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Abstract 46 

 47 

In this study, we simulated heterotrophic CO2 (Rh) fluxes at six European peatland sites 48 

using the ECOSSE model and compared them to estimates of Rh made from eddy covariance 49 

(EC) measurements. The sites are spread over four countries with different climates, 50 

vegetation and management. Annual Rh from the different sites ranged from 110 to 540 g C 51 

m-2. The maximum annual Rh occurred when the water table (WT) level was between -10 52 

and -25 cm and the air temperature was above 6.2oC. The model successfully simulated 53 

seasonal trends for the majority of the sites. Regression relationships (r2) between the EC-54 

derived and simulated Rh ranged from 0.28 to 0.76 and the root mean square error and 55 

relative error were small, revealing an acceptable fit. The overall relative deviation value 56 

between annual EC-derived and simulated Rh was small (-1%) and model efficiency ranges 57 

across sites from -0.25 to +0.41. Sensitivity analysis highlighted that increasing temperature, 58 

decreasing precipitation and lowering WT depth could significantly increase Rh from soils. 59 

Thus, management which lowers the WT could significantly increase anthropogenic CO2, so 60 

from a carbon emissions perspective, should be avoided. The results presented here 61 

demonstrate a robust basis for further application of the ECOSSE model to assess the impacts 62 

of future land management interventions on peatland carbon emissions, to help guide best 63 

practice land-management decisions. 64 

 65 

1 Introduction 66 

 67 

Peatlands are spread over 175 countries and represent approximately 4 million km2 or 68 

3% of the world’s land area (Global Peat lands Initiative, 2002). Most of the wetlands (60%) 69 

contain peat soils of which about 7% are under crop production and forestry. European 70 

peatlands cover about 515,000 km2, mostly in the north of the continent (Figure 1). The 71 

biggest areas of peatlands in Europe are found in Finland (1/3) and Sweden (1/4). The rest are 72 

in European Russia, Poland, the UK, Norway, Germany, Ireland, Estonia, Latvia, the 73 

Netherlands and France. However, other countries like Denmark, the Czech Republic, 74 

Hungary and Lithuania contain small areas of peaty-top soils (Montanarella et al., 2006). In a 75 

review, Yu (2012) found that sequestration of more than 50% of carbon (C) (>270 Gt C) in 76 

peatlands took place during the Holocene, about 7000 years ago.  77 

Peatlands are one of the biggest terrestrial C stores that contain one third of the global 78 

soil C stock (Joosten et al., 2013) and thus an essential component of the global greenhouse 79 
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gas (GHG) budget at the Holocene time scale (Frolking et al., 2006). Under natural, 80 

unmanaged conditions, peatlands could represent a sink ecosystem for atmospheric carbon 81 

dioxide (CO2), due to the absence of aerobic decomposition and associated CO2 emissions 82 

under waterlogged soil conditions, resulting in the accumulation of soil organic matter 83 

(SOM) (Dise, 2009). Nevertheless, managed peatlands show a higher variability in GHG 84 

emissions at both spatial and temporal levels due to active systems in soil moisture dynamics, 85 

redox potential, availability of substrate materials and man-made alterations to hydrology and 86 

vegetation (Ward et al.,  2007; Chen et al., 2008; Schrier-Uijl et al., 2010). Practices like 87 

drainage and cultivation of peatlands allow more oxygen to enter the soil, which increases the 88 

aerobic decomposition of the stored organic material, and in turn, increases CO2 emissions 89 

(Kasimir-Klemedtsson et al., 1997; Couwenberg, 2011). The attribution of CO2 emissions to 90 

anthropogenic and natural drivers is a great challenge, and is a prerequisite to successfully 91 

assess the potential to reduce CO2 emissions from peatlands in Europe.  92 

Eddy covariance (EC) (McMillen, 1988; Aubinet et al., 2012) is a technique 93 

developed to estimate land-atmosphere exchange of gas and energy at ecosystem scale. This 94 

technique is based on three-dimensional wind speed measurements along with gas 95 

concentration and temperature measurements at high frequency (5-20 Hz). By calculating the 96 

covariance between vertical wind speed and the scalar of interest (e.g. CO2), the land-97 

atmosphere flux can be computed. The measured CO2 flux, known as net ecosystem 98 

exchange (NEE), includes ecosystem respiration (Reco) which  consists of heterotrophic (from 99 

living micro-organisms + decomposition of old C sources i.e. sapotrophic) and autotrophic 100 

(from plants + plant roots) respiration, and gross primary production (GPP) at ecosystem 101 

scale which is C assimilated by the plants during photosynthesis. As photosynthesis only 102 

occurs during daylight hours, the night time flux is typically used to partition the NEE signal 103 

between GPP and Reco (Reichstein et al., 2005). A flux partitioning algorithm that defines a 104 

short-term temperature sensitivity of ecosystem respiration, to avoid the bias introduced by 105 

confounding factors in seasonal data was applied to extrapolate from night to day (Reichstein 106 

et al., 2005). This algorithm performs gap filling of the covariance between fluxes and 107 

meteorological parameters and the temporal autocorrelation of the fluxes. However, the 108 

daytime data can also be used to calculate the parameters of the vegetation light response 109 

curve accounting for the temperature sensitivity of Reco and water vapour pressure deficit 110 

limitation of GPP (Lasslop et al., 2010). Respiration can then be extrapolated into the night 111 

time using the temperature relationship curve. The use of isotopes as a partitioning technique 112 

is popular (Schuur and Trumbore, 2006) and can provide valuable information on terrestrial 113 
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carbon cycling (Ehleringer et al., 2000; Harrison et al., 2000). In an isotopic experiment 114 

(Hardie et al., 2009), annual heterotrophic respiration (Rh) due to soil microorganisms for 115 

temperate bogs, was found to be approximately 36% of Reco. Annual CO2 derived from the 116 

older sources of C in the catotelm (sapotrophic) ranged from 10 to 23% of Reco
 (Hardie et al., 117 

2009). Therefore, the total Rh from the whole soil profile could contribute between 46 and 118 

59% of the total Reco as shown in equation (1) below (Hardie et al., 2009). 119 

The ECOSSE model was developed to simulate C and nitrogen (N) cycling and GHG 120 

fluxes in organic soils, using principles initially used for mineral soils in the two mother 121 

models, RothC (Jenkinson and Rayner, 1977; Jenkinson et al., 1987; Coleman and Jenkinson, 122 

1996) and SUNDIAL (Bradbury et al., 1993; Smith et al., 1996). Following these established 123 

models, ECOSSE uses a pool type approach, describing SOM as pools of inert organic 124 

matter, humus, biomass, resistant plant material and decomposable plant material (Smith et 125 

al., 2010a, b). In summary, during the decomposition process, material is exchanged between 126 

the SOM pools according to first order rate equations, characterised by a specific rate 127 

constant for each pool, which are dependent on the temperature, moisture, crop cover and pH 128 

of the soil.  129 

The objectives of this study were to 1) simulate Rh from selected European peatland 130 

sites with their respective climate, vegetation and management using the ECOSSE model, 131 

and 2) obtain a more comprehensive understanding of the terrestrial C cycle and attribution of 132 

Rh to variability in natural and anthropogenic drivers (climate and management) in European 133 

peatland ecosystems. 134 

 135 

2 Materials and Methods 136 

 137 

2.1 The study sites 138 

 139 

Six European peatland sites were investigated in this study (Figure 1). These sites 140 

were part of the GHG-Europe project. The sites are spread over four northern European 141 

countries: Auchencorth Moss (Scotland, UK), Horstermeer (the Netherlands), Fäjemyr 142 

(Sweden), Degerö Stormyr (Sweden), Kaamanen (Finland) and Lompolojänkkä (Finland). 143 

Full site descriptions can be found in Drewer et al. (2010), Hendricks et al. (2007), Lund et 144 

al. (2007), Sagerfors et al. (2008), Maanavilja et al. (2010) and Aurela et al. (2009),  145 

respectively. The sites have different climatic conditions, vegetation and management. 146 

Average annual temperatures and precipitation ranged from -1.4 to 10oC and from 441 to 147 
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1155 mm, respectively. Coordinates, annual mean climatic conditions as well as peat types 148 

and management are given in Table 1. The soil type for all sites is histosol (FAO, 1998) 149 

which generally has a surface or shallow subsurface histic or folic horizon, consisting of 150 

moderately decomposed plant debris with / without mixed sand, silt and / or clay. A histic 151 

horizon is wet for about one month in almost all years, and is consequently badly aerated. 152 

These soils, have >12% organic carbon (OC), which is >20% SOM by weight, but contain 153 

approximately 18% OC (30% SOM) if there is a mineral portion with >60% clay (FAO, 154 

1998). SOM were estimated using soil % C, bulk density and peat depth. Details of peat 155 

depth and soil characteristics can be found in Table 2. 156 

 157 

2.2 Flux measurements  158 

 159 

The Reco data were obtained from EC measurements (McMillen, 1988; Aubinet et al., 160 

2012) using either open or closed path infra-red gas analysers (Table 1). Meteorological data 161 

were collected during the period 2002 to 2010; however, measurement durations differed 162 

between sites and ranged from 2 to 8 years. All details regarding the EC data corrections, 163 

quality control, footprint and gap filling procedures can be found in Aurela et al. (2002), 164 

Hendricks et al. (2007), Lund et al. (2007), Aurela et al. (2009), Drewer et al. (2010) and 165 

Sagerfors et al. (2008). The night time fluxes (photosynthetic active radiation (PAR) 166 

threshold of 5μmol m-2 s-1) were used to partition NEE flux measurements into GPP and Reco 167 

(Reichstein et al., 2005), and the approach of Hardie et al. (2009) was applied to estimate Rh 168 

from Reco as shown in equation (1) below. 169 

 170 

Rh = Rh (from surface peat) + Rh (from catotelm) = 46-59% Reco                                                       (1) 171 

 172 

To represent the variations in Rh throughout the year, Rh was assumed to be at the 173 

lowest value of the range (46% Reco) during the summer (June-August), highest value (59% 174 

Reco) during the winter (December-February) and mean value (52.5% Reco) during the rest of 175 

the year (March-May and September-November). Because we are using a relatively crude 176 

method for estimating Rh from Reco, for comparison with modelled Rh values, we are 177 

providing a challenging test for the model.  178 

 179 

2.3 ECOSSE model and input data 180 
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In this study we applied the latest version (v. 5.0.1) of the ECOSSE model to simulates Rh 181 

(from surface peat + decomposition of old C sources i.e. sapotrophic). Model outputs were 182 

compared to EC-derived Rh values (as estimated from Reco measured by the EC, as described 183 

in Section 2.2). The ECOSSE model uses a pool type approach, and all of the major 184 

processes of C and N turnover in the soil are included and described using simple equations 185 

driven by readily available input variables. It can be used to carry out site-specific 186 

simulations with detailed input data, or national-scale simulations using the limited data 187 

typically available at larger scales. Data describing SOC, soil water, plant inputs, nutrient 188 

applications and timing of management operations are used to run the model for each site 189 

(Tables 1 and 2). 190 

The water module in ECOSSE is based on SUNDIAL (Wu and McGechan, 1998), 191 

where water streams through the soil pores as ‘piston flow’. The soils profile is divided into 5 192 

cm layers. Each layer is filled with water until saturation: the water then either drains to the 193 

layer below or evaporates from the topmost layer. Addition or loss of C and N from different 194 

vegetation types are estimated using the C and N amounts in different parts of the plant (and 195 

harvest index for crops). Potential evapotranspiration is calculated on a daily basis using the 196 

Thornthwaite equation (Thornthwaite, 1948). Total soil organic carbon (SOC) and inert 197 

organic C amounts are added as inputs. The ECOSSE model then estimates the amount of 198 

organic matter (OM) input from plant materials if information on plant yield is not provided. 199 

This is carried out using the amount of SOC as an input. The total SOC estimated by a 200 

steady-state (10,000 year) run using default plant inputs is compared to the total measured 201 

SOC, and a revised estimate is made of the OM inputs so that simulated steady state SOC 202 

matches the measured values. Plant material is divided into resistant and decomposable 203 

material, based on a decomposable plant material (DPM): resistant plant material (RPM) ratio 204 

of 1.44 (as used in the RothC model). More details about the ECOSSE approach is found in 205 

Smith et al. (2010c). 206 

 207 

2.4 ECOSSE sensitivity and attribution 208 

  209 

The sensitivity of ECOSSE and the attribution of Rh to anthropogenic and natural 210 

drivers were quantified to assess the impacts of these factors on the gas flux. This was done 211 

separately for each site. We altered only one input value at a time, whilst all others 212 

parameters were kept constant (Smith and Smith, 2007). Simulations were run to assess how 213 

Rh was affected by changes in climate variables: mean temperature (increasing/ decreasing 214 
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the daily mean temperature by 1 to 6oC with an increment of 1oC) and precipitation (altering 215 

the daily precipitation over a range from -50 to +50% with an increment of 10%). 216 

Simulations were also run to assess how Rh was affected by changes in soil physical 217 

properties and management i.e. SOC, pH and WT depth. SOC and pH were altered over a 218 

range from -50 to +50% with an increment of 10% whilst WT was lowered up to 50 cm with 219 

an increment of 10 cm. 220 

 221 

2.5 Statistics and Model validations 222 

 223 

Statistical analyses were carried out using the PRISM (GraphPad, San Diego CA, USA) 224 

software package. 1-way analysis of variance (ANOVA) was applied to compare the mean 225 

annual EC-derived Rh of different sites. Annual cumulative Rh for model outputs were 226 

calculated as the sum of simulated daily fluxes (Cai et al., 2003). Multi-criteria evaluation of 227 

the EOSSE model was applied to identify how well it predicted EC-derived Rh. Comparisons 228 

of simulated with EC-derived Rh were undertaken for each site separately. Analysis was 229 

carried out to detect the coincidence and association between measured and simulated values, 230 

following methods described in Smith et al. (1997) and Smith and Smith (2007). Model 231 

accuracy and performance were evaluated by calculating the relative deviation (RD), 232 

regression coefficient (r2) to measure correlation, root mean square error (RMSE) to measure 233 

total error, and relative error (RE) to measure bias. The Model Efficiency (ME; Nash and 234 

Sutcliffe, 1970) compares the squared sum of the absolute error with the squared sum of the 235 

difference between the observations and their mean value. It compares the ability of the 236 

model to reproduce the daily data variability with a much simpler model that is based on the 237 

arithmetic mean of the measurements. Negative ME value shows a poor performance, a value 238 

of 0 indicates that the model does not perform better than using the mean of the observations, 239 

and values close to 1 indicate a ‘near-perfect’ fit (Nash and Sutcliffe, 1970; Huang et al., 240 

2003). 241 

 

RMSE = �∑ (Pi−Oi)2n
i=1

n
                                                                                                            (2)   242 

 243 

RE =  100
n
∑ (Pi−Oi)

Oi
n
i=1                                                                                                              (3)  244 

                                                                                               245 

7 
 



𝑀𝐸 =  1 − ∑ (𝑂𝑖−𝑃𝑖)2𝑛
𝑖=1
∑ (𝑂𝑖−𝑂�)2𝑛
𝑖=1

                                                                                                           (4)      246 

                                                              247 

Oi is the observed value, Pi is the simulated value, n are the total number of observations and 248 

i the current observation. 249 

    250 

3 Results 251 

3.1 EC-derived Rh  252 

 253 

Seasonal and annual changes in temperature and precipitation at the experimental 254 

sites, in the period 2002-2010, are shown in Appendix 1. The temperatures and precipitation 255 

totals showed significant variation between years at each site and between sites. However, 256 

Reco for all sites were strongly correlated with annual precipitation (y = 0.66x + 49.8; r2 = 257 

0.42) and temperature (y = 212e0.12x; r2 = 0.72) as shown in Figure 2. The dynamics of EC-258 

derived daily Rh followed these seasonal and annual patterns of temperature and 259 

precipitation, in addition to management and vegetation type (Figure 3). However, in all 260 

cases, the highest peak of Rh was recorded during the late summer and autumn, whilst the 261 

lowest emissions were measured during cold periods in the winter (Appendix 1 and 3). 262 

Overall, across sites, the flux ranged from 0 to 4 g C m-2 d-1. The annual average daily fluxes 263 

for each site were 0.85 g C m-2 (Auchencorth Moss), 1.60 g C m-2  (Horstermeer), 0.69 g C 264 

m-2 (Fäjemyr), 0.34 g C m-2 (Degerö Stormyr), 0.31 g C m-2 (Kaamanen) and 0.48 g C m-2 265 

(Lompolojänkkä) (Table 3), which equates to average annual calculated Rh between 110 to 266 

559 g C m-2 (Table 4). Generally, the maximum annual Rh occurred when the WT level was 267 

between -10 and -25 cm and the average annual air temperature was above 6.2oC. Annual Rh 268 

values at the sites were significantly different from each other (p<0.05) (Table 4). 269 

 270 

3.2 ECOSSE model simulation and evaluation 271 

 272 

The ECOSSE model was evaluated by comparing the outputs to the EC-derived Rh 273 

fluxes from the six sites described in Section 2.1. Relationships between Rh estimated from 274 

measured NEE and modelled Rh are shown in Figure 3. In all cases, ECOSSE was able to 275 

predict the timing of the Rh peaks correctly (Figure 3). The regressed relationships between 276 

the daily measured and predicted values of Rh are shown in Figure 4. Generally, the model 277 

was able to predict seasonal trends in Rh at most of the sites with r2 ranging from 0.28 to 278 
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0.76. However, the model often over / under-estimated the flux values during the warm 279 

weather in spring and summer. The differences in Rh between the daily EC-derived and 280 

simulated values were compared by calculating RMSE and RE as shown in Table 3. The 281 

RMSE values ranged from 0.23 to 1.10 g C m-2 d-1 (Table 3). The RE ranged from -31 to +26 282 

and the model efficiency from -0.25 to +0.41. The cumulative annual simulated Rh at most of 283 

the sites agreed reasonably with the EC-derived values (Table 4), where the RD ranged from 284 

-38 to +38% showing variable performance for individual sites, but  an overall RD of -1% 285 

indicates overall good fit. The modelled Rh at these peatland sites and the estimated Rh using 286 

the Hardie et al (2009) are close, despite the latter being a relatively crude method to estimate 287 

Rh from Reco, thus providing a challenging test for the model. 288 

 289 

3.3 Attribution and model sensitivity 290 

 291 

The ECOSSE sensitivity / attribution analysis reveals similar responses to input 292 

factors at almost all sites (Figure 5). The Rh flux increased with increasing (decreased with 293 

decreasing) mean daily air temperature, depth to WT, SOC and soil pH but decreased with 294 

increasing (increased with decreasing) annual precipitation. Significant increases in Rh 295 

fluxes, of 30% to 224% and 60% to 142% were calculated when SOC and temperature were 296 

increased by 50%, respectively. Decreasing SOC by 50% decreased the flux by 29% to 68% 297 

and decreasing temperature by 50%, compared to present temperature, decreased the flux by 298 

41% to 61%. Increasing the precipitation by 50% compared to present precipitation, 299 

decreased Rh by 7% to 51% whilst decreasing the precipitation by 50% increased the flux by 300 

4% to 90%. Lowering WT by 50 cm increased Rh by >130% whilst a 50% higher pH, 301 

increased the flux by 22% to 120%, and a 50% lower pH decreased the flux by 74% to 79%.  302 

 303 

4 Discussion 304 

 305 

4.1 EC-derived Rh  306 

 307 

In this study, Rh from the six investigated peatland sites varied due to differences in 308 

climates, vegetation types and management (Table 1; Appendix 1). Previous studies using the 309 

same data sets reported that the fluxes were controlled by a set of parameters including 310 

temperature, ground water level and plant biomass and growth (Aurela et al., 2002; 311 

Hendricks et al., 2007; Lund et al., 2007; Aurela et al., 2009; Dinsmore et al., 2009; Sagerfors 312 
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et al., 2008). Nevertheless, these ecosystem processes are different from one site to another 313 

and difficult to describe using simple linear models (Lloyd, 2006; Lund et al., 2010). The 314 

higher Rh, from the investigated sites, during the late summer and autumn was mainly due to 315 

the high soil temperature and moist soil conditions during this period (Appendix 1 and 3). 316 

Higher air temperature also affects evapotranspiration rate and has a direct effect on Rh 317 

(Christensen et al., 1999). In this study, higher annual Rh was mostly reported at sites of 318 

higher average annual temperature and lower WT depth (Tables 1 and 4). In a meta-analysis, 319 

Yi et al. (2010) found that the sensitivity of NEE to mean annual temperature stops at ∼16◦C, 320 

above which CO2 uptake was not sensitive to temperature and the influence of soil moisture, 321 

overrides the influence of soil temperature. In a study by Lindroth et al. (2007), in northern 322 

Europe, the southernmost, warmest, site (Fäjemyr in the present study) was found to have the 323 

highest ecosystem respiration and highest GPP as compared to the northernmost, coldest site 324 

(Kaamanen in the present study).  325 

Water table plays an important role in plant community structure, peat accumulation, 326 

and decomposition dynamics of OM (Reiley and Page, 2005; Wu et al., 2013). When WT 327 

level is near to the surface, the decomposition of OM within the peat profile is constrained by 328 

low O2 availability resulting in low Rh. A high WT causes anaerobic conditions which are 329 

unfavourable for oxidation of soil OM and plant debris (Hendricks et al., 2007).  330 

Management practices, such as drainage, restoration, re-wetting, peat extraction and grazing 331 

also influence the flux. Drainage increases CO2 from peat decomposition, whilst restoration 332 

and re-wetting decrease the flux (Van Huissteden et al., 2006). Peat extraction leads to on-site 333 

flux from peat deposits during the extraction phase and off-site flux due to the use of peat, 334 

either for producing energy or for agricultural uses (IPCC, 2006). In the UK, grazing and 335 

trampling of peat soils have been shown to alter C exchange gas and GHG emissions (Ward 336 

et al., 2007; Clay and Worrall, 2013). 337 

 338 

4.2 ECOSSE simulations and evaluation 339 

 340 

Evaluation of the ECOSSE model showed that it was able to predict broad seasonal 341 

and annual changes in Rh from the peatland sites (Figure 3), despite use of a simple generic 342 

method to estimate “measured Rh” from Reco. Although some studies reported differences in 343 

ecological responses to climatic drivers between fens and bogs (Sulman et al 2010, 344 

Humphreys et al 2006, Lund et al 2010), we considered the differences between them 345 

negligible due to the lack of comparative studies. We applied Hardie et al. (2009) approach, 346 
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which was the only available method at the time of this study, to partition autotrophic and 347 

heterotrophic respiration from both fens and bogs sites. The ECOSSE was able to predict 348 

seasonal trends in Rh at most of the sites with r2 ranging from 0.28 to 0.76. The model 349 

satisfactorily simulated seasonal trends for Auchencorth Moss, Fäjemyr, Lompolojänkkä and 350 

Kaamanen with RE ranging from -13 to +13. However, for Horstermeer and Degerö Stormyr 351 

the model performance was poorer (RE was -31 and +26, respectively). Total model error 352 

values, as indicated by RMSE were small compared to daily mean fluxes and ME was 353 

positive for all sites except Horstermeer, revealing a reasonable fit between the measured and 354 

predicted fluxes for most of the measurement periods. The larger discrepancies between the 355 

predicted and EC-derived Rh values for Horstermeer and Degerö Stormyr resulted in higher 356 

RD values at the two sites however, the overall RD value for all sites was small (-1%) (Figure 357 

3; Table 4). Generally, predicted results agree well with the annual EC-derived Rh estimated  358 

from fluxes measured using the EC method (particularly considering the relatively crude 359 

estimate of Rh from Reco using the Hardie et al (2009) method), with similar uncertainty 360 

estimations for both methods (Oren et al., 2006; Rannik et al., 2006). The ECOSSE model 361 

responded appropriately to changes in air temperature, timing of precipitation events, land 362 

use and system management, which have strong impacts on Rh. Both EC measurements and 363 

model simulations showed that Rh was clearly controlled by a combination of factors, as 364 

discussed in Section 4.1. The sensitivity test suggests that ECOSSE is capable of simulating 365 

responses of these ecosystems to field WT manipulations. Nevertheless, although the model 366 

results were reasonable, some limitations of the ECOSSE model are revealed, such as the 367 

lack of explicit peatland vegetation types in the model. Improving the plant parameters in 368 

ECOSSE will improve the utility of the model for spatially simulating GHG emissions from 369 

peatlands. Additionally, some processes like soil-root interactions and transport of labile 370 

carbon through the soil profile, which could affect decomposition, are not fully considered in 371 

ECOSSE, and more work on these is required.  372 

 373 

4.3 Model sensitivity and attribution 374 

 375 

Sensitivity analysis of the ECOSSE model showed that Rh from peat soils increased 376 

with increasing temperature. The model simulated a significant increase in Rh when 377 

temperature rose by up to 6oC. Therefore, the future C sink potentials of peatlands will be 378 

affected by changes in temperature and the hydrological cycles, in addition to higher nitrogen 379 

(N) deposition and levels of atmospheric CO2 which would all be expected all increase C 380 
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losses (Zhuang et al., 2003; Carrasco et al., 2006; Fan et al., 2008). Rh is sensitive to changes 381 

in SOC and pH. Increasing SOC increased Rh. In a simulation study using the Dynamic 382 

Organic Soil Terrestrial Ecosystem Model (peatland DOS-TEM), Fan et al. (2013) predicted 383 

that sequestration of SOC in a rich fen will become higher for the next 50 years. This is due 384 

to increased C uptake by the vegetation under a warmer climate. The increased Rh with 385 

increasing pH is in agreement with the findings of Bergman et al. (1999) and Ye et al. (2012) 386 

who suggested that low pH of a peatland ecosystem limited microbial metabolism. The sites 387 

we investigated had pH’s range from 3.9 to 5.5. 388 

The sensitivity analysis to water-table depth shows that lowering of the WT increases 389 

the Rh from these peat soils. Conversely, raising the WT reduced the Rh. The model results 390 

suggest that lowering WT, e.g. through drainage, could have a significant effect on Rh. 391 

Similar conclusions were drawn by Lund et al. (2012), who found that a temperate peatland 392 

(Fäjemyr in the present study) acted as an annual source for atmospheric CO2 during years 393 

with prolonged periods of drought. Drainage increases oxidation and therefore increases CO2 394 

production from decomposing peat (Van den Bos, 2003; Van Huissteden et al., 2006), whilst 395 

re-wetting or restoration may reduce the flux (IPCC, 2006). However, following re-wetting, 396 

higher CH4 flux is expected, which may (partially) counterbalance the reduction in CO2 397 

emissions.  398 

Many studies have suggested that raising the WT to near the surface of the peat soils 399 

(i.e. reversal of drainage) is a suitable future solution for improving C sequestration in 400 

peatlands (Alm et al., 1999; Moore, 2002; Belyea and Malmer, 2004; Tarnocai, 2006, Aurela 401 

et al., 2007, Lund et al., 2012). However, converting arable land back to natural peatland 402 

vegetation (sometimes via grassland), reducing the intensity of land-use, or maintaining the 403 

ground WT to its original level may increase C sequestration in peatlands (Freibauer et al., 404 

2004, Drösler et al., 2008). 405 

 406 

5 Conclusions 407 

 408 

In this study, Rh from six peatland sites was found to be controlled by a set of 409 

parameters, including temperature, vegetation and ground water level. Higher Rh was mostly 410 

reported at sites of higher average annual temperature and lower WT. Despite using rather 411 

simple methods to estimate Rh from Reco measured by EC, the Rh from peatlands was 412 

reasonably well estimated using the ECOSSE model. The regression relationships (r2) 413 

between the EC-derived and simulated Rh fluxes ranged from 0.28 to 0.76,  RE and RMSE 414 
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were small, and the model efficiency ranged from -0.25 to +0.41, revealing a reasonable fit, 415 

particularly considering the relatively crude method of estimating Rh from Reco. The overall 416 

relative deviation (RD) value between the annual EC-derived and annual simulated Rh was 417 

small (-1%). The sensitivity analysis highlighted that increasing temperature, pH, SOC and 418 

lowering WT depth could significantly increase Rh, whilst higher annual precipitation 419 

decreased the flux. Thus, management which lowers the WT, such as drainage could 420 

significantly increase anthropogenic CO2 emissions and therefore, alternative strategies at a 421 

regional level are required. The ECOSSE model can be applied to investigate the impacts of 422 

potential future land management strategies on peatland C emissions, and contribute to shape 423 

land-management decisions. 424 

 425 

Acknowledgements 426 

 427 

This work was supported by a grant from the European Union (GHG-Europe project). 428 

Measurements at Auchencorth Moss were further supported by the European Projects 429 

CarboEurope, NitroEurope and ÉCLAIRE. Measurements at Fäjemyr were supported by 430 

NECC, a Nordic centre of excellence, and LUCCI, financed by Swedish research council VR. 431 

Measurements at Degerö Stormyr were supported by NECC, a Nordic centre of excellence, 432 

FORMAS research council and Kempe Foundation. 433 

 434 

 435 

References 436 

 437 

Alm J, Schulman L, Walden J, Nykanen H, Martikainen P J ,Silvola J.  438 

Carbon balance of a boreal bog during a year with an exceptionally dry summer. 439 

Ecology 1999; 80:161-174. 440 

Aubinet M, Vesala T,  Papale D. Eddy Covariance: A Practical Guide to  441 

Measurement and Data Analysis (Eds.), Spring Atmos Sci 2012; ISSN 2194-5217. 442 

Aurela M, Laurila T, Tuovinen J-P. Annual CO2 balance of a subarctic fen in  443 

northern Europe: importance of the wintertime efflux. J. Geophys. Res 2002; 107: 444 

4607. doi:10.1029/2002JD002055. 445 

Aurela M, Riutta T, Laurila T, Tuovinen J-P, Vesala T, Tuittila E-S, Rinne J,  446 

Haapanalen S, Laine J. CO2 exchange of a sedge fen in southern Finland-the impact 447 

of a drought period. Tellus B 2007; 59: 826-837. 448 

13 
 

http://www.amazon.co.uk/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&field-author=Marc%20Aubinet&search-alias=books-uk&sort=relevancerank
http://www.amazon.co.uk/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&field-author=Timo%20Vesala&search-alias=books-uk&sort=relevancerank
http://www.amazon.co.uk/s/ref=ntt_athr_dp_sr_3?_encoding=UTF8&field-author=Dario%20Papale&search-alias=books-uk&sort=relevancerank


Belyea L R ,Malmer N. Carbon sequestration in peatland: patterns and mechanisms of   449 

response to climate change. Glob Chan Biol 2004;10: 1043-1052. 450 

Bergman I, Lundberg P, Nilsson M. Microbial carbon mineralisation in an acid  451 

surface peat; effects of changing environmental conditions for laboratory incubations. 452 

Soil Biol Biochem 1999; 31: 1867-1877. 453 

Bradbury NJ, Whitmore AP, Hart PBS, Jenkinson DS. Modelling the fate of  454 

nitrogen in crop and soil in the years following the application of 15N-labelled 455 

fertilizer to winter wheat. J Agric Sci 1993;121: 363-379. 456 

Cai Z, Swamoto T, Li C, Kang G, Boonjawat J, Mosier A, Wassmann R, Tsuruta  457 

H. Field validation of the DNDC-model for greenhouse gas emissions in East Asian 458 

cropping systems. Glob Biogeochem Cycles 2003;17: 1107. 459 

Carrasco, J.J., Neff, J.C. and Harden, J.W.: Modeling physical and biogeochemical controls  460 

over carbon accumulation in a boreal forest soil, J. Geophys.Res., 111, G02004, 2006. 461 

Chen H, Yao SP, Wu N, Wang YF, Luo P, Tian JP, Gao YH. Determinants  462 

influencing seasonal variations of methane emissions from alpine wetlands in Zoige 463 

Plateau and their implications. J Geophys Res 2008; 113: D12303. 464 

Christensen T R, Jonasson S, Callaghan TV, Havstrom M. On the potential CO2  465 

release from tundra soils in a changing climate. Appl Soil Ecol 1999;11: 127-134. 466 

Clay GD, Worrall F. The response of CO2 fluxes from a peat soil to variation in  467 

simulated sheep trampling. Geoderma 2013; 197-198: 59-66. 468 

Coleman K, Jenkinson DS. RothC-26.3: a model for the turnover of carbon in soil. In:  469 

Powlson DS, Smith P, Smith JU (eds.). Evaluation of soil organic matter models 470 

using exist-ing, long-term datasets, NATO ASI Series I, Vol. 38, Springer-Verlag, 471 

Heidelberg1996; pp. 237-246. 472 

Couwenberg J. Greenhouse gas emissions from managed peat soils: is the IPCC reporting  473 

guidance realistic? Mires and Peat, Volume 8 (2011); Article 02: 1-10. 474 

http://www.mires-and-peat.net/, ISSN 1819-754X, International Mire Conservation 475 

Group and International Peat Society, 2011. 476 

Dinsmore KJ, Skiba UM, Billett MF, Rees RM. Effect of water table on  477 

greenhouse gas emissions from peatland mesocosms. Plant Soil 2009; 318: 229-242. 478 

Dise NB. Peatland response to global change. Science 2009; 326: 810-11. 479 

Drewer J, Lohila A, Aurela M, Laurila T, Minkkinen K, Penttila T, Dinsmore K J, McKenzie 480 

RM, Helfter C, Flechard C, Sutton MA, Skiba UM. Comparison of Greenhouse Gas 481 

14 
 



Fluxes and Nitrogen Budgets from an Ombotrophic Bog in Scotland and a 482 

Minerotrophic Sedge Fen in Finland. Euro J Soil Sci 2010; 6: 640-650. 483 

Drösler M, Augustin J, Förster C, Freibauer A, Höper H, Kantelhardt J, Liebersbach  484 

H, Minke M, Petschow U, Schaller L, Schägner P, Sommer M., Zinecker F. GHG 485 

exchange and economic effects of climate-friendly peatland management in Germany, 486 

Proceedings of the 13th International Peat Congress, Tullamore 8 - 13 June, 2008, 487 

(Ireland). 488 

Ehleringer JR, Buchmann N, Flanagan LB. Carbon isotope ratios in below-ground carbon  489 

cycle processes. Ecolo Appl 2000; 10: 412-422.  490 

Fan Z, Neff JC, Harden J, Wickland KP. Boreal soil carbon dynamics under a  491 

changing climate: a model inversion approach. J Geophys Res 2008;113: G04016. 492 

Fan Z, Mcguire AD, Turetsky MR, Harden JW, Waddington JM, Kanek  493 

ES. The response of soil organic carbon of a rich fen peatland in interior Alaska to 494 

projected climate change. Glob Chan Biol 2013;19: 604-620. 495 

FAO. World Reference Base for Soil Resources. World Soil Resources Report No. 84, FAO,  496 

Rome1998, 88 pp. 497 

Freibauer A, Rounsevell M, Smith P, Verhagen A. Carbon sequestration in the  498 

agricultural soils of Europe. Geoderma 2004; 122: 1-23. 499 

Frolking S, Roulet NT, Fuglestvedt J. How northern peatlands influence the Earth’s  500 

radiative budget: Sustained methane emission versus sustained carbon sequestration. J 501 

Geophys Res 2006; 111, G01008. 502 

Global Peatland Initiative. Agreement between DGIS and wetlands international relating to  503 

cooperation for the conservation and wise use of wetlands. Activity WW012502, 504 

Document DML/BD-240/01, Wageningen, December 2002. 505 

Hardie SML, Garnett MH, Fallick AE, Ostle NJ, Rowland AP. Bomb 14C  506 

analysis of ecosystem respiration reveals that peatland vegetation facilitates release of 507 

old carbon. Geoderma2009; 153:393-401. 508 

Harrison AF, Harkness DD, Rowland AP, Garnett JS, Bacon PJ. Annual Carbon and  509 

Nitrogen Fluxes Along a European Forest Transect Determined Using 14C-bomb. In: 510 

E.D. Schulze (Editor), Chapter 11, Carbon and Nitrogen Cycling in European Forest 511 

Ecosystems. Springer Verlag 2000, Heidelberg, pp. 237-256.  512 

Hendriks DMD, van Huissteden J, Dolman AJ, van Der Molen MK. The full  513 

greenhouse gas balance of an abandoned peat meadow. Biogeosci 2007; 4: 411-24. 514 

Huang SM, Yang YQ, Wang YP. A critical look at procedures for validating growth and  515 

15 
 



yield models. In: Amaro A, Reed D, Soares P (Eds.), Modelling Forest Systems. 516 

CABI Publishing, Guildford 2003, pp. 271-294. 517 

Humphreys E R, Lafleur P M, Flanagan L B, Hedstrom N, Syed K H, Glenn A J,  518 

Granger R. Summer carbon dioxide and water vapor fluxes across a range of northern 519 

peatlands. J Geophys Res 2006;111: G04011. 520 

IPCC. IPCC Guidelines for National Greenhouse Gas Inventories (eds. Eggleston HS,  521 

Buendia L, Miwa K, NgaraT, Tanabe K. Prepared by the National Greenhouse Gas 522 

Inventories Programme2006; IGES, Japan. 523 

Ise T, Dunn AL, Wofsy SC, Moorcroft PR. High sensitivity of peat decomposition  524 

to climate change through water-table feedback. Nature Geosci 2008; 1: 763-766. 525 

Jenkinson DS, Rayner JH. The turnover of soil organic matter in some of the  526 

Rothamsted classical experiments. Soil Sci1977; 123: 298-305. 527 

Jenkinson DS, Hart PBS, Rayner JH, Parry LC. Modelling the turnover of organic  528 

matter in long-term experiments at Rothamsted. INTECOL e-Bulletin 1987; 15: 1-8. 529 

Joosten H, Sirin A, Couwenberg J, Laine J, Smith P. The role of peatlands in  530 

climate regulation. In “Peatland restoration and ecosystem services.” (Edited by Bonn 531 

A, Allott T, Evans M, Joosten H, Stoneman R), Cambridge University Press 2012, 532 

Cambridge, UK.  533 

Kasimir-Klemedtsson A, Klemdtsson L, Berglund K, Martikainen PJ, Silvola J,  534 

Oenema O. Greenhouse gas emissions from farmed organic soils: a review. Soil Use 535 

Manag 1997;13: 245-250. 536 

Lasslop G, Reichstein M, Papale D, Richardson A D, Arneth A, Barr A, Stoy P,  537 

Wohlfahrt G. Separation of net ecosystem exchange into assimilation and respiration 538 

using a light response curve approach: critical issues and global evaluation. Glob 539 

Chan Biol 2010;16: 187-208. 540 

Lindroth A, Lund M, Nilsson M, Aurela M, Christensen T R, Laurila T, Rinne J,  541 

Riutta T, Sagerfors J, Ström L, Tuovinen J P, Vesala T. Environmental controls on the 542 

CO2 exchange in north European mires. Tellus B 2007; 59: 812-825. 543 

Lloyd C R. Annual carbon balance of a managed wetland meadow in the Somerset Levels,  544 

UK. Agric For Meteorol 2006; 138: 168-179. 545 

Lund M, Lindroth A, Christensen TR, Strom L. Annual CO2 balance of a temperate  546 

bog. Tellus 2007; 59B: 804-811. 547 

Lund M, Lafleur P M, Rouletz NT, Lindroth A, Christensen TR, Aurela M,  548 

16 
 



Chojnicki BH, Flanagank LB, Humphreys ER, Laurila T, Oechel WC, Olejnik J, 549 

Rinne JR, Schubert P, Nilsson MB. Variability in exchange of CO2 across 12 northern 550 

peatland and tundra sites. Glob Chan Biol 2010; 16: 2436-2448. 551 

Lund M, Christensen TR, Lindroth A, Schubert P. Effects of drought conditions on  552 

the carbon dioxide dynamics in a temperate peatland. Environ Res Lett 2012; 7: 553 

045704. 554 

Maanavilja L, Riutta T, Aurela M, Pulkkinen M, Laurila T, Tuittila E-S. Spatial  555 

variation in CO2 exchange at a northern aapa mire. Biogeochem 2010;104: 325-345.  556 

McMillen RT. An eddy correlation technique with exended applicability to non-simple 557 

terrain. Bound Lay Meteoro 1988; 43: 231-245. 558 

Montanarella L, Jones RJA,  Hiederer R. The distribution of peatland in Europe.  559 

Mires and Peat, Volume 1 (2006), Article 01, http://www.mires-and-peat.net, ISSN 560 

1819-754X. 561 

Moore P D. The future of cool temperate bogs, Environ. Conserv 2002; 29: 3-20. 562 

Nash JE, Sutcliffe JV. River flow forecasting through conceptual models-part 1: a discussion  563 

of principles. J Hydrol 1970; 10: 282-290. 564 

Oren R, Hsieh CI, Stoy P, Albertson J, McCarthy HR, Harrell P, Katul GG.  565 

Estimating the uncertainty in annual net ecosystem carbon exchange: spatial variation 566 

in turbulent fluxes and sampling errors in eddy-covariance measurements. Glob Chan 567 

Biol 2006;12: 883-896. 568 

Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P,  569 

Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grunwald T, Havrankova K, 570 

Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, 571 

Meyers T, Miglietta F, Ourcival J M, Pumpanen J, Rambal S, Rotenberg E, Sanz M, 572 

Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R. On the separation 573 

of net ecosystem exchange into assimilation and ecosystem respiration: review and 574 

improved algorithm. Glob Chan Biol 2005; 11: 1424-1439. 575 

Rannik U, Kolari P, Vesala T, Hari P. Uncertainties in measurement and modelling  576 

of net ecosystem exchange of a forest. Agric Forest Meteorol 2006;138: 244-257. 577 

Rieley JO, Page SE. Wise Use of Tropical Peatlands-Focus on Southeast Asia (eds),  578 

Alterra, Wageningen. The Netherlands, 2005. (http://www.restorpeat.alterra. 579 

wur.nl/p_download.htm). 580 

Sagerfors J, Lindroth A, Grelle A, Klemedtsson L, Weslien P, Nilsson M. Annual  581 

17 
 

http://www.restorpeat.alterra/


CO2 exchange between a nutrientpoor, minerotrophic, boreal mire and the 582 

atmosphere. J Geophy Res 2008;113(G1): G01001-G01015.  583 

Schrier-Uijl AP, Kroon PS, Leffelaar PA,  van Huissteden J C, Berendse F,  584 

Veenendaal EM. Methane emissions in two drained peat agro-ecosystems with high 585 

and low agricultural intensity. Plant Soil 2010; 329: 509-520. 586 

Schuur EAG and Trumbore SE. Partitioning sources of soil respiration in boreal black spruce  587 

forest using radiocarbon. Glob Chan Biol 2006; 12: 165-176.  588 

Smith J, Smith P. Environmental modelling: an introduction. Oxford University Press 2007;  589 

UK: pp 1-178. 590 

Smith J, Gottschalk P, Bellarby J, Richards M, Nayak D, Coleman K, Hillier J,  591 

Wattenbach M, Aitkenhead M, Yeluripurti J, farmer J, Smith P. Model to estimate 592 

carbon in organic soils-sequestration and emissions (ECOSSE) user-manual. 593 

University of Aberdeen 2010; UK: pp 1-76. 594 

Smith JU, Gottschalk P, Bellarby J, Chapman S, Lilly A, Towers W, Bell J,  595 

Coleman K, Nayak DR, Richards MI, Hillier J, Flynn HC, Wattenbach M, Aitkenhead 596 

M, Yeluripurti JB, Farmer J, Milne R, Thomson A, Evans C, Whitmore AP, Falloon 597 

P,  Smith P. Estimating changes in national soil carbon stocks using ECOSSE- a new 598 

model that includes upland organic soils. Part I. Model description and uncertainty in 599 

national scale simulations of Scotland. Clim Res 2010a; 45: 179-192. 600 

Smith JU, Gottschalk P, Bellarby J, Chapman S, Lilly A, Towers W, Bell J,  601 

Coleman K, Nayak DR, Richards MI, Hillier J, Flynn HC, Wattenbach M, Aitkenhea, 602 

M, Yeluripurti JB, Farmer J, Milne R, Thomson A, Evans C, Whitmore AP, Falloon 603 

P,  Smith P. Estimating changes in national soil carbon stocks using ECOSSE-a new 604 

model that includes upland organic soils. Part II. Application in Scotland. Clim Res 605 

2010b; 45: 193-205. 606 

Smith JU, Glendining MJ. A decision support system for optimising the use of  607 

nitrogen in crop rotations. Rotations and cropping systems. Asp Appl Biol 1996; 47: 608 

103-110.  609 

Smith P, Smith JU, Powlson DS, McGill WB, Arah JRM, Chertov OG, Coleman  610 

K, Franko U, Frolking S, Jenkinson DS, Jensen LS, Kelly RH, Klein-Gunnewiek H, 611 

Komarov A, Li C, Molina JAE, Mueller T, Parton WJ, Thornley JHM, Whitmore AP. 612 

A comparison of the performance of nine soil organic matter models using seven 613 

long-term experimental datasets. Geoderma 2007; 81: 153-225. 614 

Sulman B N, Desai A R, Saliendra N Z, Lafleur P M, Flanagan L B, Sonnentag  615 

18 
 



O. CO2 fluxes at northern fens and bogs have opposite responses to inter-annual 616 

fluctuations in water table. Geophys Res Lett 2010; 37(19): L19702.  617 

Tarnocai C. The effect of climate change on carbon in Canadian peatlands. Glob Planet  618 

Chan 2006; 53(4): 222-232. 619 

Thornthwaite CW. An approach toward a rational classification of climate. Geogr Rev1948;  620 

38: 55-94. 621 

Van Huissteden J, Van den Bos RM, Marticorena Alvarez I. Modeling the effect of  622 

water-table management on CO2 and CH4 fluxes from peat soils. Neth J Geosci 2006; 623 

85:3-18. 624 

Van den Bos RM. Restoration of former wetlands in the Netherlands; effect on the balance  625 

between CO2 sink and CH4 source. Neth J Geosci 2003; 82: 325-332. 626 

Ward P J, Aerts JCJH, De Moel H, Renssen H.  Verification of a coupled climate-  627 

hydrological model against Holocene palaeo-hydrological records. Glob Planet Chan 628 

2007; 57: 283-300. 629 

Ward SE, Bardgett RD, McNamara NP, Adamson JK, Ostle NJ. Long-term consequences of  630 

grazing and burning on northern peatland carbon dynamics. Ecosyst 2007; 10:1069-631 

1083. 632 

Wu L, McGechan M B. A review of carbon and nitrogen processes in four soil  633 

nitrogen dynamics models. J Agric Engin Res 1998; 69: 279-305. 634 

Wu J, Roulet NT, Sagerfors J, Nilsson M. Simulation of six years of carbon fluxes  635 

for a sedge-dominated oligotrophic minerogenic peatland in Northern Sweden using 636 

McGill wetland model. J Geophysi Res Biogeosci 2013; 18:795-807. 637 

Ye R, Jin Q, Bohannan B, Keller JK, Mc Allister SA, Bridgham SD. pH controls  638 

over anaerobic carbon mineralization, the efficiency of methane production, and 639 

methanogenic pathways in peatlands across an ombrotrophic- minerotrophic gradient. 640 

Soil Biol Biochem 2012; 54: 36-47. 641 

Yi C, Ricciuto D, Li R, Wolbeck J, Xu X, et al. Climate control of terrestrial carbon  642 

exchange across biomes and continents. Environ Res Lett 2010; 5: 034007. 643 

Yu ZC. Northern peatland carbon stocks and dynamics: a review. Biogeosci 2012; 9: 4071- 644 

4085. 645 

Zhuang Q, McGuire AD, O’Neill KP, Harden JW, Romanovsky V, Yarie J. Modeling the soil  646 

thermal and carbon dynamics of a fire chrono-sequence in Interior Alaska. J Geophys 647 

Res 2003; 107:8147.  648 

19 
 

http://dx.doi.org/10.1006/jaer.1997.0250


Figure’s captions 666 
 667 
Figure 1: Relative cover (%) of peat and peat-topped soils (0–30cm) in Europe (Adapted from Montanarella et al., 2006). Investigated 668 
sites are Auchencorth Moss (a), Horstermeer (b), Fäjemyr (c), Degerö (d), Kaamanen (e) and Lompolojänkkä (f). 669 
 670 

Figure 2: Correlations between Reco and annual temperature (a) and rainfall (b). For the annual temperature y = 212e0.12x and r2 = 0.72; 671 
for annual rainfall y = 0.66x + 49.8 and r2 = 0.42. 672 

Figure 3: Eddy Covariance derived (Filled circle) and modeled (solid line) daily heterotrophic CO2 (Rh) during the measurements 673 
period 2002-2010. 674 

Figure 4: Regression relationships (1:1) between the Eddy Covariance-derived and modeled heterotrophic CO2 (Rh) form 675 
Auchencorth Moss (a), Horstermeer (b), Fäjemyr (c), Degerö (d), Kaamanen (e) and Lompolojänkkä (f). 676 
 677 

Figure 5: The attribution/ sensitivity response of the heterotrophic CO2 (Rh) to variations in soil properties and climate input factors at 678 
Auchencorth Moss (a), Horstermeer (b), Fäjemyr (c), Degerö (d), Kaamanen (e) and Lompolojänkkä (f). Currently = model Rh at the 679 
present climate and soil parameters. 680 
 681 
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 694 

Figure 2: Correlations between Reco and annual temperature (a) and rainfall (b). 695 
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 701 

 702 

Figure 3: Eddy Covariance derived (Filled circle) and modeled (solid line) daily heterotrophic CO2 (Rh). 703 
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  704 

Figure 4: Regression relationships (1:1) between the Eddy Covariance-derived and modeled heterotrophic CO2 (Rh). 705 
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 709 

 710 

Figure 5: The attribution/ sensitivity response of the heterotrophic CO2 (Rh) to variations in soil properties and climate input. 711 
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Tables 649 
 650 
Table 1: Site coordinates, water table (WT) depth, type of peatland and management and annual mean climatic conditions.  651 
Ecosystem/ location    Coordinates         WT depth (cm)   Peatland type  Management       Average                    Average       Method of CO2  
                                                                                                                                                Precipitation (mm)   temperature   flux measurements 
Auchencorth, UK*        55o79’N, 3o24’W      0-25              Bog                  drainage ditches,            1155               10oC             EC (closed path) 
                                                                                                                      restored; sheep grazing                                         (Li-COR 7000 IRGA)                                                                                                                                                                                                                            
Horstermeer, NL          52o15’N, 05o05’       0-10               Fen                   restored; nature reserve   800               9.8oC            EC (open path) 
                                                                                                                                                                                                     (Li-COR7500) 
Fäjemyr, SWE              56o25’N, 13o33’E     0-16              Bog                  natural mire                     700                6.2oC            EC (closed path) 
                                                                                                                                                                                                     (Li-COR 6262 IRGA) 
Degerö, SWE               64o18’N, 19o55’        5-15              Fen                   natural mires.                   523               1.2oC             EC (closed path) 
                                                                                                                                                                                                     (Li-COR 6262 IRGA)      
Kaamanen, FIN            69o14’N, 27o17’E     0-10               Fen                   natural mire                     441               0.4oC            EC (closed path) 
                                                                                                                                                                                                     (Li-COR 7000 IRGA) 
Lompolojänkkä, FIN     67o59’N, 24o12’E    0-10               Fen                   natural mire                     484               -1.4oC           EC (closed path) 
                                                                                                                                                                                                     (Li-COR 7000 IRGA) 
*UK is United Kingdom; NL is the Netherlands; FIN is Finland and SWE is Sweden. 652 

 653 

Table 2: Characteristics of the peatland soils (histosol). 654 
Ecosystem                     Peat                                   Bulk density                        pH                             Estimated  soil organic   
and location                  depth (m)                             (g cm-3)                                                                matter to 50 cm depth (t C ha-1) 
Auchencorth, UK*           0.5-5                                  0.2                                     4.2                                            512 
Horstermeer, NL                2                                      0.5                                     5.3                                            621                   
Fäjemyr, SWE                  4-5                                    0.4                                     3.9                                            810 
Degerö, SWE                    3-4                                    0.1                                     3.9                                            450  
Kaamanen, FIN                 1-2                                   0.1                                     4.5                                            240 
Lompolojänkkä, FIN         2-3                                   0.1                                     5.5                                            190 
*UK is United Kingdom; NL is the Netherlands; FIN is Finland and SWE is Sweden. 655 

 656 
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Table 3: Measurement period, average daily measured and modeled heterotrophic CO2 (g C m-2d-1), root mean square error (RMSE) 657 
(g C   m-2 d-1), regression coefficient (R2),  relative error (RE)  and model efficiency (ME) for the peatland sites. 658 
Site                                         Measurement period   EC-derived Rh*  Modelled Rh  RMSE                R2                   RE               ME 

Auchencorth                           2005-2010                 0.85                    0.71                    0.60                  0.43               +13              +0.38 
Horstermeer                            2005-2006                1.60                    0.97                    1.10                   0.32                -31              -0.25 
Fäjemyr                                   2006-2009                0.69                    0.74                    0.36                   0.55               +5                +0.23 
Degerö                                    2002-2009                 0.34                    0.46                    0.44                   0.46               +26              +0.41 
Kaamenen                               2000-2003                 0.31                    0.33                    0.23                   0.76               +7                +0.11 
Lompolojänkkä                       2008-2009                0.48                     0.37                    0.54                   0.28               -13               +0.04 
* derived from NEE measured by Eddy Covariance and then partitioned into GPP and Reco. Reco was then further partitioned into 659 
autotrophic and heterotrophic (Rh) respiration respectively according to Hardie et al. (2009). 660 

 661 

Table 4: Statistical analysis of annual heterotrophic CO2 respiration (Rh; g C m-2y-1) for the peatland sites during the experimental 662 
period (2002-2010). RD is the average relative deviation between the measured and annual modeled flux. Different letters in the 663 
column mean that Rh values are significantly different (p<0.05). n is the number of years. 664 
Site                                                    Measured Rh                       Modeled Rh                        n                                      RD (%)                                                                                                  

Auchencorth                                      256a                                     305                                     6                   +19 
Horstermeer                                       540b                                    334               2                   -38 
Fäjemyr                                              312d                                    262                                      4                   -6 
Degerö                                                121f                                    167                                      8                                      +38  
Kaamenen                                           110e                                   118                                      4                   +8 
Lompolojänkkä                                   166c                                   129                                      2                    -22 
 665 
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