
Scotland's Rural College

Transmission dynamics of Rhodesian sleeping sickness at the interface of wildlife and
livestock areas
Auty, HK; Morrison, LJ; Torr, SJ; Lord, J

Published in:
Trends in Parasitology

DOI:
10.1016/j.pt.2016.05.003

First published: 01/06/2016

Document Version
Peer reviewed version

Link to publication

Citation for pulished version (APA):
Auty, HK., Morrison, LJ., Torr, SJ., & Lord, J. (2016). Transmission dynamics of Rhodesian sleeping sickness at
the interface of wildlife and livestock areas. Trends in Parasitology, 32(8), 608 - 621.
https://doi.org/10.1016/j.pt.2016.05.003

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 19. Oct. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SRUC - Scotland's Rural College

https://core.ac.uk/display/228099801?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.pt.2016.05.003
https://pure.sruc.ac.uk/en/publications/437c5652-ec45-4f66-bd84-11ed66dd3d03
https://doi.org/10.1016/j.pt.2016.05.003


1 

 

Transmission Dynamics of Rhodesian Sleeping Sickness at the Interface of Wildlife and 1 

Livestock Areas 2 

 3 

Harriet Auty 1*, Liam J. Morrison2, Stephen J. Torr3,4 & Jennifer Lord3 4 

1Epidemiology Research Unit, SRUC, An Lòchran, Inverness Campus, Inverness, UK 5 

2 Roslin Institute, R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, UK 6 

3 Liverpool School of Tropical Medicine, Liverpool, UK 7 

4 Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK 8 

*Correspondence: harriet.auty@sruc.ac.uk (H. Auty) 9 

 10 

Key words 11 

Rhodesian human African trypanosomiasis, wildlife/livestock interface, wilderness areas, 12 

animal reservoirs, tsetse, mathematical models 13 

 14 

Abstract 15 

Many wilderness areas of east and southern Africa are foci for Rhodesian sleeping sickness, 16 

a fatal zoonotic disease caused by trypanosomes transmitted by tsetse flies. Although 17 

transmission in these foci is traditionally driven by wildlife reservoirs, rising human and 18 

livestock populations may increase the role of livestock in transmission cycles. Deciphering 19 

transmission dynamics at wildlife and livestock interface areas is key to developing 20 

appropriate control. Data are lacking for key parameters, including host distributions, tsetse 21 

density and mortality rates, and the relative roles of livestock and wildlife as hosts in 22 

fragmented habitats, limiting the development of meaningful models to assist in the 23 

assessment and implementation of control strategies.  24 

  25 
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Rhodesian Sleeping Sickness: A Disease in Decline? 1 

Human African trypanosomiasis (HAT or sleeping sickness) caused by trypanosomes 2 

transmitted by tsetse flies, is targeted by the World Health Organisation (WHO) for 3 

elimination by 2020 4 

(http://www.who.int/neglected_diseases/NTD_RoadMap_2012_Fullversion.pdf). This goal 5 

is qualified as ‘elimination as a public health problem’, defined as an annual incidence of 6 

less than 1 case per 10 000 population, and less than 2000 cases reported globally each year 7 

[1].  Two forms of HAT, Gambian HAT (g-HAT) found in west and central Africa and 8 

Rhodesian HAT (r-HAT) found in east and southern Africa, differ in epidemiology and 9 

control. Although good progress is being made in controlling g-HAT through mass screening 10 

and treatment of affected people with trypanocidal drugs, long term elimination of r-HAT is 11 

considered to be unfeasible due to the existence of animal reservoirs. 12 

 13 

HAT is caused by subspecies of Trypanosoma brucei. The pathogen for g-HAT, T. b. 14 

gambiense, is transmitted by ‘riverine’ species of tsetse such as Glossina palpalis and G. 15 

fuscipes.  The disease is generally considered to be an anthroponosis with no important 16 

non-human hosts. r-HAT is caused by T. b. rhodesiense transmitted largely – but not 17 

exclusively - by ‘savannah’ species of tsetse such as G. morsitans and G. pallidipes.  r-HAT is 18 

a zoonosis, with livestock and wild mammals such as warthog, buffalo and bushbuck acting 19 

as reservoir hosts. A third subspecies, T. b. brucei, is morphologically identical but does not 20 

cause disease in man. The different epidemiology of the two human pathogens reflects their 21 

genetics. T. b. rhodesiense is essentially a variant of T. b. brucei, but carries a single gene 22 

(Serum Resistance Associated; SRA) [2] that confers the ability to infect humans [3]. In 23 

contrast, T. b. gambiense is genetically distinct from both T. b. brucei and T. b. rhodesiense, 24 

is clonal and evidence suggests it to be reproductively isolated [4–7]. A key feature of HAT is 25 

its focal nature. It tends to be reported in specific areas which appear to remain consistent 26 

over time.   27 

 28 

Although the number of r-HAT cases reported globally has declined in the last 15 years 29 

(Figure 1A), this trend is driven to a great extent by the reduction in cases in south-eastern 30 

Uganda, where outbreaks associated with civil unrest and livestock-dominated transmission 31 

have gradually been brought under control (Figure 1B). Reported cases in Tanzania have 32 
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also declined. In contrast, in Malawi and Zambia, reported case numbers have been 1 

relatively consistent over the last decade (Figure 1B). In addition, the data illustrated in 2 

Figure 1 are likely an underestimate. Many r-HAT foci are in remote areas; a lack of 3 

diagnostic facilities and awareness of HAT are frequently reported around foci [8,9] and 4 

under-detection of cases is a recognised problem [10]. Small numbers of cases are also 5 

regularly diagnosed in non-endemic countries, serving to highlight transmission which may 6 

not be reliably detected [11]. Many r-HAT foci have been linked to devastating outbreaks in 7 

the past, and more recent outbreaks, although smaller in magnitude, suggest this risk is still 8 

present [12–14].  9 

 10 

Three types of r-HAT focus have been characterised according to the dominant reservoir 11 

host species: wilderness foci where wildlife-dominated transmission is associated with 12 

natural protected areas; livestock-dominated foci where cattle have replaced wild species as 13 

the non-human reservoir; and foci where both wildlife and livestock are present [15]. 14 

However, many of the foci regarded as wilderness foci are also inhabited by increasing 15 

densities of people and livestock (for example in Serengeti, Tanzania, and Luangwa, Zambia 16 

[16; Basic data for Livestock and Fisheries Sectors 2013, United Republic of Tanzania 17 

Ministry of Livestock and Fisheries Development www.mifugouvuvi.go.tz/wp-18 

content/uploads/2014/12/DRAFT-ONE-_Basic-Data-1.pdf;  J. Mubanga, PhD thesis, 19 

University of Edinburgh, 2008]) and transmission associated with both wildlife and livestock 20 

hosts is arguably more common than is widely recognised.  r-HAT transmission – particularly 21 

in wildlife/livestock foci - is complex due to the involvement of multiple host and vector 22 

species within heterogeneous and often fragmented landscapes.  23 

 24 

Mathematical models can be powerful tools for understanding transmission dynamics and 25 

assisting in disentangling such complexity. Recent reviews of the mathematical modelling 26 

literature for mosquito and tsetse-borne pathogens have highlighted gaps with respect to 27 

incorporating heterogeneity into model structures - variation which is likely to be required 28 

to understand and predict invasion and transmission dynamics of such pathogens [17,18]. In 29 

this paper we therefore review the current literature concerning the transmission ecology of 30 

r-HAT at the wildlife-livestock interface by focusing upon core parameters in mathematical 31 

models of trypanosome transmission [18]. These parameters are summarised in Figure 2, 32 
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alongside potential impacts of increasing human and livestock density and changing land 1 

use patterns. It is anticipated that this review will stimulate efforts to integrate empirical 2 

and quantitative approaches to better understand the variation in r-HAT transmission 3 

observed across ecological contexts. We consider examples from four foci: Serengeti in 4 

Tanzania, Luangwa Valley in Zambia, Rumphi in Malawi, and Ugala River/Moyowosi in 5 

western Tanzania (Table 1, Figure 3). 6 

 7 

Host Factors that Affect the Transmission of T. b. rhodesiense 8 

The abundance and distribution of animal host species, and their respective competence as 9 

hosts for trypanosomes, are key factors affecting transmission of T. b. rhodesiense.  10 

Serengeti in Tanzania, Luangwa Valley in Zambia, and Rumphi in Malawi are all examples of 11 

foci where wildlife populations within protected areas maintain infection (Table 1). At the 12 

other end of the spectrum, in south-east and central Uganda and western Kenya, cattle 13 

have replaced wild species as the non-human reservoir of T. b. rhodesiense. Transmission in 14 

areas where both wild hosts and livestock are present is less well understood. Although 15 

Western Tanzania is often described as a focus where transmission is maintained by both 16 

wildlife and livestock [15] (Table 1), the presence of increasing livestock populations in so-17 

called ‘wilderness foci’ suggests that livestock are also likely to be important in transmission 18 

in these areas. 19 

  20 

Host competence  21 

Host competence reflects a combination of the susceptibility of the host when bitten by an 22 

infected vector, the ability of the pathogen to persist in the host, and the likelihood that the 23 

host infects a feeding susceptible vector [19]. A large number of wildlife host species are 24 

competent for T. brucei s.l., and wildlife hosts form a reservoir community that can maintain 25 

transmission (discussed in Box 1). Of the few experimental studies available comparing wild 26 

and domestic hosts, the proportion of susceptible tsetse that developed a mature T. brucei 27 

infection after feeding on an infected host was approximately 16% in susceptible cattle 28 

breeds, compared to 8% in buffalo, 10% in eland and 12% in waterbuck [20]. Although these 29 

figures were based on single host animals, the pattern is consistent with the parasitaemia 30 

patterns seen in cattle and wild hosts. After the initial acute phase of infection, cattle 31 

infected with T. brucei s.l. tend to show low parasitaemia, which is present for extended 32 
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periods but only intermittently detectable [21,22]. Wild bovids show even fewer patent 1 

parasitaemic waves, and lower overall parasitaemia [20,23,24]. 2 

 3 

T. brucei s.l. prevalence in hosts 4 

Prevalence in host species is influenced by host competence, but also depends on the 5 

exposure of hosts to infected tsetse. As such, prevalence alone cannot indicate the 6 

importance of a species as a reservoir host. However, it is often the only measure that is 7 

available to provide some information about the roles of different host species. T. brucei s.l. 8 

is observed in many wildlife species, with prevalence variable by species (Box 1). In Uganda, 9 

where cattle transmission predominates, cattle show a prevalence of T. brucei s.l. of 20-27% 10 

in high prevalence villages [25] and up to 17.5% at markets by PCR [26]. Although small 11 

ruminants can also be infected with T. brucei s.l., the very low prevalence found in sheep 12 

and goats suggest they are less important than cattle in maintaining transmission [27]. 13 

Cattle living in and around wilderness areas are also frequently infected with T. brucei s.l., 14 

although the data available are insufficient to explore differences between foci. Around 15 

Serengeti National Park, 6% of cattle carried T. brucei s.l. by PCR, and 30% by loop-mediated 16 

isothermal amplification (LAMP), and around Luangwa Valley in Zambia 1% by PCR and 25% 17 

by LAMP were reported [14,28,29; J. Mubanga, PhD thesis, University of Edinburgh, 2008] 18 

(Table 1). Combined with higher host competence in cattle compared to wild bovids, this 19 

suggests that cattle may be important in r-HAT transmission around wilderness areas.  20 

 21 

Abundance, distribution and species composition of animal hosts 22 

Given the variability in competence between host species, r-HAT risk is influenced by the 23 

species present. In south-eastern Uganda, where livestock transmission dominates, a large 24 

cattle population combines with a low density of wildlife. Since T. brucei s.l. is usually 25 

asymptomatic or causes only mild clinical signs in cattle [27], movements of apparently 26 

healthy cattle have been responsible for introducing disease into new areas in Uganda 27 

[30,31]. At the other extreme, many r-HAT foci are located in protected wilderness areas 28 

where the density and diversity of wildlife species are high, and often well characterised 29 

(Table 1).  30 

 31 
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There are fewer data available on the abundance and species composition of hosts in 1 

wildlife/livestock interface areas. Wildlife populations are less well monitored outside 2 

protected areas and the degree to which wildlife species are found in more fragmented 3 

areas varies by location and wildlife species [32]. For instance, to the west of the Serengeti 4 

National Park, elephant and impala are more common within farming areas than other 5 

species such as buffalo (Goodman, P.S. 2014. Large herbivore population estimates for the 6 

Grumeti Reserves – August 2014, Grumeti Fund, Sasakwa, Serengeti District, Tanzania, 7 

unpublished report). Bushbuck also survive well in human-dominated landscapes [33] and 8 

are competent hosts for T. brucei s.l. (Box 1). The presence of bushbuck and other 9 

competent species in farming areas may serve to bring trypanosomes into regions where 10 

cattle and human densities are high and thus contribute to linking wildlife-livestock 11 

transmission cycles.  Although savannah tsetse inside protected areas do not frequently 12 

feed on bushbuck [34], the absence of preferred hosts such as buffalo in farming areas 13 

might increase the proportion of bloodmeals taken from bushbuck and therefore disease 14 

risk. Currently not enough is known about the competence of other wild host species to 15 

accurately identify how host distributions in fragmented areas might affect risk. 16 

 17 

Countries such as Tanzania, Zambia and Malawi are undergoing rapid human population 18 

expansion, and around protected areas increasing human and livestock densities are 19 

common [16]. Some boundary areas show disproportionately higher population increases, 20 

as illustrated to the west of Serengeti National Park in Tanzania where demand for land for 21 

cultivation and grazing is leading to high rates of immigration [16,35]. In this area, the 22 

density of cattle around the protected areas is now very high (Fig. 3), having undergone 23 

substantial increases in the last two decades (Basic data for Livestock and Fisheries Sectors 24 

2013, United Republic of Tanzania Ministry of Livestock and Fisheries Development 25 

www.mifugouvuvi.go.tz/wp-content/uploads/2014/12/DRAFT-ONE-_Basic-Data-1.pdf) 26 

(Table 1). Increasing human and livestock density around protected areas has also been 27 

reported in Eastern Province of Zambia where immigration to find more fertile land is 28 

common (J. Mubanga, PhD thesis, University of Edinburgh, 2008).  Historically, the presence 29 

of tsetse-transmitted trypanosomes pathogenic to cattle has acted as a disincentive to 30 

grazing in protected areas. However, to the west of Serengeti the availability of 31 
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trypanocides and insecticides appears to have reduced this barrier; cattle incursions into 1 

protected areas are likely to bring both people and livestock in contact with tsetse. 2 

 3 

Changes in the relative densities of cattle may have different impacts on transmission to 4 

humans, depending upon context. The proximity of cattle to their owners, especially in 5 

traditional livestock production systems, may act as a bridge to human infection – this 6 

seems to be the case with r-HAT in Uganda where recent epidemics have been strongly 7 

linked with livestock and riverine tsetse.  However, livestock might have a zooprophylactic 8 

effect protecting people from being bitten.  There is some evidence that livestock protect 9 

their owners from infection.  A combination of the upright shape [36] and natural odours 10 

[37] of humans repels savannah species of tsetse.  On the other hand, the size, shape and 11 

odour of livestock, particularly cattle, are attractive to tsetse [36].  Hence even in areas 12 

where tsetse are abundant, few humans are bitten by tsetse if they are close to livestock: a 13 

study in a national park in Zimbabwe found that the catch of tsetse landing on a human 14 

walking through tsetse-infested woodland was reduced by >95% if he was accompanied by 15 

an ox [38].     16 

 17 

Vector factors that affect transmission of r-HAT 18 

In south-eastern Uganda, G. fuscipes fuscipes, a riverine species of tsetse, is responsible for 19 

transmission of T. b. rhodesiense.  Riverine tsetse such as G. f. fuscipes feed on a wide range 20 

of hosts, including humans and cattle [39], and can persist in areas with high densities of 21 

people [40].   However, in most other r-HAT foci, T. b. rhodesiense is vectored by savannah 22 

species, such as G. morsitans spp., G. swynnertoni and G. pallidipes.  23 

 24 

Vector competence 25 

Vector competence, the innate ability of a vector to acquire, maintain and transmit a 26 

pathogen, varies with tsetse species, as well as other intrinsic (e.g., sex) and extrinsic factors 27 

(e.g., environmental temperature and nutritional status) [41]. Low prevalence of mature T. 28 

brucei s.l. is common in tsetse, reflecting the general refractoriness of tsetse to 29 

trypanosome infection and maturation [reviewed by 42]. Experimental infections suggest 30 

that G. morsitans has higher vector competence than G. pallidipes (0 to 2.7% of G. pallidipes 31 

became infected after feeding on hosts infected with two different strains of T. brucei 32 
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brucei, compared to 9.3 to 18.4% of G. morsitans centralis) [43]. Although both G. pallidipes 1 

and G. morsitans spp. are found in r-HAT foci, they vary in abundance and their relative 2 

importance as vectors is likely to also depend on their host feeding patterns, as well as 3 

inherent vector competence.   4 

 5 

Abundance, distribution and mortality 6 

On a regional scale, a general reduction in investment in large scale tsetse control since the 7 

1980s [44] has been balanced against loss of tsetse habitat for agricultural expansion [45–8 

48]. This has led to an overall decline in habitat suitable for tsetse. However, protected 9 

areas and their surroundings form islands that can sustain populations of savannah tsetse– 10 

G. morsitans, G. swynnertoni and G. pallidipes [45,49]. These areas are often surrounded by 11 

significant land use change [16], and fragmented tsetse habitat [48,50], but habitat 12 

distribution varies from hard borders where land use changes quickly (for example in 13 

Rumphi, Malawi [51] and Western Serengeti, Tanzania) to more gradual gradients in land 14 

use and tsetse habitat (as seen in Luangwa Valley, Zambia [48,50]).   15 

 16 

Although there are limited data, savannah tsetse do not appear to survive well outside 17 

protected areas. In Malawi, 15 times more G. m. morsitans were caught inside the 18 

Nkhotakota Game Reserve than in suitable habitat – predicted from satellite imagery – 19 

outside the reserve (when numbers caught were adjusted by trapping effort). This 20 

difference was attributed to human activity, destruction of tsetse habitat and low density of 21 

hosts [49]. In Zambia, fly-round catches of G. m. morsitans were from four to 280 times 22 

higher in natural habitats compared with natural habitats fragmented by agriculture [48,50]. 23 

Catches of tsetse from traps and fly-rounds will be affected by sampling biases and may not 24 

reflect the true population densities [36].  Nonetheless, the consistent finding that apparent 25 

numbers of tsetse outside protected areas are much reduced suggests that savannah tsetse 26 

are largely restricted to relatively undisturbed habitat. Savannah tsetse are intolerant of 27 

high temperatures and low humidity [52]. The reduced numbers of trees and bushes in 28 

farming areas that provide the necessary shade and high humidity for tsetse seems an 29 

obvious explanation why they do not persist outside protected areas. However, farming 30 

areas often comprise a mosaic of crop field, pastures and relic savannah and woodland and 31 

hence the essential microclimates are likely to be present. A better understanding of the 32 
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habitat requirements of savannah tsetse would assist in predicting areas where populations 1 

may be sustained outside protected areas. 2 

  3 

Disease risk is not only influenced by tsetse abundance. Mweempwa [50] reported that 4 

although apparent abundance decreased in more fragmented habitats in Zambia, the flies 5 

present were more likely to be older. Tsetse age is important in HAT risk because flies take 6 

around 18 days to develop a mature transmissible T. b. rhodesiense infection [53]; older fly 7 

populations therefore present a higher risk of transmitting HAT to people. Mweepwa et al. 8 

found that the most fragmented site showed the highest mature infection rate, although 9 

the entomological inoculation rate (an estimate of disease risk which takes into account fly 10 

abundance as well as infection rates) was highest in the least fragmented site [50].  11 

   12 

Host selection 13 

In south-eastern Uganda, cattle are the most important host of G. fuscipes fuscipes 14 

providing ~50% of bloodmeals [54]. The only remaining important wild host of tsetse in the 15 

area is the Nile monitor lizard, which rarely carries T. brucei. In wilderness areas savannah 16 

tsetse have preferred hosts (particularly warthog, buffalo, giraffe and elephant [39]) but 17 

they are able to feed on a wide range of wildlife species. Although savannah flies are known 18 

to feed on both livestock and wildlife hosts [34,55], few studies have looked specifically at 19 

feeding patterns in areas where both are present. At two sites in Kenya where both wildlife 20 

and livestock were present, Bett et al. reported that 16% of G. pallidipes feeds identified at 21 

Nguruman and 58% at  Nkineji came from livestock, with the rest from wildlife [56] but the 22 

absence of data on the relative abundance of wildlife and livestock at these two sites makes 23 

it is difficult to draw more general conclusions about tsetse choice. The likelihood that 24 

tsetse will feed on a particular species is driven by a number of factors. Experimental studies 25 

suggest the numbers of tsetse attracted to and landing on a host are related to mass: larger 26 

hosts attract more tsetse [36,57,58].  The probability that tsetse attracted to a host take a 27 

meal seems to be largely controlled by host defensive behaviour [59]. Impala and warthog 28 

are of comparable size but the high rates of defensive behaviour displayed by the former 29 

probably explains why it is rarely identified in bloodmeals [34].  It appears that tsetse rarely 30 

feed on impala or other antelope species (gazelle, wildebeest) despite their 31 

abundance.  Similarly, amongst domestic livestock species, goats display high rates of 32 
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defensive behaviour [59] and hence are relatively rare as hosts [34], whilst adult cattle 1 

display low rates of defensive behaviour [59,60]. In conclusion, cattle, with their large size 2 

and relatively low rates of defensive behaviour, make particularly good hosts.  3 

 4 

Understanding Transmission in a Changing Environment 5 

Reviewing the data available on r-HAT at wildlife/livestock interface areas highlights several 6 

key aspects where a lack of data prevents a full understanding of the transmission 7 

dynamics. In particular, host distributions, vector abundance and mortality around 8 

protected areas and the role of livestock as hosts in savannah tsetse systems, are all key 9 

aspects that are currently lacking in data. The land use change associated with increasing 10 

human and livestock densities may lead to declining tsetse populations outside protected 11 

areas, but there is a risk that this fragmented habitat may actually increase r-HAT risk, at 12 

least in the shorter term, through altered dynamics of tsetse and host populations. Although 13 

the paucity of comparable data limits detailed comparisons, there is considerable 14 

heterogeneity in some parameters between foci. For example the density of cattle around 15 

Serengeti in Tanzania is considerably higher than in foci in Zambia and Malawi, and may 16 

indicate that there is a spectrum of livestock involvement. The lack of published data on 17 

some foci, for example Ugala River/Moyowosi in western Tanzania (Table 1), identifies the 18 

need to focus research not only on well-known protected areas.  19 

 20 

Of particular concern is that a shift from wildlife- to cattle-dominated transmission may 21 

increase the overall reservoir potential and potentially increase HAT risk: cattle are known 22 

to carry human pathogenic trypanosomes, there is some evidence that they have higher 23 

host competence than wild bovids, and they are particularly good hosts for tsetse. Since the 24 

drivers for epidemic spread are complex, it is not clear whether increasing involvement of 25 

cattle in r-HAT cycles could also increase the risk of epidemic spread, or movement of 26 

disease to new areas as has happened in south-eastern Uganda, although the role of 27 

riverine tsetse in Uganda undoubtedly plays a role in the spread of r-HAT in farming areas in 28 

this focus.   29 

 30 

Quantifying the relative contribution of livestock and wildlife species in mixed-transmission 31 

settings is not easy. The gold standard of reservoir identification is observation of 32 
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decreasing disease in the target population following either (i) the control of infection in the 1 

putative reservoir species, or (ii) prevention of contact between the reservoir species and 2 

the target population [61], but realistically in foci with low r-HAT incidence it is not feasible 3 

to assess interventions in this way. As recently highlighted by Viana et al., [62], integration 4 

of multiple methodologies and data sources, for example using mathematic models, are 5 

likely to be needed to improve understanding of the reservoir dynamics. Even when the 6 

current limitations of significant data gaps are overcome, the complexity of these disease 7 

systems mean that model outputs require careful interpretation in order to develop 8 

meaningful control strategies. This emphasizes the need to understand transmission better 9 

at a scale relevant to control at the wildlife-livestock interface; although control measures 10 

aimed at wildlife are not feasible, interventions aimed at cattle could provide an effective 11 

option for control in areas where both wildlife and cattle are present. 12 

 13 

R-HAT control in wildlife/livestock interface areas 14 

Since humans are not part of the reservoir of r-HAT except perhaps in an epidemic situation, 15 

the mass screening programs that have been effective against g-HAT are not appropriate for 16 

r-HAT. Control of r-HAT in protected areas has been achieved through various methods of 17 

vector control, for example a combination of aerial spraying and odour-baited targets was 18 

used to eliminate tsetse and trypanosomiasis from the Okavango Delta of Botswana [63], 19 

but the costs of control on this scale are usually prohibitive. 20 

 21 

While the elimination of r-HAT seems unlikely, a better understanding of transmission 22 

dynamics in specific foci would allow control to be targeted more effectively.  Insecticide-23 

treated cattle are the most cost-effective method of vector control where sufficient cattle 24 

are present [64] but this approach requires that cattle form at least 10% of the diet of tsetse 25 

for transmission of HAT to be interrupted [65].  In practice, a minimum density of around 10 26 

cattle/km2 [66] distributed relatively evenly [67] can provide effective control. In foci where 27 

livestock are at a sufficient density, such as Serengeti in Tanzania, insecticide treated cattle 28 

could provide a cost-effective means of containing r-HAT, depending on the extent of r-HAT 29 

transmission outside the protected areas.  Cattle-based interventions to control r-HAT will 30 

also impact on diseases of veterinary importance, particularly tsetse and tick-borne diseases 31 

affecting livestock in the boundary areas.  However, the lack of understanding about 32 
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transmission in r-HAT foci is currently limiting development of effective control, and it is not 1 

feasible to assess the likely effectiveness of potential control options without better data to 2 

parameterise models of transmission in these areas.  3 

 4 

Concluding Remarks 5 

Rhodesian HAT is unlikely to be eliminated completely from wilderness areas due to the role 6 

of animal hosts. Although there is a perception that r-HAT transmission in wilderness foci is 7 

decreasing, there is little evidence to support this. In fact, a number of features of r-HAT in 8 

interface areas could actually lead to an increase in disease risk. The potential involvement 9 

of livestock, the effect of habitat fragmentation on tsetse and host population dynamics, 10 

and the risk of increasing tsetse-human-livestock contact suggest an ongoing risk for r-HAT 11 

transmission. This review highlights substantial gaps in our understanding of transmission in 12 

wilderness areas (see Outstanding Questions box).  Improved prediction and more targeted 13 

control of Rhodesian HAT outbreaks will not be possible unless these gaps are addressed.  14 

 15 

 16 

  17 
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Box 1- Understanding transmission of T. b. rhodesiense in wildlife hosts  1 

In sylvatic transmission cycles, a large number of wildlife species form a reservoir 2 

community. Both T. brucei s.l. and T. b. rhodesiense have been identified in a wide range of 3 

species, [for example 14,68–73]. The prevalence varies greatly between species. Species 4 

such as bushbuck and reedbuck are consistently reported to show high prevalence with T. 5 

brucei s.l. (18% to 100% [14,68]), and carnivore species such as lions and hyaena are also 6 

frequently infected (16-64% [14,69,71,72,74]). In contrast, many species, including warthog, 7 

buffalo, and many antelope, have been identified to carry T. brucei s.l. but with low 8 

prevalence [68,70,71,73,75,76]. 9 

 10 

The importance of different species in T. brucei s.l. transmission depends on a host’s 11 

competence, and the likelihood that the host will be fed on by a tsetse. Generally, wildlife 12 

species are considered to control trypanosome infections well, suggesting competence 13 

should be low, but this may not be true for all species: in historic experimental infection 14 

studies, warthog and buffalo generally showed low parasitaemia for a few weeks, but 15 

species such as reedbuck, bushbuck and Thomson’s gazelle were reported to be easy to 16 

infect, to show high parasitaemia for several months, and to infect feeding tsetse regularly 17 

[23,77,78].  18 

 19 

G. morsitans spp. and G. swynnertoni feed particularly on warthog [34], leading to 20 

speculation that warthog might be particularly important in transmission. In contrast, 21 

bushbuck, reedbuck and other antelope species are rarely fed on [39]. However, it is 22 

possible that the role of species such as reedbuck and bushbuck has been underestimated, 23 

with their high prevalence and high infectivity potentially driving transmission. These 24 

relationships are unlikely to be quantified without developing transmission models, but this 25 

is limited by a lack of robust data. The dynamics of transmission in wildlife are undoubtedly 26 

important in the persistence of r-HAT foci. Without understanding the relative role of 27 

different wildlife species, and their relationship to environmental factors, it is unlikely it will 28 

be possible to understand how foci are maintained within wilderness area, and in particular 29 

identify the drivers that might lead to r-HAT outbreaks. 30 
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Table 1. Summary of Key Parameters for Four Exemplar Foci of Rhodesian Human African Trypanosomiasis 31 

 
 

Serengeti, Tanzania Ref. Luangwa Valley, Zambia Ref. Rumphi, Malawi Ref. Ugala RIver/Moyowosi, 
Tanzania 

Ref. 

Protected 
areas 

Serengeti NP
a
, Ikorongo, 

Grumeti and Maswa GRs
b
, 

wildlife management 
areas 

u 
North Luangwa NP, South 
Luangwa NP, Luambe NP, 
Lukusuzi NP, game 
management areas 

u
 Vwaza Marsh WR

c
 and Nyika 

NP 

u
 Moyowosi GR, Kigozi GR, 

Ugala River GR, wildlife 
management areas 

u
 

Presence of 
wildlife 

Very high density and 
diversity of wildlife within 
PA

d
. Low density outside 

PA, variable by species. 

[79]
v
  

High density and diversity 
of wildlife within PA.  

[80,
81] 

High diversity within PA. 
w 

High density and diversity of 
wildlife present within PA 
Lower densities outside PA, 
variable by species. 

[82,8
3]. 

Trypanosomes 
in wildlife 

T. brucei s.l. and T. b. 
rhodesiense commonly 
reported.  

[14,
84]. 

T. brucei s.l. and T. b. 
rhodesiense commonly 
reported.  

[68,
85] 

No data.  No data.  

Presence of 
livestock 

Increasing cattle density, 
cattle population in Mara 
region estimated at 1.1 
million in 2002/2003 and 
1.7 million in 2007/2008. 
Livestock present close to 
PA at increasing density. 

x
 Historically very few 

livestock within the valley, 
increasing density towards 
plateau, high density on 
plateau (11 cattle/km

2
). 

Cattle density currently 
increasing in mid Luangwa 
valley. 

[80,
86] 
y
 

Cattle density generally low 
in Malawi (Figure 3). 
Distribution relative to PA 
unknown. 

[87] Livestock present around PA 
(Figure 3). High livestock 
numbers, agricultural 
expansion and overgrazing 
reported in the wider 
ecosystem. 

[87–
89] 

Trypanosomes 
of T. brucei s.l. 
in cattle 

29/518 T. brucei s.l., 6/518 
T.b. rhodesiense in cattle 
around PA by PCR. 
T. brucei s.l. reported in 
1/148 and 45/148 in cattle 
around PA by PCR and 
LAMP respectively. 

[14,
29] 

6/649 by PCR towards 
plateau. 
2/241 and 48/195 
reported by PCR and 
LAMP respectively in 
cattle. 

[28] 
y
 

T. brucei s.l. identified in 1 
out of 481 cattle in Rumphi 
district. 

[90] 134/865 cattle reported 
positive for T. brucei s.l. on ITS 
PCR from Ugala ecosystem 
but location details not 
provided. 

z 

Tsetse 
distribution 

Widespread G. 
swynnertoni and G. 
pallidipes in PA, small 
populations G. brevipalpis 
in PA. Tsetse appears to be 
low outside PA but little 
published data.  

[91
–
93]. 

G. pallidipes, G morsitans 
morsitans, G. brevipalpis 
widespread in PA. 
Increasing fragmentation 
and decreasing tsetse 
density towards the 
plateau.  

[48,
50] 

G. morsitans, G. pallidipes, 
predominantly confined to 
PA. 

[51,
90] 

Tsetse populations reported 
close to villages. G. morsitans 
present. 

[9,45] 
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32 

a NP, National Park; b GR, game reserve; c WR, wildlife reserve; d PA, protected area; e NEC, non-endemic countries; 33 

u United Nations List of Protected Areas (http://www.protectedplanet.net/, accessed 03/05/16); v Goodman, P.S. 2014. Large herbivore 34 

population estimates for the Grumeti Reserves – August 2014. Grumeti Fund, Sasakwa, Serengeti District, Tanzania, unpublished report; w 35 

http://www.nyika-vwaza-trust.org/Articles/Mammals.pdf; x Basic data for Livestock and Fisheries Sectors 2013, United Republic of Tanzania 36 

Ministry of Livestock and Fisheries Development www.mifugouvuvi.go.tz/wp-content/uploads/2014/12/DRAFT-ONE-_Basic-Data-1.pdf, 37 

accessed 03/05/16); y J. Mubanga, PhD thesis, University of Edinburgh, 2008; z Malele, I.I. et al. (2013), The role of livestock in the 38 

epidemiology of sleeping sickness in Tanzania, in 32nd Conference of the AU IBAR ISCTRC Sudan (http://www.au-ibar.org/isctrc/374-the-32nd-39 

international-scientific-council-for-trypanosomiasis-research-and-control-isctrc-conference, accessed 03/05/16). 40 

 41 

  42 

Human cases Cases in local population 
within PA and close to PA 
boundary. Cases 
diagnosed in NEC

e
 from 

within PA (30 cases 2000-
2010).  

[11,
94] 

HAT cases reported from 
this area (2000-2009). 
Seven cases reported in 
NEC from South Luangwa 
(2000-2010).  

[11] 163 cases in Rumphi district 
2000-2006; 97% of these 
from within 5km of Vwaza 
GR boundary. Two cases 
reported in NEC from Vwaza 
(2000-2010).  

[11,
95] 

Numerous HAT cases 
reported in this area (2000-
2009). Two cases reported in 
NEC from Moyowosi GR 
(2000-2010).  

[11,9
4] 

http://www.protectedplanet.net/
http://www.nyika-vwaza-trust.org/Articles/Mammals.pdf
http://www.mifugouvuvi.go.tz/wp-content/uploads/2014/12/DRAFT-ONE-_Basic-Data-1.pdf
http://www.au-ibar.org/isctrc/374-the-32nd-international-scientific-council-for-trypanosomiasis-research-and-control-isctrc-conference
http://www.au-ibar.org/isctrc/374-the-32nd-international-scientific-council-for-trypanosomiasis-research-and-control-isctrc-conference
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Figure 1. Rhodesian Human African Trypanosomiasis Cases Reported Between 1990 and 43 

2014. The number of Rhodesian human African trypanosomiasis (r-HAT) cases reported is 44 

shown for A) all countries, and B) Malawi, Tanzania, Uganda and Zambia. Data from the 45 

World Health Organisation (WHO) 46 

(http://www.who.int/gho/neglected_diseases/human_african_trypanosomiasis/en/). Note 47 

different scale for individual country graphs.  48 

 49 

Figure 2. Factors Influencing Transmission of Rhodesian Human African Trypanosomiasis. 50 

Key parameters describing hosts, vectors and human risk are listed in grey boxes, alongside  51 

potential effects of increasing human and livestock density and changing land use patterns. 52 

 53 

Figure 3. Distribution of Cases, Cattle and Protected Areas in Rhodesian Human African 54 

Trypanosomiasis Foci. A) Cases of human African trypanosomiasis in eastern and 55 

southeastern Africa. Boxes (solid line) show four exemplar foci of Rhodesian human African 56 

trypanosomiasis. In addition, a dashed line box indicates livestock-dominated transmission 57 

focus in south-eastern and central Uganda. Reproduced from [94]. B) Detailed maps of the 58 

four exemplar foci highlighted in A, illustrating the density of cattle in 2010 (data from the 59 

Gridded Livestock of the World [96]), and protected areas boundaries (from United Nations 60 

List of Protected Areas http://www.protectedplanet.net/). Protected areas shown include 61 

national parks (NP), game reserves (GR), wildlife reserves (WR), game management areas 62 

(GMA),  wildlife management areas (WMA) and Ngorongoro Conservation Area (NCA).  63 

 64 

 65 

 66 

 67 

 68 

  69 

http://www.who.int/gho/neglected_diseases/human_african_trypanosomiasis/en/
http://www.protectedplanet.net/
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