positive and negative values, and indicate impact relative to one management practice that 232 

has been omitted for model identification purposes. Interpretation of these coefficients does 233 

not follow intuitively. Therefore, they are converted to ratio-scaled probabilities (% of times 234 

a management practice is chosen as best) or impact scores using the probability-based 235 

rescaling procedure described in Sawtooth Software (2007) and the following equation: 236 

𝑅𝑎𝑡𝑖𝑜 − 𝑠𝑐𝑎𝑙𝑒𝑑 𝑖𝑚𝑝𝑎𝑐𝑡 𝑠𝑐𝑜𝑟𝑒𝑖 =  exp (𝑉𝑖)
(exp(𝑉𝑖)+ 𝐽−1)

    (6) 237 

where Vi is the zero-centred utility weight for management practice i derived from the MXL 238 

model, and J equates to the number of practices shown in each task. The thus converted 239 

scores are then scaled on a 0-100 point scale that can be interpreted as described above.  240 

4. Case Study 241 

The data used in this paper is based on a mail survey of Scottish dairy farms. The 242 

questionnaire administered to respondents consisted of three parts. The BWS choice tasks 243 

were followed by a question on current adoption of the management practices and finally 244 

collected a range of farm and farmer characteristics. As a first step towards developing the 245 

survey instrument, a long list of potential GHG mitigation practices in dairy farms was 246 

identified (N=85). Using expert advice of scientists and managers of educational dairy farms, 247 

we subsequently narrowed down the number of practices based on whether an option can be 248 

readily implemented by farmers at present and whether it has a large technical potential for 249 

GHG emission reductions in the dairy industry. This excluded practices that are currently not 250 

possible due to legal restrictions (e.g. growth hormones), practices that require further 251 

research or technological advances (e.g. vaccination against methanogens), and practices that 252 

are a relatively minor source of GHG emissions with regard to the dairy farm (e.g. 253 

compaction of farm yard manure or using cover crops). The short list of 20 practices (Table 254 

1) can be grouped into practices associated with animal nutrition, animal productivity, soil 255 
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and fertiliser management or manure storage. All identified mitigation practices may, 256 

depending on the circumstances, enhance the farm’s financial performance due to reductions 257 

in input costs and/or enhanced productivity. Only a sub-set of the practices are considered in 258 

the current policy framework and are proposed for future policy support4. 259 

Table 1 contains descriptions of the short-listed management measures, which were tested for 260 

understanding and refined in a series of focus groups with dairy farm researchers and dairy 261 

farmers. Participants of pre-tests confirmed that all included descriptions were clear and 262 

associated with concrete management actions on the farm. In this process, specific attention 263 

was given to the choice of the latent dimension used to frame best-worst choices. An obvious 264 

candidate was ‘likelihood of adoption’. However, it became evident that most farmers 265 

actually adopted at least one of the 20 measures at present, and could thus not discriminate 266 

between two (or more) measures adopted at present when being asked about the highest 267 

likelihood of adoption. Several different formats were tested with the aim of capturing the 268 

farmers’ genuine evaluation of a particular measure in terms of being beneficial to the farm’s 269 

business. As discussions revealed, this objective could not be equated with maximising 270 

financial profits. Interestingly, several farmers stated that environmental considerations 271 

increasingly play a role in their investment decisions, motivated to a large degree by 272 

increasing demands of large buyers, including supermarket chains. In the final survey, 273 

farmers were therefore asked to choose the best or worst measure in terms of their farm’s 274 

performance, which included both economic and environmental considerations. It was also 275 

4  Information on current policy support draws on the Farming for a Better Climate website 

(www.sruc.ac.uk/info/120175/farming_for_a_better_climate), the Scottish Rural Development Programme 

website (www.scotland.gov.uk/Topics/farmingrural/SRDP) and the Nitrate Vulnerable Zones website 

(www.scotland.gov.uk/Topics/farmingrural/Agriculture/Environment/NVZintro/NVZGuidanceforFarmers). 

Information on proposed policy support is based on Scottish Government (2013b) and relates to the time period 

2013-2027. 
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clearly stated that the management practices extend beyond minimum requirements for cross-276 

compliance under the Single Farm Payment scheme. 277 

The experimental design for the BWS tasks was a Balanced Incomplete Block Design 278 

(BIBD) that contained 29 choice tasks that were blocked into 3 versions. One block contained 279 

9 BWS choice tasks, of which 4 sets comprised 5 management practices (objects), while the 280 

remaining sets featured 4 practices. The remaining 2 blocks included 10 choice tasks with 4 281 

practices per task. Across the whole design, each item is shown 6 times, and each pair of 282 

items appears together once. Each item appears twice within each block. The number of 283 

repetitions of each item within a block is relatively low. A larger number would have been 284 

desirable, but would have required more BWS tasks, likely resulting in respondent fatigue 285 

and potentially lower response rates. To avoid that an item appears in the same position in 286 

consecutive tasks, and to minimise the occurrence of the same item in consecutive tasks, the 287 

order of items in each task was randomised. An example of a typical BWS choice task is 288 

shown in Figure 1. 289 

The sample drew on the June Agricultural Census database (RESAS, 2012). The census is 290 

administered every year in Scotland and covers the 50,000 plus holdings registered with 291 

agricultural land, of which 1,650 were classified as specialist dairy or mixed dairy farming in 292 

2012. To be classified as a specialist dairy farm, at least two thirds of its income must come 293 

from the dairy enterprise (RESAS, 2012). In the census, a mixed dairy farming type is 294 

identified simply by the presence of dairy cows, even if their contribution to the farm’s 295 

income is marginal. However, mixed farms with a substantial herd size can contribute 296 

significantly to climate change mitigation. Therefore, we included mixed farms, but omitted 297 

those farms holding less than five dairy cows, resulting in an effective sample size of 1,290. 298 

The majority of more intensive dairying units tends to concentrate in the South-West of 299 

Scotland, where naturally conducive biophysical conditions prevail. 300 
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A mail survey was administered between November 2012 and February 2013, following best 301 

practice on follow-ups and reminders as detailed in Dillman (2000). The survey was carried 302 

out in two waves, with approximately 5 weeks between each wave. However, based on 303 

advice from focus group participants, we abstained from sending out further reminders, being 304 

mindful of the large amount of postal information and survey requests received by Scottish 305 

farmers. Farmers were given the opportunity to opt-out after the first wave. A total of 327 306 

farmers responded (25%). Six farmers made use of the opt-out without stating further reason, 307 

while 36 opted out because of having recently given up dairy farming, or because they do not 308 

consider themselves as a dairy farmer. We received 285 questionnaires (22%), of which 36 309 

contained BWS tasks that were either incomplete (N=14) or showed more than two choices 310 

(one ‘best’ and one ‘worst’) in some or all of the tasks (N=22) despite having received a 311 

carefully worded guide to completing the tasks. Of the remaining 249 farmers, 14 returned 312 

incomplete responses regarding current adoption of management practices, leaving data from 313 

235 questionnaires (18%) for final analysis. These were evenly distributed across the 314 

experimental designed blocks (Block 1: N=80; Block 2: N=83; Block 3: N=73). 315 

The data were cleaned and compared with sample statistics for the whole population, as 316 

provided by the June Agricultural Census. These proved to be similar (at 5% levels of 317 

significance) using a two-sample t-test with respect to area (t = 0.95), standard gross margins 318 

and economic size unit to reflect economic factors (t = 0.74 and t = 0.74 respectively).  In 319 

addition, standard labour requirements were similar across the census and the sample (t=1).  320 

Table 2 shows the key indicators of the dairy farmers in the sample compared to the June 321 

Agricultural Census.   322 

 323 

5. Results 324 
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Table 3 reports the stated adoption rates for the 20 practices included in the BWS choice 325 

tasks. There is a lot of heterogeneity in the level of stated current adoption within the sample. 326 

Current stated rates of adoption are greater than 80% for six of the practices (P5, P6, P11, 327 

P12, P13 and P14). At the other end of the spectrum, P3, P9, P19, P16, and P20 all have 328 

adoption rates below 10%. Adoption levels are considerably higher in three out of the four 329 

domains (nutrition, productivity, soil and fertiliser management). Practices related to manure 330 

management have lower adoption rates and therefore a relatively large potential for further 331 

GHG reduction. On average, a respondent has reported to currently have adopted nine of the 332 

20 practices (standard deviation 2.2), with significant heterogeneity in the patterns of adopted 333 

practices across respondents. 334 

A probit regression model was run on the 20 separate mitigation practices, using structural 335 

and activity based factors from the survey and the matched census data. A surprisingly low 336 

and inconsistent number of explanatory factors were found across the 20 different mitigation 337 

practices.  For example, age, education and the experience of farmers were only significant 338 

for four of the practices (P8, P11, P18, P16).  Accordingly, whilst some studies do infer a 339 

relationship between adoption of on-farm environmental practices and these common factors 340 

(Vanslembrouck et al., 2002; Prokopny et al., 2008), the adoption of technologies related to 341 

carbon reduction may have different underlying and social motives, such as farmer 342 

networking and attitudes towards climate change (Barnes et al., 2013). 343 

The CL and MXL model estimates are shown in Table 4. All mean parameter estimates are 344 

relative to the base effect of mitigation practice P17 (Lower N-requiring crops), which was 345 

left out in order for the model to be identified. An increase in the value of the log-likelihood 346 

function by over 200 points for the MXL model compared to the CL model confirms the 347 

presence of substantial unobserved heterogeneity in the probability of choosing a mitigation 348 

practice as also confirmed by the magnitudes and statistical significance of all standard 349 
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deviations of the random parameter distributions except for P15 (controlled/slow release 350 

fertiliser). All interaction terms with the dummy variable capturing differences in utility due 351 

to current adoption are positive and significantly different from zero. This demonstrates that 352 

stated current adoption had a large influence on the probability of choosing a practice as 353 

‘best’.  354 

Table 5 reports the ratio-scaled impact scores for the sample average. It is apparent that 355 

impact scores tend to be highest for those practices that have the highest adoption rates. For 356 

example, the average impact scores for the five most adopted practices (P5, P6, P11, P13 and 357 

P14) is nine, while it is three for practices with the lowest adoption rates (P3, P9, P16, P19 358 

and P20). Therefore, farmers perceive that the five most adopted practises contribute three 359 

times more to the farm’s performance than the five least adopted practices. 360 

In addition to scores for the sample average, we report scores for a stylised ‘adopter’ and 361 

‘non-adopter’, assuming Ai in equation 2 is one for all practices, i.e. that all of the practices 362 

have been reported to be currently adopted (‘adopter’), and assuming Ai is zero for all 363 

practices (‘non-adopter’). These scores serve to illustrate overall differences in farmers’ 364 

evaluation of the practices as a result of adoption. The model results (Table 5) generally 365 

suggest a positive influence of adoption on impact scores, but this influence may be stronger 366 

or weaker across the practices. General patterns in impact scores between a stylised ‘adopter’ 367 

and ‘non-adopter’ are similar. However, there are some notable differences. An ‘adopter’ has 368 

lower impact scores than a ‘non-adopter’ for five of the practices (P1, P12, P14, P15, P17). 369 

This means that for these practices adoption has had a less than average influence on farmers’ 370 

perception of the contribution of mitigation practises on farm performance. Conversely, 371 

higher scores for an ‘adopter’ compared to a ‘non-adopter’ are found for four of the practices 372 

(P5, P9, P13, P19). In these cases, the influence of current adoption on farmers’ perception of 373 

the contribution of mitigation practises on farm performance was greater than average. 374 
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Table 5 reveals how mitigation practices have been evaluated at the sample level, and can 375 

guide some general recommendations for promising further mitigation action in the dairy 376 

sector. However, the scores for stylised ‘adopters’ and ‘non-adopters’ do not reveal the 377 

heterogeneity of adoption patterns in the actual sample and hence the resulting heterogeneity 378 

in scores for the mitigation practices across the sample well. For example, a high score for a 379 

particular practice may be driven by a few observations of non-adopters with a very positive 380 

evaluation of that practice’s contribution to their farms’ performance. Given the significant 381 

amount of unobserved heterogeneity in the MXL model, a low score may mask a 382 

considerable proportion of non-adopters who perceive a particular practice as beneficial to 383 

their farms’ performance. This is important, because additional emission reductions can only 384 

be achieved by current non-adopters. 385 

We therefore estimated individual-specific parameter estimates based on MXL model results, 386 

and subsequently calculated ranks of non-adopted measures for each individual. The results 387 

of ranks of non-adopted practices are shown in Table 6. Because all respondents have 388 

reported to currently adopt at least one of the practices, the table only includes ranks from 389 

one to 19. In addition to considering the impact scores, Table 6 reveals a set of practices that 390 

have both considerable rates of non-adoption and thus further potential for mitigation, and 391 

have a high density at the top of the distribution of ranks and thus are promising prospects for 392 

policy support to stimulate uptake. These practices are i) P1 (High sugar content ryegrass); ii) 393 

P8 (Sexed semen); iii) P10 (High-clover swards); iv) P15 (Controlled/slow release fertiliser); 394 

and v) P17 (Lower N-requiring crops). P12 (Manure management plans) is ranked highly, but 395 

has limited potential for further adoption with stated current adoption being 80%. P9 (3 times 396 

milking per day) has a very wide distribution of ranks and an overall low impact score for a 397 

stylised ‘non-adopter’, but approximately 25% of the 212 non-adopted recorded for this 398 

practice rank it in the top-three non-adopted practices. This result may be related to farm-399 
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specific labour constraints that are less restrictive for farmers who see an increase in the 400 

milking frequency as a particularly beneficial practice. P7 (Semen from high PLI indexed 401 

bulls) and P16 (Nitrification inhibitors) may show some potential that can be developed. Both 402 

have the mode of the distribution of ranks within the top five of non-adopted practices. 403 

However, any decision related to supporting the uptake of particular practice should 404 

additionally consider the practice’s (cost-)effectiveness. 405 

The last column of Table 5 reports available estimates of a mitigation practice’s cost-406 

effectiveness. Six practices are associated with a negative cost-effectiveness estimate 407 

(P4 Adding live microbial feed supplement to diet; P7 Semen from high PLI indexed bulls; 408 

P8 Sexed semen; P11 Following fertiliser recommendations; P12 Manure management plans 409 

and P17 Lower N-requiring crops), which would suggest that on most of the farms these 410 

practices are associated with a (financial) gain and should thus have already been adopted by 411 

a large number of profit maximising farmers. However, only P11 and P12 show a very high 412 

adoption rate (87% and 80%, respectively) and a relatively high score at the sample average. 413 

P7 and P8 are reported to having been taken up by 50-60% of the sample and have mid-range 414 

impact scores. Due to their negative cost-effectiveness, however, they deserve further 415 

investigation regarding their inclusion into policy support measures. P4 and P17 have both 416 

been adopted roughly by fifth of the sample (21%), which might indicate the existence of 417 

non-financial barriers. The low scores assigned to P4 by non-adopters may be due to 418 

unfamiliarity with the novel practice of adding live microbial feed supplement. P17 has a 419 

relatively high score, signalling a potential for an increased uptake with additional policy 420 

support.  For the majority of practices, lower cost-effectiveness tends to be reasonably 421 

associated with higher adoption rates and higher impact scores for the non-adopters, and vice 422 

versa. 423 

 424 
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6. Discussion 425 

Jones et al. (2013) used BWS to inform decision making in GHG mitigation within the 426 

English and Welsh sheep industry. Their approach is similar to the one presented in this paper 427 

in that BWS was used to derive impact scores. Farmers are asked to evaluate 26 mitigation 428 

practices considering their ‘practicality’, while a sample of experts was used to provide 429 

impact scores regarding the practices’ ‘effectiveness’. For several of the mitigation practices, 430 

the distribution of the ‘practicality’ impact scores derived by Jones et al. (2013) is very wide, 431 

and often appears to be bimodal. This is an indication that current adoption rates may have 432 

played a significant role in farmers’ evaluation.  433 

In this study, we collected information on adoption rates of proposed mitigation practices 434 

through a survey of Scottish dairy farmers, and considered how current adoption impacts on 435 

choices made in a BWS exercise. We found current adoption to have a significant positive 436 

impact on the probability to choose a practice as ‘best’. Not controlling for current adoption 437 

patterns in the choice model would have severely limited the usefulness of impact scores for 438 

deriving policy recommendations. For example, we would not have been able to investigate 439 

the relative ranking of non-adopted practices based on individual-specific impact scores, 440 

which, together with information on the level of uptake across the sample, form the basis for 441 

identifying promising mitigation practices. Information on current adoption should therefore 442 

be gathered and used in BWS studies aimed at informing policy support for further uptake of 443 

management practices. 444 

Based on low or moderate rates of adoption and thus further potential for mitigation, and a 445 

high density at the top of the distribution of ranks of non-adopted practices, we were able to 446 

identify a number of candidates that should be considered for (further) policy support aimed 447 

at reducing GHG emissions. These practices are High sugar content ryegrass, Sexed 448 
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semen, High-clover swards, Controlled/slow release fertiliser, and Lower N-requiring crops. 449 

Additionally, there is limited potential for 3 times milking per day and Semen from high PLI 450 

indexed bulls. Importantly, only two of these promising practices are currently put forward 451 

for future policy support:  Lower N-requiring crops and Semen from high PLI indexed bulls. 452 

Based on our findings, we suggest that the policy framework needs to be revisited and 453 

possibly be expanded to include the practices identified above. Of course, these practices 454 

should first be screened for effectiveness drawing on empirical research. 455 

 In addition, the transfer of information regarding these technologies may also benefit from 456 

recent discussions on future advisory service models, where there may be more of a focus on 457 

providing free public good advice on climate change topics (House of Lords, 2011). Further, 458 

the heterogeneity in adoption patterns and impact scores suggests that there is a need to 459 

remain flexible with respect to how GHG mitigation can be best achieved on individual 460 

farms. Therefore, it is important that information and advice platforms such as FFBC 461 

continue to promote a wider set of practices beyond those identified as promising in this 462 

study. 463 

A comparison of adoption rate information with the currently available and planned policy 464 

support for management practices shown in Table 1 is also of interest to assess the potential 465 

of policy mechanisms to achieve further GHG emission reductions. It reveals that those 466 

practices that appear to have received the greatest policy attention thus far (P11 Following 467 

fertiliser recommendations; P12 Manure management plans) have a high rate of stated current 468 

uptake. Based on the results of the BWS study, P11 and P12 have relatively high impact 469 

scores, indicating that dairy farmers perceive them to be beneficial to their farms’ 470 

performance. The high uptake may partially demonstrate the success of past initiatives and 471 

the regulatory environment in particular concerning NVZs, but it equally points to a limited 472 

scope for further emission reductions through these practices. P19 (Anaerobic digester) and 473 
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P20 (Covering the manure storage) are currently available for financial support via the SRDP, 474 

but have not been put forward for future policy support. Both show low levels of current 475 

uptake and hence theoretically large scope for further GHG reductions. Importantly, however, 476 

both practices’ impact scores are at the lower end. In the case of P19, low rates of current 477 

uptake and low impact scores of non-adopters may be due to large capital investments needed 478 

for installing anaerobic digesters, constraints associated with the current system of managing 479 

the slurry or manure, and the quantity of slurry generated by a farm. Regarding the covering 480 

of the manure storage, however, it would be worth to further investigate the range of existing 481 

farm-specific barriers to uptake in order to possibly revise the future policy framework if 482 

barriers prove to be feasible to overcome.  483 

The comparison of impact scores with cost-effectiveness estimates derived from MACC 484 

studies shows some consistency, although the derived rankings do not match well for all 485 

practices where cost-effectiveness information is available. The mismatch between adoption 486 

rate and cost-effectiveness scores in at least one of the cases with negative cost (P4 Adding 487 

live microbial feed supplement to diet) indicates that farmers’ decision making may not be 488 

entirely driven by profit maximisation provided the assumptions made in the cost-489 

effectiveness analysis apply. Alternatively, such a divergence may be related to farm specific 490 

production constraints, which include geographical dependencies, for example on the 491 

suitability of surrounding land to produce different types of fodder, and farm-specific 492 

constraints, for example with respect to labour or access to technology. The analysis of these 493 

limiting factors of uptake of cost-effective GHG reduction practices is a promising avenue of 494 

further research. 495 

There are some limitations to our study that deserve to be pointed out. Although our sample 496 

matches well with key characteristics of Scottish dairy farms, a higher response rate would 497 

have been desirable. In the light of general time constraints faced by Scottish farmers and 498 
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frequent complaints about an increasing amount of administrative work, however, the 499 

achieved response rate is of a reasonable magnitude. Because our survey included 20 500 

practices, it was not possible to provide farmers with a very detailed account of each practice. 501 

While we took great care in generating clearly understandable descriptions of the mitigation 502 

practices, we cannot deny the possibility that some farmers’ perceptions of the practices may 503 

have differed from our understanding, and that this influences both stated adoption rates and 504 

BWS impact scores. For example, P11 (Following fertiliser recommendations) describes the 505 

application of specific information packages on fertiliser use that have been developed by 506 

agricultural extension services and government bodies. However, some farmers may have 507 

perceived this to imply following generally known guidelines and legal restrictions (for 508 

example related to NVZs) for fertiliser application, although this was not the case in the focus 509 

groups preceding the survey. Further, both adoption rates and impact scores could have been 510 

affected by recent issues farmers faced. For example, 2012 was an unusually wet year in 511 

Scotland, causing concerns about drainage systems. Many farmers reacted to that, which is 512 

reflected in the high adoption rate and high impact score of P13 (Improve drainage on fields), 513 

even though this practice can be associated with high costs. We do not know, however, 514 

whether farmers’ response implied a one-off intervention to prevent the worst, or whether 515 

they have been investing in the drainage systems’ maintenance on a regular basis. Further, it 516 

is reasonable to assume that higher impact scores are associated with a greater likelihood of 517 

actual uptake. However, there is no guarantee that a practice that is evaluated as 518 

being relatively beneficial to the farm’s environmental and financial performance will indeed 519 

be adopted in the face of a wide range of barriers to uptake and farm constraints. The above 520 

concerns imply that the results need to be carefully interpreted, and that our recommendations 521 

should be validated and investigated in greater depth, possibly through a combination of 522 

qualitative interviews and workshops with farm advisors and farmers. 523 
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 524 

7. Conclusions 525 

The main purpose of this study is to inform decision making on policy support for 526 

management practices aimed at reducing GHG emissions from the dairy sector. The post-527 

2014 CAP and Rural Development Programmes are under development, which makes this 528 

paper a timely and important contribution to help mainstreaming climate change 529 

considerations in European agricultural policies. Current adoption rates of potential GHG 530 

saving practices and perceptions of the contribution of the practices to the farm’s 531 

performance amongst non-adopters are both important in this respect. Current adoption rates 532 

provide information on the effectiveness of current policy considerations, and are crucial in 533 

determining the potential for additional emission reductions over and above current levels. 534 

Using BWS in combination with information on farmers’ current adoption patterns allowed 535 

the identification of a number of promising mitigation practice in the dairy sector. 536 

Our study therefore provides important insights for policy makers and farm advisory bodies 537 

in a domain that thus far has largely been reliant on scientific expert information. BWS, in 538 

combination with information on adoption rates, can serve as a useful tool especially at an 539 

early stage of a mitigation policy planning process. It complements information derived via 540 

MACCs and through expert opinion by providing a richer picture of farmers’ perceptions of 541 

different mitigation practices and can therefore support the development of more robust 542 

agricultural climate change policies. 543 

 544 

 545 

 546 
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Table 1. List of GHG mitigation practices used in BWS choice tasks 730 

Measure Description Current 
policy 

support 

Proposed 
policy 

support 

Animal nutrition   
P1 Planting high sugar content (high WSC) ryegrass (e.g. Aber 

HSG) 
- - 

P2 Reducing grass in the diet and feeding more 
concentrates/grains/total mixed rations 

- V 

P3 Adding oily seeds (e.g. canola, sunflower) at 10% to the 
diet 

- - 

P4 Adding a live microbial feed supplement (e.g. 
Lactobacillus sp.) to the complete diet directly 

- - 

P5 Applying feed and ration management (including 
forage/fodder analysis) with a feed company or advisor 
involved to optimise nutrient use of animals 

V - 

Animal productivity   
P6 Working with veterinary surgeons to optimise biosecurity, 

vaccination and herd health 
V - 

P7 Using bull semen from high PLI indexed bulls V V 
P8 Using sexed semen to increase proportion of females born - - 
P9 Moving from 2 to 3 times milking per day  - - 

Soil and fertiliser management   
P10 Using high-clover swards (20% of dry matter) V - 
P11 Applying fertiliser according to fertiliser recommendations V, M V, M 
P12 Make manure management plans taking full account of 

nutrients available in the manure  
V, M V, M 

P13 Maintaining old drainage system (or installing a new one if 
needed) to improve drainage on fields 

V - 

P14 Preventing soil compaction (e.g. avoiding the use of heavy 
machinery and livestock poaching when soils are wet or 
saturated) 

V - 

P15 Using the type of fertiliser that breaks down and releases 
nutrients slowly (controlled or slow release fertiliser) 

- - 

P16 Using chemicals to prevent loss of N due to nitrification 
(nitrification inhibitors) 

- - 

P17 Changing to crops which require less nitrogen fertilisation V V 
Manure storage   

P18 Frequently (twice-a-week) removing manure from the 
cattle shed to outside storage (e.g. to manure heap; slurry 
tank or lagoon) 

- - 

P19 Installing and using an anaerobic digester to treat animal 
waste 

FI, V - 

P20 Covering the manure storage (e.g. straw, plastic film, tent, 
or lid in case of slurry and plastic film in case of farm yard 
manure) 

FI, V - 

Note:  V: voluntary (through FFBC), M: mandatory, FI: financial incentives 731 
 732 
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Table 2. Descriptive statistics of dairy sample compared to June agricultural census, mean 733 
and standard deviation 734 

 Census 
(N=1,290) 

Survey 
(N=235) 

Standard Gross Margin (k£) 167.5  
(474.5) 

168.2  
(117.1) 

Economic Size Unit (£/ha) 139.6 
(395.1) 

140.1 
 (97.6) 

Standard Labour Requirement (Labour Units) 5.5 
(4.3)  

5.4  
(4.1) 

Area (Ha) 125.4 
(98.7) 

137.7 
(103.9) 

Note: Standard deviations in parentheses 735 
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Table 3. Stated current adoption rates of practices 756 

Measure Short descriptor Currently 
adopted (%) 

Animal nutrition  
P1 High sugar content ryegrass 51.9 
P2 Reducing grass and more concentrates in diet 30.2 
P3 Adding oily seeds to diet 3.8 
P4 Adding live microbial feed supplement to diet 20.9 
P5 Applying feed and ration management 94.9 

Animal productivity  
P6 Working with veterinary surgeons 93.2 
P7 Semen from high PLI indexed bulls 60.4 
P8 Sexed semen 51.9 
P9 3 times milking per day  9.8 

Soil and fertiliser management  
P10 High-clover swards 34.9 
P11 Following fertiliser recommendations 86.4 
P12 Manure management plans  79.6 
P13 Improve drainage on fields 89.4 
P14 Preventing soil compaction 92.8 
P15 Controlled/slow release fertiliser 26.8 
P16 Nitrification inhibitors 4.3 
P17 Lower N-requiring crops 20.9 

Manure storage  
P18 Frequent removal of manure 46 
P19 Anaerobic digester 0.9 
P20 Covering the manure storage 3.8 

 757 
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Table 4. CL and MXL model results 767 

 CL  MXL 

 

Base effects Interactions 
with stated 
adoption 
dummy 

 Base effects Interactions 
with stated 
adoption 
dummy 

Standard 
deviation of 

random 
parameters 

P1 -0.15  1.46 ***  -0.07  1.81 *** 0.96 *** 
P2 -1.77 *** 1.96 ***  -2.37 *** 2.74 *** 1.14 *** 
P3 -1.39 *** 1.17 **  -1.89 *** 1.67 *** 0.70 *** 
P4 -1.46 *** 1.3 ***  -1.90 *** 1.81 *** 0.86 *** 
P5 0.4  2.59 ***  0.41  4.09 *** 2.42 *** 
P6 0.86 ** 1.57 ***  1.18 ** 2.28 *** 1.67 *** 
P7 -0.9 *** 2.03 ***  -1.06 *** 2.61 *** 0.86 *** 
P8 -0.25  2.08 ***  -0.32  2.87 *** 1.43 *** 
P9 -1.48 *** 4.09 ***  -2.13 *** 6.81 *** 2.85 *** 

P10 -0.05  1.96 ***  -0.05  2.63 *** 1.01 *** 
P11 -0.52 * 2.11 ***  -0.74 ** 2.82 *** 0.67 ** 
P12 0.92 *** 1.04 ***  1.26 *** 1.44 *** 1.08 *** 
P13 0.52 * 2.48 ***  0.51  3.93 *** 1.96 *** 
P14 0.78 ** 1.39 ***  1.24 ** 1.75 *** 1.52 *** 
P15 0.02  1.13 ***  0.02  1.63 *** 0.13  
P16 -0.92 *** 1.67 ***  -1.20 *** 2.56 *** 0.75 *** 
P17 0 

(fixed) 
 

1.09 *** 

 0 
(fixed)  1.48 *** -  

P18 -1.51 *** 1.62 ***  -1.91 *** 2.12 *** 1.03 *** 
P19 -1.67 *** 2.14   -2.29 *** 4.97 *** 1.56 *** 
P20 -1.48 *** 2.45 ***  -2.01 *** 2.84 *** 1.56 *** 

            
Log-L -3768.73   -3568.22  
AIC 1.68   1.6  
BIC 1.73   1.68  

Note: *,**,***: significantly different from zero at 10%, 5% and 1% level 768 
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Table 5. Means and 95% confidence intervals for ratio-scaled impact scores 777 

Measure Short descriptor Sample 
average 

‘Adopter’ ‘Non-
adopter’ 

Cost-
effectiveness 

Animal nutrition     
P1 High sugar content ryegrass 4.6 

(3.9;5.4) 
3.2 

(2.4;4.1) 
6.3 

(5.1;7.5) 
not 

available 
P2 Reducing grass and more 

concentrates in diet 
1.0 

(0.8;1.3) 
1 

(0.6;1.4) 
1.0 

(0.8;1.3) 
++ 

P3 Adding oily seeds to diet 1 
(0.6;1.5) 

0.6 
(0.2;1.3) 

1.5 
(1.2;1.9) 

++ 

P4 Adding live microbial feed 
supplement to diet 

1 
(0.7;1.3) 

0.6 
(0.4;1) 

1.5 
(1.2;1.9) 

- 

P5 Applying feed and ration 
management 

10.6 
(8.7;12.3) 

12.1 
(11.1;13.1) 

8.1 
(4.3;11.8) 

not 
available 

Animal productivity     
P6 Working with veterinary 

surgeons 
10.1 

(8.4;11.6) 
9 

(7.8;10.1) 
10.7 

(7.9;13.2) 
not 

available 
P7 Semen from high PLI 

indexed bulls 
3 

(2.5;3.6) 
2.8 

(2.1;3.5) 
3.2 

(2.4;4) 
- 

P8 Sexed semen 5.7 
(4.8;6.6) 

5.7 
(4.4;7) 

5.4 
(4.3;6.6) 

- 

P9 3 times milking per day 6.5 
(4.8;8.8) 

12.3 
(9.1;14.3) 

1.3 
(0.9;1.7) 

not 
available 

Soil and fertiliser management     
P10 High-clover swards 6.1 

(5.3;7.0) 
5.8 

(4.4;7.2) 
6.4 

(5.4;7.4) + 

P11 Following fertiliser 
recommendations 

4.2 
(3.3;5.1) 

4.1 
(3.3;5) 

4.1 
(2.7;5.7) - 

P12 Manure management plans  8.8 
(7.8;9.8) 

6.2 
(5.1;7.3) 

11.1 
(9.5;12.6) - 

P13 Improve drainage on fields 10.7 
(9.2;12.1) 

12 
(10.9;13) 

8.5 
(5.6;11.2) ++ 

P14 Preventing soil compaction 9.2 
(7.5;10.9) 

7.2 
(6.1;8.3) 

10.9 
(7.9;13.3) 

not 
available 

P15 Controlled/slow release 
fertiliser 

4.6 
(3.8;5.4) 

3 
(2.1;4.0) 

6.6 
(5.7;7.6) ++ 

P16 Nitrification inhibitors 2.6 
(1.7;3.8) 

2.6 
(1.1;4.7) 

2.8 
(2.3;3.4) ++ 

P17 Lower N-requiring crops 4.3 
(3.5;5.1) 

2.6 
(1.7;3.7) 

6.6 
(5.7;7.5) - 

Manure storage     
P18 Frequent removal of manure 1.1 

(0.9;1.4) 
0.8 

(0.6;1.2) 
1.5 

(1.1;2.0) 
not 

available 
P19 Anaerobic digester 3.4 

(1.1;6.9) 
6.7 

(1;13.0) 
1.1 

(0.8;1.4) ++ 

P20 Covering the manure storage 1.5 
(0.8;2.5) 

1.7 
(0.5;3.8) 

1.4 
(1.1;1.8) ++ 

Note: Based on 235 respondents. All impact scores based on MXL model results. 95% confidence intervals 778 
based on a Krinsky and Robb (1986) procedure with 2,000 draws in parentheses. Cost-effectiveness in £ (t 779 
CO2eq)-1: ++ ≥ 50; +: 0 to 50; - < 0. All cost-effectiveness estimates are based on Moran et al. (2008), Pellerin 780 
et al. (2013) and Eory et al. (2014b under review). 781 
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Table 6. Ranking of non-adopted practices based on individual-specific impact scores 

Rank Mitigation practice 
 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 

1 20 0 0 0 3 8 0 28 28 35 0 30 8 10 37 1 19 1 1 6 
2 24 1 1 1 3 2 5 22 12 24 2 13 5 4 46 5 59 0 2 4 
3 15 0 1 1 2 3 10 15 13 34 5 1 4 0 41 19 52 2 6 11 
4 26 1 3 9 0 0 11 9 11 26 5 2 1 1 29 44 33 1 12 11 
5 12 7 34 16 1 1 19 8 6 18 7 0 1 1 14 41 17 4 8 20 
6 6 11 28 27 0 1 11 6 9 6 8 1 3 0 4 43 4 17 27 22 
7 4 13 40 25 1 1 14 6 12 6 3 1 2 0 1 22 2 23 29 27 
8 2 29 40 31 1 0 9 6 14 1 1 0 0 1 0 23 0 22 24 21 
9 3 24 27 27 0 0 8 4 19 3 0 0 1 0 0 16 0 14 32 30 

10 1 29 24 21 0 0 4 1 19 0 1 0 0 0 0 5 0 16 30 21 
11 0 19 14 11 0 0 0 5 23 0 0 0 0 0 0 4 0 14 28 18 
12 0 11 9 9 0 0 0 1 19 0 0 0 0 0 0 1 0 5 14 21 
13 0 5 4 2 1 0 2 0 15 0 0 0 0 0 0 1 0 5 12 7 
14 0 10 0 5 0 0 0 1 4 0 0 0 0 0 0 0 0 0 2 5 
15 0 3 0 1 0 0 0 1 4 0 0 0 0 0 0 0 0 1 3 0 
16 0 1 1 0 0 0 0 0 3 0 0 0 0 0 0 0 0 1 1 0 
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
19 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

Sum (# of 
non-adopters) 113 164 226 186 12 16 93 113 212 153 32 48 25 17 172 225 186 127 233 226 

 


