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Abstract. The mechanical and use properties of metal alloys depend on several factors, including the amount
and the geometry of impurities (inclusions). In this context, image analysis enables these inclusions to be studied
from digital images acquired by various systems such as optical/electron microscopy or X-ray tomography. This
paper therefore aims to present some geometrical and morphometrical tools of image analysis, in order to
characterize inclusions in metal alloys. To achieve this quantification, many geometrical and morphometrical
features are traditionally used to quantitatively describe a population of objects (inclusions). Integral geometry,
viaMinkowski’s functionals (in 2D: area, perimeter, Euler-Poincaré number), has been particularly investigated
in image analysis. Nevertheless, they are sometimes insufficient for the characterization of complex
microstructures (such as aggregates/agglomerates of objects). Other quantitative parameters are then
necessary in order to discriminate or group different families of objects. In particular, shape diagrams are
mathematical representations in the Euclidean plane for studying the morphology (shape) of objects, regardless
of their size. In addition, this representation also makes it possible to analyze the evolution from one shape to
another. In conclusion, image analysis using integral geometry and shape diagrams provide efficient tools with
known mathematical properties to quantitatively describe inclusions (providing separate information on size
and shape). The geometrical characteristics of these inclusions could thereafter be related to the mechanical
properties of the metal alloys.

Keywords: geometrical characterization / image analysis / integral geometry / Minkowski functionals / shape
diagrams
1 Introduction

The mechanical and use properties of metal alloys depend
on several factors, including the amount and the geometry
of impurities (inclusions). In this context, image analysis
enables these inclusions to be studied from digital images
acquired by various systems such as electron microscopy or
X-ray tomography.

This paper therefore aims to present some geometrical
and morphometrical tools of image analysis, in order to
characterize inclusions in metal alloys. To achieve this
quantification, many geometrical and morphometrical
features are traditionally used to quantitatively describe
a population of objects (inclusions) [1,2].

Integral geometry [3–5], via Minkowski’s functionals [6]
(in 2D: area, perimeter, Euler-Poincaré number), has been
particularly investigated in image analysis. Indeed, inte-
gral geometry [3–5] has generalized convex geometry to
ebayle@emse.fr
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finite unions of convex sets. This concept well applies to
digital image analysis, since the smallest element (2D pixel)
is indeed a convex set [7]. Nevertheless, they are sometimes
insufficient for the characterization of complex micro-
structures (such as aggregates/agglomerates of objects) [8].
Other quantitative parameters are then necessary in order
to discriminate or group different families of objects. In
particular, shape diagrams [9–11] are mathematical
representations in the Euclidean plane for studying the
morphology (shape) of objects, regardless of their size. In
addition, this representation also makes it possible to
analyze the evolution from one shape to another. It also
enables a convexity discrimination to be done with a direct
visualization of the shape diagrams. For very complexe
structures, such as fractal objects, other descriptors could
be required. Indeed, these geometrical and morphometrical
descriptors could be insufficient (as it stands) to analyse
such strutures but the proposed measurements can be
computed on some geometrical transformations of the
object to be studied, providing some measurements
monsAttribution License (http://creativecommons.org/licenses/by/4.0/),
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mailto:debayle@emse.fr
https://www.edpsciences.org
https://doi.org/10.1051/metal/2019011
https://www.metallurgical-research.org
http://creativecommons.org/licenses/by/4.0/


Fig. 1. Image composed of sixteen pixels (a) represented by
crosses (�). The image is covered by intrapixel (b) or interpixel
(c) cells, composed of vertices, edges and faces (vertice=●,
edge= –, face=■). Note: image (a) is covered by sixteen
intrapixel cells or nine interpixel cells [12].
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functions and not only scalars. This kind of approach has
been particularly studied in [12]. Other descriptors are
based on computational geometry and stochastic geometry
[13] but they will not be studied in this paper.

The following of the paper is organized as follows:
Section 2 gives the fundamentals notions of the Minkowski
functionals. The computational aspects as well as the
properties and the limitations of these functionals are done.
Section 3 presents the shape diagrams and some illustra-
tion of the properties of continuity and convexity
discrimination are done. The last section concludes this
work. The objective of this paper is not to give an
exhaustive list of geometrical and morphometrical tools,
but rather to focus on specific descriptors with a compact
representation and good mathematical properties and
which are easy to compute.

2 Geometrical tools via integral geometry

Convex geometry, based on Minkowski functionals [6],
allows to geometrically characterize a convex set in ℝn.
There are exactly n+1 Minkowski functionals, satisfying-
ing certain properties (additivity, continuity, invariance by
displacements). For example on ℝ2, these functionals are
the area, the perimeter and the Euler number. The two first
functionals are related to well-known geometrical charac-
teristics while the Euler number is a topological character-
istic corresponding to the number of connected components
minus the number of holes inside the set. The Minkowski
functionals provide a basis of measurements in ℝn [14].
They are therefore linearly independent and any other
functional satisfying these properties is a linear combina-
tion of these properties. Integral geometry [3–5] has
generalized convex geometry to finite unions of convex
sets. This concept well applies to digital image analysis,
since the smallest element (2Dpixel) is indeeda convex set [7].
In the following, an efficient method (based on discrete
geometry) for computing these Minkowski functionals
from a 2D binary image is given [12]. Thereafter, the
properties of the Minkowski functionals and their limi-
tations will be presented.
2.1 Notions of discrete geometry
2.1.1 Digital topology

Let X be a two-dimensional binary image of size
l1 � l2; ðl1; l2Þ∈ℕ 2. The spatial support of X is denoted
D ¼ ½0; l1�∩ ℕ � ½0; l2�∩ ℕ . X is represented by a matrix
B ¼ ðbxÞx∈D, where bx, belonging to {0,1}, is the value of
the intensity of the pixel (abbreviated as “picture element”,
the most small image element) of coordinates x∈D. By
convention, the object and background of the image are
represented by pixels of intensity bx= 1 and bx= 0,
respectively. In particular, a set of connected pixels
included in the object is a hole. The notion of neighbour-
hood induces topology on D:

–
 two pixels of the object (or background) with coordinates
x1 ¼ ðx1

1;x
1
2Þ and x2 ¼ ðx21; x22Þ are 4-adjacent if and only

if jx11 � x21j þ jx12 � x22j ¼ 1;
–
 two pixels of the object (or background) with coordinates
x1 ¼ ðx1

1;x
1
2Þ and x2 ¼ ðx21; x22Þ are 8-adjacents if and only

if max jx11 � x21j; jx12 � x22j
� � ¼ 1.

The p-neighbourhood (p= 4 or p= 8) of a pixel is
therefore defined as the set of pixels p-adjacent to this one
[Ros74]. The notion of neighbourhood makes it possible to
establish the notion of connectedness [15]. Indeed, two pixels
of the object (orbackground)arep-connected (p= 4orp= 8)
if there is a path of p-adjacent pixels connecting them.
Similarly, a related component in a two-dimensional binary
image is a set of adjacent pixels forming a path in the image.
Inorder to satisfyJordan’s theorem, theconnectionsmustbe
different for the background pixels and for the object pixels.
Therefore, these two-dimensional image connections are
noted (4, 8)or (8, 4), thefirst coordinate corresponding to the
object, and the second one at the bottom [16].

2.1.2 Cell configuration

The “physical” spatial support of the image (i.e. the
“continuous” spatial support) is covered by cells associated
with pixels. A cell (size square the interpixel distance) is
composed of one face, four edges and four vertices. Either a
cell is centered in a pixel (cell intrapixel), or a cell is built by
connecting pixels (interpixel cell). Figure 1 illustrates the
overlapping of an image consisting of sixteen pixels, and its
two possible representations.

4- and 8-adjacence are associated with the cell
representation:

–
 using intrapixel cells, two pixels of the object (back-
ground) are adjacent if and only if their respective cells
have a common vertex (8-adjacence);
–
 using interpixel cells, two pixels of the object (back-
ground) are adjacent if and only if they share the same
edge (4-adjacence).

Figure 2 shows the two cell representations of the two-
dimensional binary image X associated with matrix B.

2.1.3 Neighborhood configuration

In order to efficiently calculate the number of vertices v,
edges e and faces f of the object (pixels of intensities equal
to 1), the different neighbourhood configurations (size two



Fig. 2. Representation of intrapixel (b) and interpixel (c) cells of
the binary image X associated to the matrix B (a) [12].
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by two pixels) of the original image X are determined
[1,2,17–22]. Thus, to each pixel corresponds a neighbor-
hood. In addition, sixteen configurations are possible
(Tab. 1 where the values 0 and 1 represent the intensity of
the pixels (1: object, 0: background).

Then, each configuration contributes for a known
number of vertices, edges and faces (Eqs. (1–3)). To
determine the neighborhood configurations of all pixels, an
efficient algorithm consists in convolving the binary matrix
B (associated with the image X) by a mask F of dimension
two, whose values are powers of two, and whose origin is the
pixel at the top left with value 1:

F ¼ 1 4
2 8

� �

Each value a∈½0; 15�∩ ℕ of the resulting matrix B*F,
where * denotes the convolution operator, corresponds to a
known neighborhood configuration. Table 1 shows the
possible configurations (1: object, 0: background) and the
associated values a resulting from the convolution. The
histogram h of B*F gives the distribution of the neighbor-
hood configurations of theX image. And each configuration
contributes to a known number of vertices, edges and faces:

v¼
X15
a¼0

vahðaÞ; ð1Þ

e¼
X15
a¼0

eahðaÞ; ð2Þ

f ¼
X15
a¼0

fahðaÞ; ð3Þ

where for a∈½0; 15�∩ ℕ , va, ea and fa are the coefficients of
the linear combinations, depending on the image overlap,
given in Table 2.
2.2 Minkowski functionals

Based on these notions of discrete geometry, the different
Minkowski functionals can be computed from the number
of vertices v, edges e and faces f.
2.2.1 Euler number

The Euler number, denoted x, corresponding to the
number of connected components minus the number of
holes, can be computed from the image overlap by cells:

x ¼ v� eþ f; ð4Þ
where v , e and f are the number of vertices, edges and faces,
respectively.

It is important to note that equation (4) gives different
numbers of Eulerx, depending on the representation of
cells. The representation of intrapixel (or interpixel) cells
gives the result with (8, 4)-connexity (respectively (4, 8)-
connexity). Each configuration of neighbourhoods contrib-
utes to a known number of vertices, edges and faces, and
therefore for the number of Euler. Thanks to equations (1–
4), the number of Euler is calculated as follows:

xð8;4Þ¼
X15
a¼0

xð8;4Þ
a hðaÞ; ð5Þ

xð4;8Þ¼
X15
a¼0

xð4;8Þ
a hðaÞ; ð6Þ

where xa= va� ea+ fa is given in the Table 2. The Euler
number is then efficiently computed by using the
coefficients associated to each configuration, depending
on the image overlap.

2.2.2 Perimeter

Twomethods, giving different results, allow to estimate the
perimeter of an object. Using intrapixel cells, the perimeter,
denoted P is determined by counting the number of edges
common to two pixels of different intensities, thanks to the
following formula:

P ¼ �4f þ 2e: ð7Þ
The discretization implies that this perimeter is

underestimated. Following the equations (1–3), P is
computed as:

P ¼
X15
a¼0

PahðaÞ; ð8Þ

where Pa= va� ea+ fa is given in the Table 2.
The Crofton perimeter, denoted P independent of the

representation of the cells used, gives a better estimation. It
associates the length of a curve with the number of times a
“random” line intersects the set [23]. Let g be a planar
curve, l a line oriented in direction ’ and of length p, ng (l)
the number of points at which g and l intersect. Crofton’s
formula expresses the arc length of the g curve in terms of
the spatial integral of all oriented lines:

lengthðgÞ ¼ 1

4
∫∫ngðf; pÞdfdp;



Table 1. Neighborhood configurations with the associated values a.

a 0 1 2 3 4 5 6 7

0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 1 0 0 0 1 1 0 1 1 1 0 1 1

a 8 9 10 11 12 13 14 15

1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1
0 0 0 1 0 0 0 1 1 0 1 1 1 0 1 1

Table 2. Coefficients of the linear combinations, depending or not on the cell representation [12]. The lines highlighted
with the gray color correspond to the direct computation of the Minkowski functionals.
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In the discrete case, only the angle orientations 0, p
4,

p
2,

and 3p
4 are considered; they are chosen according to the

connectivity. The number of intercepts for each of these
lines is counted, and denoted respectively i0, ip/4, ip/2 and
i3p/4. They are then standardized by 1 or

ffiffiffi
2

p
depending on

the orientation. The average is finally calculated by
multiplying by p, a value representing the integral of the
orientations, and by dividing by the number of orientations
used. The Crofton perimeter is then calculated as follows:

P
ð4;8Þ
a ¼ p

2
i0 þ ip=2

� �
for the ð4; 8Þ � connectivity; ð9Þ

P
ð8;4Þ
a ¼ p

4
i0 þ ip=4ffiffiffi

2
p þ ip=2 þ i3p=4ffiffiffi

2
p

� �

for the ð8; 4Þ � connectivity: ð10Þ
This perimeter is computed thanks to the following

linear combinations that provide coefficients to the
different numbers of intercepts.

P
ð4;8Þ
a ¼

X15
a¼0

P
ð4;8Þ
a hðaÞ; ð11Þ
P
ð8;4Þ
a ¼

X15
a¼0

P
ð8;4Þ
a hðaÞ; ð12Þ

where the coefficients P
ð4;8Þ
a and P

ð8;4Þ
a are given in Table 2.

For wired objects, considered as objects of dimension
one, the two previously defined perimeters do not give
robust results, since they double the length of a line.

2.2.3 Area

The area (or surface), denoted A, of the set is generally
defined by the number of pixels of the set. According to the
representation of the cells, it is then equal to the number of
vertices v (interpixel cells) or the number of faces f
(intrapixel cells), the result being always the same.
Generally, this overestimates the area. Thanks to equa-
tions (1–3), the area A is calculated as follows:

A¼
X15
a¼0

AahðaÞ; ð13Þ

where the coeffcients Aa are given in Table 2.



Fig. 3. Four binary images (300� 300 pixels or 1� 1mm) of borosilicate glass visually different but having the same Minkowski
functionals [8]: area 0.437mm2, perimeter 30.28mm, number of Euler 11 or 16 depending on the connectivity).
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It is also possible to count the number of faces f obtained
with the representation of the interpixel cells. In this case,
the area is generally underestimated, but the wired objects
have no area (they are therefore considered as objects of
dimension one), this result being more robust.

2.3 Properties

The n+1 Minkowski functionals MF satisfy the following
properties, for all compact convex sets X and Y in ℝn:

–
 increasingness: X ⊆ Y ⇒ MF (X) � MF (Y);

–
 invariance to rigid transformations t: MF (X)=MF (Xt)
where Xt denotes the transformation of X by the rigid
operator t (translation and rotation);
–
 homogeneity: MF (lX)= ldMF (X) for l∈ℝ and d the
dimensionnality of MF;
–
 additivity:MF (X)+MF (Y)=MF (X∪Y)+MF (X∩Y);

–
 continuity:
limi!þ∞dHðXi;XÞ ¼ 0⇒ limi!þ∞MFðXiÞMFðXÞ
where

dH denotes the Hausdorff distance [DD06] and ðXiÞi
denotes a family of convex sets.

Among these five properties, three are still valid for the
finite unions of convex sets: invariance by rigid transfor-
mation, homogeneity and additivity.

Regarding Hadwiger’s theorem [14], one other main
important property is that any homogeneous and continu-
ous functional that is invariant under rigid motions can be
represented as a sum of the n+1Minkowski functionals. In
ℝ2, it means that such a functional m computed on a set X
can be expressed as:

mðXÞ ¼ c0xðXÞ þ c1PðXÞ þ c2AðXÞ; ð14Þ
where c0 , c1 and c2 are real-valued coefficients.

2.4 Limitations

Integral geometry provide useful and efficient tools for the
geometrical characterization of sets via the Minkowski
functionals. Neverthess, they are not enough to discrimi-
nate complex spatial structures [8], as shown in Figure 3.

It is then necessary to provide other characteristics to
be able to discriminate these spatial structures. In the
literature, there exists a lot of other characteristics. In
the following, morphometrical functionals, and more
particularly shape diagrams, will be presented. The
advantage is that they have a compact representation,
some good mathematical properties and a low computa-
tional cost.
3 Morphometrical tools via shape diagrams

Shape diagrams [9–11] are representations in the Euclidean
plane introduced to study the morphology of 2D connected
compact sets. Such a set is represented by a point within a
shape diagram whose coordinate axes are morphometrical
functionals defined as normalized ratios of geometrical
functionals. In this section, the construction of the shape
diagrams will be firstly given. The second part will be
focused on some properties of continuity and convexity
discrimination.
3.1 Morphometrical functionals

In addition to area A and perimeter P, other geometrical
functionals have been studied such as the radii r and R of
the inscribed and circumscribed circles respectively, and
the minimum and maximum Feret diameters and d
respectively [24]. The Feret diameter is a measure of an
object size along a specified direction. In general, it can be
defined as the distance between the two parallel planes
restricting the object perpendicular to that direction. It is
therefore also called the caliper diameter, referring to the
measurement of the object size with a caliper. v and d are
the minimal and maximal diameter on the different
possible orientations. Figure 4 illustrates these four
additional geometrical functionals.

In practice, the Feret diameters are easily determined
by firstly computing the convex hull of the object. Indeed,
the Feret diameters for an object and for its convex hull are
equal. The convex hull being a polygon, one can use the
“rotating callipers” algorithm [25] to directly determine the
largest and smallest projections.

For a connected compact set, the relationships
between these geometrical functionals are constrained
by geometric inequalities [26,27]. These geometric
inequalities link geometrical functionals by pairs. Futher-
more, they allow to determinate the morphometrical
functionals (Tab. 3).



Fig. 4. Geometrical functionals: radii of inscribed (r) and
circumscribed (R) circles, minimum (v) and maximum (d) Feret
diameters.

Table 3. Shape functionals for simply connected compact
sets.A, P, r,R, v, d, denote the area, perimeter, radii of the
inscribed and circumscribed circles, minimum and max-
imum Feret diameters [24], respectively.

Geometrical
functionals

Geometric
inequalities

Morphological
functionals

Extremal
sets

r;R r � R r=R C

v;R v � 2R v=2R C

A;R A � pR2 A=pR2 C

d;R d � 2R d=2R Y

r; d 2r � d 2r=d C

v; d v � d v=d W

A; d 4A � pd2 4A=pd2 C

R; d
ffiffiffi
3

p
R � d

ffiffiffi
3

p
R=d Z

r;P 2pr � P 2pr=P C

v; P pv � P pv=P W

A;P 4pA � P 2 4pA=P 2 C

d;P 2d � P 2d=P L

R;P 4R � P 4R=P L

r;A pr2 � A pr2=A C

r;v 2r � v 2r=v X

Extremal sets are the sets for which an inequality becomes an
equality.
C: the disks; W: the constant width compact convex sets; L: the
line segments; X: many compact convex sets; Y: many simply
connected compact sets; Z every compact convex set of diameter d
containing an equilateral triangle of side-length d.
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The morphometrical functionals are invariant under
similitude transformations (consequently, they do not
depend on the global size of the set) and are defined as
ratios between two geometrical functionals. In these
ratios, the units of the numerator and the denominator are
dimensionally homogeneous and the result has therefore
no unit. Moreover, a normalization by a constant value
(scalar multiplication) allows to have a ratio that ranges
within [0,1]. For each morphometrical functional, the
scalar value depends directly on the associated geometric
inequality [28]. In total, there are fifteen morphometrical
functionals fora connected compact set. 4pA=P 2, r/R, v/d
and 4R/P are four examples of these morphometrical
functionals. Their concrete meanings are the roundness,
the circularity, the diameter constancy and the thinness,
respectively.

3.2 Shape diagrams

Shape diagrams can be defined by these fifteen morpho-
metrical functionals. Each shape diagram enable to
represent the morphometry of any connected compact
set from two morphometrical functionals (that is to say
from three geometrical functionals because the two
denominators use the same geometrical functionals).

Let be any triplet of the considered six geometrical
functionals (A, P, r, R,v, d) and (M1, M2) be some
particular morphometrical functionals valued in [0.1]2. A
shape diagram D is represented in the plane domain [0.1]2

(whose axis coordinates are the morphometrical func-
tionals M1 and M2) where any connected compact set S is
mapped onto a point (x, y). Mathematically, a shape
diagram D is obtained from the following mapping:

D :
KðE2Þ
S

!
↦

½0; 1� 2
ðx; yÞ ;

	

where KðE2Þ denotes the compact sets of the Euclidean 2D
plane. Using all the fifteen morphometrical functionals,
twenty-two shape diagrams are defined, denoted
Dkð Þk∈½1;30�\ð½7;10�∪½17;20�Þ, respectively (Tab. 4).

Some geometric inequalities, and consequently some
shape diagrams, are restricted to convex shapes [29], that
are not considered in this paper. A detailed comparative
study has been performed in order to analyze the
representation relevance of these twenty-two shape dia-
grams [29–31].



Table 4. The twenty two shape diagrams axes coordi-
nates for 2D simply connected compact sets.

Shape diagrams Axes coordinates

D1 : ðv; r;RÞ x ¼ v=2R y ¼ r=R

D2 : ðv;A;RÞ x ¼ v=2R y ¼ A=pR2

D3 : ðr;A;RÞ x ¼ r=R y ¼ A=pR2

D4 : ðA; d;RÞ x ¼ A=pR2 y ¼ d=2R
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For example, the shape diagram D 24 : ðA;R;PÞ is
obtained from the following mapping.

D24ðA;R;PÞ : KðE2Þ
S

!
↦

½0; 1� 2

ð4pA
P2

;
4R

P
Þ ;

8<
:

The concrete meanings of the morphometrical func-
tionals 4pA/P2 and 4R/P are the roundness and the
thinness, respectively.

Figure 5 illustrates three shape diagrams where some
elementary sets are mapped.
D5 : ðv; d;RÞ x ¼ v=2R y ¼ d=2R

D6 : ðr; d;RÞ x ¼ r=R y ¼ d=2R

D11 : ðv; r; dÞ x ¼ v=d y ¼ 2r=d
3.3 Properties

The properties of the different shape diagrams have been
studied in [29–31]. In the following, the properties of
continuity and convexity discrimination are presented in
order to show the better relevance of some shape diagrams.
D12 : ðv;A; dÞ x ¼ v=d y ¼ 4A=pd2

D13 : ðr;A; dÞ x ¼ 2r=d y ¼ 4A=pd2

D14 : ðA;R; dÞ x ¼ 4A=pd2 y ¼ ffiffiffi
3

p
R=d

D15 : ðv;R; dÞ x ¼ v=d y ¼ ffiffiffi
3

p
R=d

D16 : ðr;R; dÞ x ¼ 2r=d y ¼ ffiffiffi
3

p
R=d

D21 : ðv; r;PÞ x ¼ pv=P y ¼ 2pr=P

D22 : ðv;A;PÞ x ¼ pv=P y ¼ 4pA=P 2

D23 : ðr;A;PÞ x ¼ 2pr=P y ¼ 4pA=P 2

D24 : ðA;R;PÞ x ¼ 4pA=P2 y ¼ 4R=P

D25 : ðv;R;PÞ x ¼ pv=P y ¼ 4R=P

D26 : ðr;R;PÞ x ¼ 2pr=P y ¼ 4R=P

D27 : ðA; d;PÞ x ¼ 4pA=P2 y ¼ 2d=P

D28 : ðv; d;PÞ x ¼ pv=P y ¼ 2d=P

D29 : ðr; d;PÞ x ¼ 2pr=P y ¼ 2d=P

D30 : ðd;R;PÞ x ¼ 2d=P y ¼ 4R=P
3.3.1 Continuity

Let two 2D connected compact sets and the connected
compact set class allowing to switch from one to the other
using a degree of freedom of the set. For example, the semi-
circle goes to the semi-disk through semi-rings whose the
cavity radius decreases (Fig. 6).

For each pair i of sets, a class Ci of connected compact
sets with one degree of freedom could be defined. Thus, a
curve denoted Ci;k from each simply connected compact
set class Ci is created in each shape diagram Dk. These
curves are related to the continuity of the shape diagram
with respect to a small deformation of the set. This process
can be used for elementary some pairs of connected
compact sets.

In the following Figure 7, eight classes of connected
compact sets are illustrated on three shape diagrams. It
shows the location of the continuity curves from one shape
to another.

A detailed study of this property can be found in
[29–31].

3.3.2 Convexity discrimination

The convexity discrimination first requires the definition of
the shape convexity. A set is convex when the line segment
which joins any two points in it lies totally within the set. In
other terms, the shape convexity could be quantified with
the probability that two points in the set lies totally within
it. Convexity parameters are commonly used in the
analysis of shapes. The measurement value of the shape
convexity of any set ranges between 0 and 1 (it is a
probability). A convex set gives the value 1. Futhermore,
the less the parameter value is high, the less the shape is
convex. The convexity measurement can be computed, for
instance, by the ratio c=A/Ac where Ac is the area of the
convex hull of the set. This convexity parameter c has the
following desirable properties:

–
 its value is always a number within [0,1]:

–
 its value is 1 if and only if the set is convex;
–
 it is invariant under similitude transformations;

–
 there is a simple and fast computing algorithm.

Figure 8 shows this convexity parameter for some
specific sets. The colormap corresponds to the different
values of this parameter from 0 (black) to 1 (dark red), i.e
from non-convex sets to convex sets.



Fig. 5. Illustration of three specific shape diagrams where 24 elementary sets are mapped. It shows that some diagrams (using some
specific morphometrical functionals) are not suitable for shape discrimination and classification. For example, different shapes can be
located on the same place within the diagram D12, highlighting the non-unicity of such a representation.

Fig. 6. Illustration of the sets (represented by a curve on the shape diagrams) coming from a transformation (using a degree of freedom
of the set) from one set to another [12].
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Figure 9 illustrates three shape diagram where 1370
various discrete sets are mapped, and on which the
boundaries of the convex domain are superimposed (the
domain where all compact convex sets are located
[11,28]).

One can see that the shape diagram D24 presents a
good convexity discrimination [31]. The sets mapped at
the bottom left (sets with both low roundness values and
low thinness values) are strongly concave, whereas the
sets mapped at the top (sets with high thinness values) are
stongly convex. In the two other shape diagrams, it would
be more difficult to discriminate the convexity of the sets
since the different color points are much more mixed.
Amore detailed study, including other properties of the
shape diagrams, can be found in [29–31]. Among the
different shape diagrams, it has been shown that the shape
diagram D 24 : ðA;R;PÞ is a good candidate for shape
analysis regarding its representation relevance and dis-
crimination power.

4 Conclusions
The purpose of this paper was to propose geometrical and
morphometrical tools for characterizing inclusions in metal
alloys from digital images acquired by various systems such
as electronmicroscopy or X-ray tomography. The objective



Fig. 8. Illustration of the convexity parameter for some specific
sets. The colormap corresponds to the different values of this
parameter from 0 (black) to 1 (dark red), i.e from non-convex sets
to convex sets [12].

Fig. 7. Illustration of eight continuity curves (representing the locations of the transformed sets from one set to another) onto three
shape diagrams [12].

Fig. 9. Family of 1370 discrete sets which are mapped onto three shape diagrams. The colormap corresponds to the different values of
the convexity parameter from 0 (black) to 1 (dark red) of the sets, i.e from non-convex sets to convex sets [12].
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was not to give an exhaustive list of geometrical and
morphometrical tools, but rather to focus on specific
descriptors. In this context, the Minkowski functionals
(geometrical tools) and the shape diagrams (morpho-
metrical tools) have been presented. It has been shown that
these descriptors have a compact representation, are
computationnaly effective and have some good mathema-
tical properties. For sure, they could be insufficient (as it
stands) to analyse very complex strutures but the proposed
measurements can be computed on some geometrical
transformations of the object to be studied, providing some
measurements functions and not only scalars. This kind of
approach has been particularly studied in [12]. In
conclusion, image analysis using integral geometry and
shape diagrams provide efficient tools to quantitatively
describe inclusions (providing separate information on size
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and shape). The geometrical characteristics of these
inclusions could thereafter be related to the mechanical
properties of the metal alloys.
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