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ABSTRACT A 14-d broiler experiment was conducted to assess the effects of two 10 

dietary variables on efficacy of a bacterial 6-phytase expressed in Aspergillus oryzae on nutrient 11 

and phytate phosphorus (PP) utilization. Diets were formulated with or without nutrient matrix 12 

values (matrix) for phytase as negative control (NC) or positive control (PC), respectively and 13 

with two Ca:tP levels (2:1 or 2.5:1). The diets were supplemented with 0, 1,000 or 2,000 FYT/kg 14 

phytase thus producing a 2×2×3 factorial arrangement. Excreta were collected on d 19 to 21 and 15 

ileal digesta on d 21. There was no three-way interaction on digestibility of any nutrient. There 16 

was matrix × phytase (P < 0.01) interaction for Ca and DM digestibility and Ca:tP × phytase 17 

interaction (P < 0.05) for acid hydrolyzed fat, Ca and P digestibility. Pre-cecal flow of Mn, Zn 18 

and Na was greater (P < 0.05) in NC diets whereas phytase increased (P < 0.05) pre-cecal flow 19 

of Mg, Fe, Mn, and Zn but decreased (P < 0.05) pre-cecal Na flow. Total tract PP disappearance 20 

and total tract Ca retention increased (P < 0.05) with phytase supplementation in diets with 2:1 21 

Ca:tP whereas there was no effect of phytase supplementation on PP disappearance or Ca 22 

retention in diets with 2.5:1 Ca:tP. Total P and Ca retention were reduced (P < 0.05) in PC and 23 

NC diets when Ca:tP increased to 2.5:1 but the depression was more pronounced in the NC diet. 24 

In addition, PP disappearance decreased (P < 0.05) with increasing Ca:tP in the PC diets but 25 

there was no effect of widening Ca:tP on PP disappearance in NC diets. It was concluded from 26 

the current study that the effect of phytase supplementation on P utilization is reduced when diets 27 

contain adequate P as exemplified in the PC diets and that the negative impact of wide Ca:tP is 28 

more pronounced in diets with phytase matrix allowance as exemplified in the NC diets. 29 

  30 
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INTRODUCTION 33 

The use of phytase in non-ruminant diets and the effects of different nutritional variables 34 

on the efficacy of phytase have been well studied in recent years (Adeola and Cowieson, 2011). 35 

However, there is continued interest in understanding the various factors that mitigate the 36 

efficacy of phytase or that may improve its effect in poultry diets because of the sheer amount of 37 

phytate present in typical poultry diets. A typical corn-soybean meal diet for poultry formulated 38 

using conventional (i.e. non low-phytate varieties) may contain up to 4 g/kg phytate-P (Selle and 39 

Ravindran, 2007) which are largely unavailable to birds without the action of phytase 40 

(endogenous and exogenous). Liberation of 60% of the P tied up in phytate will be a 41 

considerable saving in terms of reducing both the cost for inorganic P supplementation and 42 

environmental impact of P excretion. Therefore it is imperative to understand factors that may 43 

hinder or enhance the efficacy of phytase. 44 

 The negative effect of wide Ca:P on phytase efficacy is well known (Tamim et al., 2004; 45 

Adeola et al., 2006) and this is related to the formation of recalcitrant calcium-phytate (Taylor, 46 

1965, Nelson and Kirby, 1987) or Ca-phosphate complexes (Long et al., 1984). In addition it is 47 

common practice to reduce dietary levels of inorganic P, Ca, Na, energy and some digestible 48 

amino acids (phytase matrix) in phytase-supplemented diets (Shelton et al., 2004). It would seem 49 

that supplementation of phytase to diets that already meet birds’ requirements for these minerals 50 

can be both wasteful and counterproductive. However, supplementation of phytase at high levels 51 

(Shirley and Edwards, 2003; Cowieson et al., 2006) or to diets that already meet nutrient 52 

requirements of broilers has produced improvement in animal performance presumably via 53 

mitigation of anti-nutritive effects of phytate rather than supply of limiting nutrients (Walk et al., 54 

2013). 55 
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 The current study examines the interplay of the variation in Ca:tP (tp, total P) and dietary 56 

nutrient levels on efficacy of phytase added at low and high doses. There have been considerable 57 

amount of investigations on the former and much less on the latter. Therefore, the objective of 58 

the current experiment was to investigate how the use of a nutrient replacement values for 59 

phytase (phytase matrix) affects phytase efficacy on nutrient utilization (with particular focus on 60 

utilization of Ca, tP and phytate P), and especially within the context of variable dietary Ca:tP. 61 

The companion article considers how these dietary factors influence growth performance and 62 

bone mineralization in broilers. 63 

MATERIALS AND METHODS 64 

All the animal experimentation procedures used in the current study were approved by 65 

the Scotland’s Rural College’s Animal Experimentation Committee. 66 

Diets and experimental design 67 

A total of 576 birds were used for the 14-d experiment to study the influence of nutrient 68 

specification and Ca:tP on efficacy of phytase on nutrients and minerals utilization in broilers. 69 

The birds were brooded together in a floor pen for the first 7 days of age during which they 70 

received a standard diet that meets NRC (1994) nutrient requirement for broilers. On day 7, the 71 

birds were weighed and allocated to 12 dietary treatments in a randomized complete block 72 

design and a 2×2×3 factorial arrangement of treatments. Each treatment had 8 replicate cages 73 

and 6 birds per replicate cage. The factors were two levels of nutrient specifications (explained 74 

below), two levels of Ca:tP  (2:1 and 2.5:1) and three levels of phytase supplementation (0, 1,000 75 

and 2,000 FYT/kg). Excreta were collected on d 19 to 21 of the birds’ age and ileal digesta were 76 

collected on d 21 after euthanasia of the birds.  77 

The composition of the experimental diets is presented in Table 1. Nutrient specification 78 

was used to define the diets that were formulated to meet all the nutrient requirements for 79 

broilers (full nutrient specification without phytase matrix or positive control, PC) and another 80 
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set of diets with reduced nutrient specification formulated to be deficient in P, Ca, crude protein 81 

(CP), amino acids, and energy (down specification or negative control, NC). The nutrients and 82 

energy levels in the NC diets were reduced relative to the PC diets on the basis of the amount of 83 

nutrients and energy that the phytase was expected to release (nutrient matrix values for 84 

phytase). The matrix values used per kg feed for 1,000 FYT were approximately, 75 kcal ME, 85 

1.5 g for available P, 1.8 g for Ca, 0.26 g for CP, 0.11, 0.07, 0.04, and 0.07 g for digestible 86 

lysine, total sulphur amino acids, methionine, and threonine, respectively. One phytase (FYT) 87 

unit is defined as the activity that releases 1 μmol inorganic phosphate from 5.0 mM phytate per 88 

minute at pH 5.5 and 37°C.   89 

Chemical analysis 90 

Diets, ileal digesta and excreta were analyzed for dry matter, N, gross energy, Ti, and 91 

minerals. Dry matter was determined by drying the samples in a drying oven (Uniterm, Russel-92 

Lindsey Engineering Ltd., Birmingham, England, UK) at 105°C for 24 hours (AOAC Method 93 

934.01; AOAC, 2006). Total N content was determined by the combustion method (Method 94 

968.06;  AOAC, 2006). Gross energy was determined in an adiabatic bomb calorimeter (Model 95 

6200, Parr Instruments, Moline, IL) using benzoic acid as an internal standard. Titanium 96 

concentration in the samples was determined using the method of Short et al. (1996). Minerals 97 

content was determined using Inductively Coupled Plasma – Optical Emission Spectroscopy 98 

(AOAC Method 990.08; AOAC, 2006) following digestion, in turn, in concentrated HNO3 and 99 

HCl. Free fat was determined using extraction by petroleum ether in a Soxhlet apparatus  for six 100 

hours whereas acid hydrolyzed fat (AHF) was determined by acid hydrolysis using 30% HCl 101 

followed by ether extraction. 102 

Statistical analysis 103 
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The data were analyzed by the MIXED procedure of SAS as appropriate for a 104 

randomized complete block design and a factorial treatment arrangement. For ease of reference, 105 

the two types of control diets (NC and PC) were coded as matrix (i.e. nutrient matrix for phytase) 106 

in the factorial arrangement with PC (as diets without phytase matrix) and NC (as diets with 107 

phytase matrix). The three-way interactions were investigated first in the analysis. Where the 3-108 

way interactions were not significant they were dropped from the model and the data re-109 

analyzed. Non-significant interactions were dropped for more thorough investigation of the main 110 

effects means. Because the two-way interactions were significant for most of the responses even 111 

though the three-way interactions were not, the simple effects means are presented in the tables. 112 

Because of the hierarchical arrangement of main effects and interactions, only the interactions 113 

are discussed for responses in which all the two-way interactions are significant, whereas main 114 

effects means are also discussed in cases where one or more of the two-way interactions are not 115 

significant. 116 

RESULTS 117 

The analyzed nutrients compositions of the experimental diets are shown in Table 2 and 118 

show that expected nutrient compositions were met despite some slightly higher recoveries of the 119 

phytase.  120 

The data on ileal nutrient digestibility response to the dietary treatments are presented in 121 

Table 3. There were no three-way interaction effects on digestibility of any of the nutrients. 122 

There were matrix × Ca:tP (P < 0.05) interaction for DM and AHF digestibility explained by  123 

lower (P < 0.01)  DM and AHF digestibility in the NC diets with narrow Ca:tP whereas there 124 

was no effect of Ca:tP on DM and AHF digestibility in the PC diets. There was also matrix × 125 

phytase (P < 0.01) interaction for Ca and DM digestibility with lower (P < 0.01) DM and Ca 126 
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digestibility (drastic reduction observed for Ca digestibility) in phytase-supplemented NC diets 127 

whereas such effect was not observed in the PC diets. Ca:tP × phytase interaction was observed 128 

(P < 0.05) for AHF, Ca and P digestibility with phytase at 2,000 FYT/kg increasing (P < 0.05) 129 

AHF digestibility in the diets with narrow Ca:tP whereas phytase supplementation had no effect 130 

on AHF digestibility in diets with wide Ca:tP.  The Ca:tP × phytase interaction for Ca 131 

digestibility was characterized by drastic and stepwise reduction (P < 0.05) in Ca digestibility 132 

with increasing phytase supplemental level in the diets with wide Ca:tP but a less drastic 133 

reduction in Ca digestibility at 1,000 FYT/kg in diets with narrow Ca:tP. For P digestibility, the 134 

Ca:tP × phytase interaction was manifested in reduced (P < 0.05) P digestibility at 1,000 FYT/kg 135 

and an increase (P < 0.05) at 2,000 FYT/kg in diets with narrow Ca:tP but a reduction (P < 0.05) 136 

in P digestibility at both 1,000 and 2,000 FYT/kg in diets with wide Ca:tP. 137 

The data on pre-cecal flow of micro-minerals in response to the dietary treatments are 138 

presented in Table 4. Pre-cecal flow of Na, Mn and Zn was greater (P < 0.05) in NC diets; in 139 

addition pre-cecal flow of K and M n was greater (P < 0.05) in diets with wide Ca:tP.  On the 140 

other hand, phytase supplementation increased (P < 0.05) pre-cecal flow of Mg, Fe, Mn, and Zn, 141 

decreased (P < 0.01) flow of Na and had no effect on K flow. There were significant Ca:tP × 142 

phytase interactions (P < 0.05) for pre-cecal flow of Mg and Mn with a decrease in the pre-cecal 143 

flow of the minerals with phytase supplementation in diets with narrow Ca:tP. On the other hand 144 

there was an increase in pre-cecal flow of the minerals with phytase supplementation in diets 145 

with wide Ca:tP. Ca:tP × matrix interaction was significant (P < 0.01) for pre-cecal flow of Na 146 

and Mn. Generally pre-cecal flow of Na and Mn was greater (P < 0.01) in PC diets with wide 147 

Ca:tP whereas Ca:tP had no effect on flow of the minerals in NC diets. Matrix × phytase 148 

interaction was observed (P<0.01) for pre-cecal Na and K flow. Phytase supplementation 149 
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decreased (P < 0.05) pre-cecal Na flow but increased (P < 0.05) K flow in NC diets however 150 

phytase supplementation had no effect on pre-cecal Na flow but decreased (P < 0.05) pre-cecal K 151 

flow in PC diets. 152 

The effects of the treatments on total tract nutrient retention are shown in Table 5. There 153 

were Ca:tP × phytase interaction (P < 0.05) for total tract retention of DM, fat, AHF, and N, as 154 

well as AME. Dry matter and N retention as well as AME increased (P < 0.05) with phytase 155 

supplementation in diets with narrow Ca:tP  but DM retention decreased (P < 0.05) whereas 156 

AME, N and fat retention were unaffected by phytase supplementation in diets with wide Ca:tP. 157 

The interaction of Ca:tP × matrix was significant (P < 0.05) for retention of DM, AHF, N, and  158 

AME. In PC diets, retention of DM, AHF and N decreased (P < 0.05) whereas AME increased (P 159 

< 0.05) with widening of Ca:tP. In NC diets, AHF and N retention increased (P < 0.05) whereas 160 

there was no change in DM retention and AME with widening of Ca:tP.  161 

The effect of the dietary treatments on total tract retention of Ca, P and PP are shown in 162 

Table 6. Widening Ca:tP to 2.5:1 decreased (P < 0.05) total tract retention of Ca and tP as well as 163 

PP disappearance. Ca:tP × phytase interaction was significant (P < 0.05) for total tract retention 164 

of Ca, tP and PP. In the diets with narrow Ca:tP, only 2,000 FYT phytase increased (P < 0.05) tP 165 

retention. In the diets with wide Ca:tP, phytase supplementation at 1,000 FYT/kg improved tP 166 

retention. Total tract PP disappearance and Ca retention increased (P < 0.05) with phytase 167 

supplementation in diets with narrow Ca:tP but no effect was observed in diets with wide Ca:tP. 168 

There was significant Ca:tP × matrix (P < 0.05) on total tract retention of tP and Ca as well as PP 169 

disappearance. Total P and Ca retention were reduced (P<0.05) in both NC and PC with 170 

widening of Ca:tP to 2.5:1 but the depression in P and Ca retention due to widening of Ca:tP was 171 

more pronounced in the NC diets. In addition, PP disappearance decreased (P<0.05) with 172 
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widening Ca:tP in the PC diets but there was no effect of widening Ca:tP on PP disappearance in 173 

the NC diets. Matrix × phytase was significant (P < 0.05) only for total tract P retention with 174 

phytase supplementation increasing P retention only at 2,000 FYT/kg in PC diets and only at 175 

1,000 FYT/kg in NC diets. 176 

DISCUSSION 177 

There is a preponderance of information on the effects of phytase on nutrient utilization 178 

(Selle and Ravindran, 2007; Adeola and Cowieson, 2011) as well as the effect of Ca:P on 179 

phytase efficacy (Qian et al, 1997; Selle et al., 2009). In addition, it is a usual practice to reduce 180 

nutrient specification in phytase-supplemented diets or provide a nutrient matrix values for 181 

phytase (Shelton et al., 2004; Silversides and Hruby, 2009). Therefore the objective of the 182 

current experiment was to study the interactivity of varying Ca:tP in PC and NC diets  on the 183 

efficacy of phytase at low and high doses in promoting nutrient utilization in broilers. Although 184 

the effects of the treatments in the current experiment were observed on energy and a large 185 

number of nutrients, the main responses that will subsequently be focused on are phytate and 186 

total P as well as Ca in view of their association with phytic acid.  187 

Effects of use of nutrient matrix for phytase on phytase efficacy 188 

The use of a phytase matrix in phytase-supplemented feed enables a reduction in nutrient 189 

specification, reduces nutrient excretion and increases the chance of being able to observe 190 

phytase effects. Two lines of evidence are presented here to show that the use of a phytase matrix 191 

differently affects phytase effects on PP and tP.  192 

At the ileal level, the efficacy of phytase in promoting PP disappearance was the same in 193 

both PC and NC diets but at the total tract level, phytase supplementation of PC diet marginally 194 
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reduced PP disappearance whereas phytase supplementation increased PP disappearance in the 195 

NC diets. The PP level was virtually the same across all diets (average of 0.22%) and hence the 196 

lower PP disappearance in PC diet without phytase suggests that the higher dietary non-phytate P 197 

(nPP) level (providing greater quantities of readily available P) in the diet may provide a 198 

feedback mechanism inhibiting the degradation of phytic acid. It is not clear if such a mechanism 199 

exists, however others have similarly observed reduced PP disappearance in diets with high 200 

levels of nPP (Ballam et al. 1982; Olukosi et al., 2013).  201 

Ravindran et al. (2000) observed that hydrolysis of PP increases with an increase in 202 

dietary PP level. This is intuitive, up to a point, as higher PP provides more substrate for phytase. 203 

But it is also of interest to consider how PP hydrolysis is affected by nPP levels in diets with the 204 

same content of PP. In the current study, ileal PP disappearance was similar in both PC and NC 205 

diets supplemented with 2,000 FYT/kg even though ileal PP disappearance in the diets without 206 

phytase was five percentage units greater in the NC diet. This shows that the effect of phytase on 207 

PP disappearance, relative to the control, was greater in the PC diet. The observation that PP 208 

disappearance was the same in the diets supplemented with 2,000 FYT/kg in both PC and NC 209 

diets indicates that effect of phytase supplementation on PP disappearance did not depend on 210 

dietary level of nPP as also observed by Plumstead et al. (2008). 211 

Phytate P disappearance at the total tract level in response to phytase supplementation 212 

was greater in both PC and NC diets compared with the disappearance at the ileal level. However 213 

the difference in PP disappearance at both levels in diets supplemented with 2,000 FYT/kg was 214 

greater for NC diet (11 %) compared with PC diet (5%). Phytase did not improve total tract PP 215 

disappearance in the PC diet but improved PP disappearance in the NC diet.  Increased PP 216 

disappearance in the excreta compared with the ileal level is an indication of either that the 217 
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phytase continued to be effective post-ileal or of the possible effects of microorganisms on 218 

phytic acid hydrolysis. Overall the observation on PP disappearance and P utilization indicate 219 

that reducing the level of nPP is beneficial in promoting greater PP and total P utilization.  220 

Phytase supplementation did not increase ileal P digestibility in both the NC and PC diets 221 

but increased total tract P retention by 11% in the NC and had no effect in the PC diets. The 222 

numerical increase of 4.3 percentage units for total tract P retention in phytase-supplemented PC 223 

diet decreased retained P by 190 mg/kg. On the other hand, phytase supplementation of NC diet 224 

increased P retention by 11 percentage units and increased retained P by 830 mg/kg. In spite of 225 

the greater retained P in phytase-supplemented NC compared with PC diet, the total retained P at 226 

2,000 FYT/kg was 3.74 and 3.62 g/kg for PC and NC diets, respectively. The hydrolyzed PP at 227 

the total tract level for PC and NC diets supplemented with 2,000 FYT/kg were 1.66 and 1.84 228 

g/kg, respectively. Taken together therefore, the data imply that the high nPP content of the PC 229 

diets “hinders” phytase from exerting its full effect on phytate. Although the total retained P in 230 

PC diet supplemented with 2,000 FYT/kg phytase was greater than retained P in comparable NC 231 

diet, this extra retained P could have resulted from the higher dietary P in the PC diet because the 232 

amount of PP hydrolyzed was actually lower in the phytase-supplemented PC diet.  233 

The interplay of Ca:tP and dietary nutrient levels (phytase matrix) 234 

The use of a phytase matrix in diet formulation enables a reduction in nutrient content of 235 

phytase-supplemented diets. This may be a necessary dietary intervention in phytase-236 

supplemented diets in order to optimize phytase effect and maximize reduction in nutrient 237 

excretion (Shelton et al., 2004; Silversides et al., 2009). In the current study, at both the ileal and 238 

total tract levels, widening Ca:tP decreased P and Ca digestibility in both PC and NC diets but 239 
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the decrease produced by the wider Ca:tP was more pronounced in NC diets and the depression 240 

in Ca utilization due to wide Ca:tP was greater at the total tract level. The decreased digestibility 241 

values were also reflected in decreased digestible and retained Ca and P in the diets in response 242 

to widening the Ca:tP. Two scenarios emerging from these observations are: 1) a decrease in Ca 243 

and P utilization with a widening of Ca:tP irrespective of whether it was in PC or NC diet and, 2) 244 

a more pronounced negative effect of widening Ca:tP in NC diets. 245 

In the first scenario, the decreased Ca utilization with increased Ca:tP can be associated 246 

with increased relative dietary concentration of Ca in the diets with wide Ca:tP because the 247 

analyzed Ca in these diets was 27% higher than in diets with narrow Ca:tP. This greater dietary 248 

Ca content produced correspondingly higher Ca intake and hence reduced Ca retained as a 249 

percentage of intake. Similar observations have been reported in rats (Hoek et al., 1988), pigs 250 

(Qian et al., 1996) and chickens (Qian et al., 1997). Thus it seems that the decreased Ca 251 

utilization in diets with wide Ca:tP can be largely explained by the presence of an abundance of 252 

Ca in the intestine, than can be utilized by the birds, leading to excessive Ca excretion or reduced 253 

efficiency of Ca absorption. 254 

The decrease in P utilization in the diets with wide Ca:tP ratio is also primarily driven by 255 

dietary Ca content because tP content was similar in diets with wide and narrow Ca:tP. Hoek et 256 

al. (1988) similarly observed high P excretion in rats receiving diets with high Ca level. This 257 

reduced P utilization in diet with wide Ca:tP can be explained by the fact that high concentration 258 

of Ca relative to P increases the possibility for negative interaction of Ca and P, leading to 259 

greater chances for formation of calcium phosphate (Hurwitz and Bar, 1971). Al-Masri (1995) 260 

observed that P digestibility, absorption and endogenous excretion in chickens decreased with 261 

increasing Ca:P ratio. Similar effect has been reported by Edwards and Veltmann (1983) and 262 
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Qian et al. (1997).  Clearly, an increase in Ca:tP increases the concentration of Ca relative to P 263 

and hence increases the chances of more Ca being chemically bound and becoming indigestible.  264 

It has been suggested that another way by which high Ca:P reduces P and Ca utilization is 265 

by the formation of recalcitrant Ca-phytate complex (Wise, 1983; Maenz et al., 1999). The effect 266 

of Ca:tP on PP disappearance was not consistently observed in the current study. It was only at 267 

the total tract level that high Ca:tP decreased PP disappearance in the PC diet. The analyzed PP 268 

was the same in all diets in the current experiment and the only differences among diets were Ca 269 

and P levels. In addition, the depressed PP disappearance observed in the current study was not 270 

dependent on Ca:tP per se but rather on dietary concentration of both Ca and P, i.e. the diet with 271 

high contents of both Ca and P had depressed PP disappearance.  272 

For the second scenario, it is possible that the reason for the decrease in Ca and P 273 

utilization in NC diets with wide Ca:tP relative to similar diets in PC diets was due to the lower 274 

Ca and P contents of the NC diets compared with PC diets. Phytate P made up a greater 275 

proportion of total P in NC compared with the PC (additional P in the PC diet was supplied by 276 

dicalcium phosphate) and hence the P will be less digestible in NC than the more readily 277 

digestible P in the inorganic P sources used in the PC diet. Consequently the current data show 278 

that the dietary content of Ca and P, not just the ratio, need to be considered in interpretation of 279 

the effect of Ca:tP.  280 

In light of the observations in the current experiment, it can be concluded that the effects 281 

of wide Ca:tP are more likely to be severe in diets in which nutrient matrix for phytase is used 282 

(as exemplified by the NC diets in this experiment) especially as it relates to Ca utilization; and 283 
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that the negative effect of high Ca:tP on P and Ca utilization could be mediated via mechanisms 284 

independent of phytic acid degradation.  285 
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Table 1. Ingredient composition (g/kg) of the experimental basal diets
 

361 

Basal diet 1 2 3 4 

Ca:tP
1
 2:1 2.5:1 

Control (phytase matrix) Positive Negative Positive Negative 

Corn 482.6 477.4 466.6 499.4 

Wheat - 50.0 - - 

Soybean meal 397.5 382.5 400.5 394.5 

Soybean oil 58.0 40.0 60.0 45.0 

Corn Starch 15.0 15.0 15.0 15.0 

Dicalcium phosphate 17.5 9.0 17.5 10.0 

Limestone 17.0 15.5 28.0 24.0 

Titanium dioxide 0.5 0.5 0.5 0.5 

L-Lysine·HCl 1.0 0.4 1.0 0.7 

DL-Methionine 2.8 1.9 2.8 2.8 

Threonine 0.6 0.3 0.6 0.6 

Vitamin-mineral premix
2
 2.5 2.5 2.5 2.5 

Salt 5.0 5.0 5.0 5.0 

Phytase premix
3
 To 1,000 To 1,000 To 1,000 To 1,000 

Total 1,000 1,000 1,000 1,000 

Calculated nutrients and energy, % 

Metabolizable energy, kcal/kg 3,185 3,125 3,154 3,127 

Crude protein 22.9 22.8 22.9 22.9 

Total P 0.71 0.56 0.70 0.57 

Non-phytate P 0.45 0.30 0.45 0.31 

Ca 1.06 0.82 1.43 1.13 

 362 

1
Ca:tP based on analyzed chemical composition 363 

2
Supplied the following per kilogram of diet: vitamin A, 5,484 IU; vitamin D3, 2,643 ICU; 364 

vitamin E, 11 IU; menadione sodium bisulfite, 4.38 mg;riboflavin, 5.49 mg; d-pantothenic 365 

acid, 11 mg; niacin, 44.1 mg; choline chloride, 771 mg; vitamin B12, 13.2 μg; biotin, 55.2 366 

μg; thiamine mononitrate,2.2 mg; folic acid, 990 μg; pyridoxine hydrochloride, 3.3 mg; I, 367 

1.11 mg; Mn, 66.06 mg; Cu, 4.44 mg; Fe, 44.1 mg; Zn, 44.1 mg; Se, 300 μg. 368 

3
Phytase premix containing 100 phytase units (FYT)/g replaced corn starch to provide 369 

1,000 or 2,000 FYT/kg.
 370 
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Table 2. Analyzed nutrient composition (%, dry matter basis) and phytase activity in the experimental diets 

Diets 1 2 3 4 5 6 7 8 9 10 11 12 

Ca:tP 2:1 2.5:1 

Matrix Positive Control Negative Control Positive Control Negative Control 

GE, kcal/kg 4,452 4,681 4,652 4,672 4,619 4,603 5,720 5,782 4,610 4,641 4,572 4,580 

Ether extract 10.2 10.3 8.80 7.11 7.83 6.84 11.4 11.3 8.94 7.67 8.26 7.95 

Acid hydrolysed fat 11.1 9.49 9.80 8.03 7.96 8.03 12.1 12.9 9.70 8.30 9.37 8.37 

N 3.99 3.86 4.13 3.84 3.90 3.80 5.11 4.70 4.15 4.04 3.73 3.88 

Ca 1.37 1.63 1.40 1.31 1.18 1.17 2.23 2.24 1.87 1.06 1.47 1.38 

P 0.73 0.81 0.71 0.65 0.61 0.57 0.93 0.91 0.74 0.48 0.60 0.62 

Phytate P 0.26 0.24 0.23 0.25 0.23 0.24 0.28 0.28 0.29 0.24 0.23 0.29 

non-phytate P
1
 0.47 0.57 0.48 0.40 0.38 0.33 0.65 0.63 0.45 0.24 0.37 0.33 

Na 0.23 0.26 0.24 0.26 0.25 0.23 0.24 0.28 0.23 0.17 0.23 0.19 

Mg 0.18 0.18 0.16 0.18 0.18 0.16 0.23 0.22 0.18 0.15 0.18 0.19 

Cu, mg 11.3 15.8 14.7 12.5 10.2 10.2 28.2 18.2 12.4 10.2 13.6 15.8 

Fe, mg 82.4 87.0 79.2 90.7 78.5 71.3 111.3 106.5 83.3 56.6 81.4 79.0 

Mn, mg 81.3 94.9 87.1 100.9 84.2 83.8 107.1 105.1 83.3 61.1 83.7 86.9 

Zn, mg 79.1 96 99.5 92.9 84.2 81.5 101.4 99.5 83.3 58.9 75.7 79.0 

K 1.16 1.14 1.00 1.16 1.19 0.96 1.47 1.43 1.14 0.97 1.15 1.28 

Phytase, FTY/kg
2
 BD 1,121 2,977 BD 1,406 2,400 BD 1,717 2,537 BD 1,011 2,640 

1
non-phytate phosphorus level was determined by difference (total P – phytate P) 
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2
BD – below detection limit 
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Table 3. Simple effects means for ileal nutrient digestibility response to varying levels of phytase supplementation, dietary Ca:total P 

broiler diets with or without nutrient matrix values for phytase
1
 

Diet 1 2 3 4 5 6 7 8 9 10 11 12 

SEM 

P-values for interactions
2,3

 

Ca:tP 2:1 2.5:1 

Ca:tP × M Ca:tP × Ph M × Ph M
3
 Positive Control Negative Control Positive Control Negative Control 

Ph
3
 0 1000 2000 0 1000 2000 0 1000 2000 0 1000 2000 

DM 69.9 67.8 68.6 66.1 62.7 68.5 66.2 65.4 65.4 68.2 66.3 63.1 0.897 0.003 0.635 0.001 

EE
3
 89.5 88.3 87.2 83.2 83.6 83.0 87.2 88.0 86.7 85.5 86.2 85.0 1.12 0.058 0.794 0.821 

AHF
3
 82.0 79.6 82.4 76.4 74.4 78.0 81.3 81.8 81.0 78.1 81.9 78.4 1.31 0.043 0.003 0.768 

N 76.9 73.8 77.1 73.9 69.9 75.0 73.5 71.4 74.8 73.8 70.3 70.0 1.12 0.636 0.156 0.447 

Ca 42.8 32.5 35.9 61.7 45.9 44.9 34.0 31.9 25.8 53.5 34.8 25.9 2.56 0.062 0.029 0.001 

P 43.8 38.7 47.2 48.5 37.9 46.9 34.0 32.3 33.0 37.6 31.4 30.2 1.97 0.358 0.005 0.071 

PP
3
 48.5 42.7 58.7 57.7 43.3 65.4 36.0 44.1 58.6 39.3 51.1 51.7 6.03 0.493 0.088 0.784 

1
Means were obtained from 8 replicate cages of 6 birds per replicate cage 

2
The main effect for Ca:tP was significant (P < 0.05) for all nutrients except EE and PP; The main effect for nutrient matrix was 

significant for all nutrients except P and PP; The main effect for phytase was significant for all nutrients except EE and AHF; The 

three-way interaction was not significant for any nutrient 

3
M = nutrient matrix for phytase; Ph = phytase; EE = crude fat; AHF =acid hydrolysed fat; PP = phytate phosphorus  
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Table 4. Simple effects means for pre-cecal flow (g/100 g dry matter intake) of micro-minerals in response to varying levels of 

phytase supplementation, dietary Ca:total P broiler diets with or without nutrient matrix values for phytase
1
 

Diet 1 2 3 4 5 6 7 8 9 10 11 12 

SEM 

P-values for interactions
2, 3

 

Ca:tP 2:1 2.5:1 

Ca:tP × Ph Ca:tP × M M × Ph M
3
 Positive Control Negative Control Positive Control Negative Control 

Ph
3
 0 1000 2000 0 1000 2000 0 1000 2000 0 1000 2000 

Na 0.271 0.235 0.232 0.409 0.346 0.292 0.257 0.242 0.260 0.362 0.290 0.294 0.017 0.119 0.032 0.008 

Mg 0.155 0.166 0.158 0.168 0.190 0.157 0.164 0.178 0.171 0.156 0.171 0.186 0.006 0.003 0.096 0.620 

Fe, mg 65.8 73.6 74.5 64.7 70.9 86.9 73.3 75.3 85.5 71.7 78.0 86.6 7.55 0.965 0.804 0.717 

Mn, mg 88.0 92.7 84.5 94.0 99.4 89.4 92.6 96.9 94.2 91.6 91.9 101.0 2.20 < 0.001 0.028 0.309 

Zn, mg 76.7 85.2 77.1 84.2 89.0 83.1 80.6 86.6 81.9 79.8 87.7 88.7 3.45 0.448 0.418 0.676 

K 0.158 0.153 0.146 0.141 0.158 0.142 0.191 0.149 0.169 0.161 0.174 0.172 0.023 0.152 0.747 0.006 

1
Means were obtained from 8 replicate cages of 6 birds per replicate cage 

2
Phytase matrix effect only significant (P < 0.05) for Na, Mn and Zn; Ca:tP effect only significant for Mn and K; Phytase effect 

significant (P < 0.05) for all except K; The three-way interaction was not significant for any nutrient 

3
M = nutrient matrix for phytase; Ph =phytase 
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Table 5. Simple effects means for total tract nutrient retention response to varying levels of phytase supplementation, dietary Ca:total 

P broiler diets with or without nutrient matrix values for phytase
1
 

Diet 1 2 3 4 5 6 7 8 9 10 11 12 

SEM 

P-values for interactions
2, 3

 

Ca:tP 2:1 2.5:1 

Ca:tP 

× Ph 

Ca:tP 

× M 

M × Ph M
3
 Positive Control Negative Control Positive Control Negative Control 

Ph
3
 0 1000 2000 0 1000 2000 0 1000 2000 0 1000 2000 

DM 71.0 68.8 71.4 67.5 66.8 70.2 69.1 67.5 66.2 68.8 70.1 67.2 0.581 0.001 0.020 0.001 

AME 3,321 3,557 3,535 3,516 3,469 3,458 3,515 3,540 3,519 3,514 3,453 3,455 5.81 0.001 0.001 0.001 

EE 91.7 90.4 90.0 86.7 86.5 86.4 90.6 88.7 89.7 89.0 90.3 88.4 0.636 0.001 0.063 0.876 

AHF 89.5 84.4 87.2 83.4 81.8 83.3 86.1 85.0 84.9 85.9 87.8 83.5 0.818 0.001 0.014 0.001 

N 63.7 57.7 65.2 53.0 54.8 58.3 62.8 58.2 60.0 56.8 59.0 57.3 1.07 0.001 0.001 0.001 

1
Means were obtained from 8 replicate cages of 6 birds per replicate cage 

2
Matrix (M) effect was significant for all nutrients except DM; Ca:tP effect was significant for all nutrients except AHF and N; 

Phytase (Ph) effect was significant for all nutrients except DM and AME; P-values for three-way interaction was not significant for 

any of the nutrients 

3
M = nutrient matrix for phytase; Ph = phytase; EE = crude fat; AHF =acid hydrolysed fat  
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Table 6. Simple effects means for total tract retention response of calcium, total and phytate phosphorus to varying levels of phytase 

supplementation, dietary Ca:total P broiler diets with or without nutrient matrix values for phytase
1
 

Diet 1 2 3 4 5 6 7 8 9 10 11 12 

SEM 

P-values for interactions
2, 3

 

Ca:tP 2:1 2.5:1 

Ca:tP × 

Ph 

Ca:tP × 

M 

M × 

Ph 

M
3
 Positive Control Negative Control Positive Control Negative Control 

Ph
3
 0 1000 2000 0 1000 2000 0 1000 2000 0 1000 2000 

P 52.1 49.6 56.8 56.1 61.1 69.1 42.4 46.5 46.5 42.5 54.6 52.5 1.32 < 0.001 0.004 <.0001 

PP
3
 68.4 68.6 68.6 63.6 60.7 71.8 64.7 62.7 58.5 62.9 66.8 67.2 2.41 0.018 0.019 0.096 

Ca 39.9 36.5 42.1 42.3 38.3 46.4 25.2 22.1 22.0 17.8 25.2 16.1 1.59 < 0.001 0.002 0.067 

1
Means were obtained from 8 replicate cages of 6 birds per replicate cage 

2
Phytase matrix effect only significant for P; Ca:tP effect significant for all the nutrients; Phytase effect only significant for P only; P-

values for three-way interaction was not significant for any of the nutrients 

3
M = nutrient matrix for phytase; Ph = phytase; PP = phytate phosphorus 

 


