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Abstract Automated processes such as cartographic generalisation require formal 

abstraction of the geographic space in order to analyse, process and transform it. 

Spatial relations are key to understanding geographic space and their modelling is 

a critical issue. This chapter reports on existing classifications and modelling 

frameworks for spatial relations. A generic model is proposed for building an 

ontology of spatial relations for automatic processes such as generalisation or on-

demand mapping, with a focus on so-called multiple representation relations. 

Propositions to use such ontology in an automated environment are reported. The 

three use cases of the chapter describe recent research that uses relations model-

ling. The first use case is the extension of CityGML with relations for 3D city 

models. The second use case presents the use of spatial relations for automatic 

spatial analysis, and particularly the grouping of natural features such as lakes or 

islands. Finally, the third use case is a data migration model guided by relations 

that govern the positioning of thematic data upon changing reference data. 

1.1 Introduction 

Map generalisation is not simply the simplification of geographic features for 

legibility purposes but more generally a holistic abstraction process that seeks to 

represent geographic features at a given scale for a given purpose. Patterns and in 

particular spatial relations are key to the understanding of geographic space 

(Mackaness & Edwards 2002). For instance, Fig. 1a shows a town symbol placed 



over a road symbol, which can be expressed as the spatial relation “the town sym-

bol is on the road”. This relation conveys the information to the map reader that 

the road crosses the town. In contrast, the relation “the town symbol is near the 

road” (Fig. 1b) conveys the information that the road passes by the town. This 

simple example illustrates the importance of understanding spatial relations in the 

map generalisation processes. In Fig. 1c, the spatial relation “the cycle path is 

along the road” has to be explicit to adapt the road symbol with an additional 

dotted centreline. More generally, the generalisation process should as much as 

possible preserve the spatial relations existing in initial data. For example if a 

building is within a forest clearing, it should still be there after generalisation (Fig. 

1d)! 

 

 

Fig. 1 The town symbol is on the road when it actually crosses the town (a) or near the road 

when it passes by the town (b) (©IGN). (c) The relation “the cycle path follows the road” facili-

tates the symbolising of the road with the dotted line. (d) The relation “the building is inside a 

clearing” should be preserved by generalisation. 

The detection of spatial relations in order to guide generalisation has long been 

identified as one of the challenges for automation (McMaster & Shea 1988, Bras-

sel & Weibel 1988). To achieve this goal, Mackaness and Edwards (2002) sug-

gested reifying both spatial relations and patterns in order to ensure their preserva-

tion during generalisation. In the CartACom model (Ruas & Duchêne 2007, 

Duchêne et al. 2012), relations are additional objects on which constraints are 

defined, which guide the generalisation of geographical features. 

As a prerequisite we need to formalise spatial relations in order to develop such 

relation-driven generalisation processes and also to facilitate relational constraint 

modelling (Burghardt et al. 2007) and to monitor such processes. A better formali-

sation of spatial relations would also improve process interoperability (Chapter 7) 

and help users define their needs (Chapter 2) (Touya et al. 2012).  

This chapter presents recent research on modelling spatial relations for auto-

matic mapping environments. Its second part describes related work on spatial 

relations classifications. The third part presents a proposal for a spatial relations 

ontology and the fourth part explains how such an ontology can be used in auto-

matic environments. Section five presents a first case study on spatial relations for 



3D city models. Section six describes the second case study on relations based on 

spatial analysis. Section seven details the third use case on data migration guided 

by explicit relations. Finally, conclusions are drawn on some research perspectives 

on spatial relations for generalisation. 

1.2 Spatial Relations Classification 

This section mainly focuses on spatial relations between pairs of geographical 

objects, but the relations between more than two objects are briefly discussed in 

section 2.3.  

1.2.1 Classification and Formalisation of Spatial Relations 

Over the past thirty years, several spatial relations classifications have been 

proposed (Egenhofer & Franzosa 1991, Jones 1997, Ru as 1999, Steiniger & 

Weibel 2007 Burghardt et al. 2010). They were designed from different points of 

view, and some were specifically dedicated to map generalisation (Fig. 2). We 

note that most classifications distinguish between topological and geometric rela-

tions, the focus being mainly on the former. Steiniger & Weibel (2007) add more 

detail by subdividing their geometric relations classification into into size, posi-

tion, shape and orientation relations while semantic relations are divided into 

similarity, priority, resistance/attraction and causal/logic relations. 

 

 

Fig. 2 Several spatial relations classifications, the last three being dedicated to generalisation 

In respect of the topological relations, models were developed to enable auto-

matic reasoning, such as the 4-intersection model (4IM) (included, includes, cov-

ered by, covers, overlaps, equals, meets, disjoint) that manages topological rela-

tions between polygons. The most commonly used topological model is the 9-

intersection model (Egenhofer & Franzosa 1991), adopted by the OGC, and the 

Region Connection Calculus (Randell et al. 1992) - somewhat similar to the for-

mer. 

There are many ways to define a set of spatial relations for an automatic appli-

cation such as map generalisation. The question then becomes: which one has the 



greatest utility? Cohn & Hazarika (2001) claim that a set of spatial relations has to 

be relevant to the task being performed, and that none is universal. Following the 

same idea, Clementini (2010) divides relations models into three levels: geometric 

(e.g. touch), computation (e.g. line touch polygon) and user level (e.g. dam touch 

lake) where application related relations are defined (further discussed in section 

5.2.1). In section 1.3, a user level relation model is proposed. 

1.2.2 Quantitative vs. Binary Relations 

In the literature, two ways of describing a relation between a pair of objects can 

be found (Touya et al. 2012). The first one quantitatively considers a spatial rela-

tion with a measure: e.g. a proximity relation is characterised by a distance, or a 

relative orientation relation is characterised by an angle (Fig. 3a). This is a con-

venient model for the “metric relations” of Egenhofer and Franzosa (1991). The 

second way of describing a relation considers a predicate that can be true if the 

relation exists, or false. For instance, Fig. 3b shows a spatial relation described by 

the predicate is orthogonal to. Only crisp relations are discussed here, fuzzy rela-

tions being discussed later in the section. 

 

 

Fig. 3 (a) A relative orientation quantitatively described by an angle. (b) An orthogonal relation 

described by a predicate.   

Some authors have defined families of predicates that cover all possible rela-

tions between a pair of objects from a particular point of view. In this case, a pair 

of objects only meets one predicate of the family, e.g. the 4IM or the 9-

intersection model (9IM) (Egenhofer and Franzosa 1991). Other families may not 

follow this principle: for example a family made of two predicates is orthogonal 

to and is parallel to does not cover all the types of relative orientation. 

Whether a model of spatial relations considers one relation (e.g. relative orien-

tation) and several associated predicates (parallel, orthogonal), or several rela-

tions (parallelism, orthogonality) is an arbitrary choice. We choose the second, 

because, in the context of map generalisation, the qualitative evaluation of the 

preservation or transformation of the relation is easier considering several rela-

tions. As a consequence, it is possible to distinguish between quantitative rela-

tions (relations described by a quantitative measure) and binary relations (rela-

tions described by a predicate, which are present, or not, between a pair of ob-

jects). Binary does not refer, here, to the mathematical definition that means that a 

pair of objects is related. 



Now, a particular situation with respect to binary relations is the situation 

where the relation is not completely present, but almost (Duchêne et al. 2012). For 

instance, in Fig. 4, the building is not strictly parallel to the road but almost paral-

lel: it is not clear if it should read as parallel to the road or not, particularly if scale 

is reduced. This situation is tricky in the context of generalisation, which seeks to 

avoid the fuzziness that blurs legibility, and replace it by a sharp relation through 

caricature. So, for each sharp binary relation we propose to add an associated 

fuzzy relation in our ontology corresponding to the case where the sharp relation 

is “almost” present, such as near parallelism. 

 

 

Fig. 4 A sharp relation and its fuzzy version considered for cognitive perception limits. 

Fuzzy topological relationships have been studied, (for example by Winter 

(2000) and Bejaoui et al. (2009)) in the context of objects with fuzzy limits. Here, 

in the context of generalisation, the same models can be applied, in which the 

fuzziness is a ‘perceived fuzziness’ due to the ‘noise’ that distracts perception. 

To summarize, quantitative and binary relations are distinguished, and among 

binary relations, sharp and fuzzy relations are further distinguished.  

1.2.3 Spatial Relations between More Than Two Features 

Up to now, we mainly considered spatial relations between pairs of objects, 

what Mustière & Moulin (2002) call non-hierarchical relations, in opposition to 

hierarchical 1-to-n (or n-to-m) relations. Mustière & Moulin (2002) distinguish 

objects being part of a group (like the components of the meso objects from (Ruas 

& Duchêne 2007)), and objects being inside an area (e.g. a mountain road is inside 

a mountainous area). For their part, Mackaness & Edwards (2002) state that rela-

tions related to patterns or structure can be divided in two categories: taxonomies 

and partonomies. Taxonomies refer to categorisation hierarchies, e.g. an orchard is 

a forest. Partonomies refer more to a conceptual and geometrical division of 

space, e.g. buildings are part of cities (Chaudhry & Mackaness 2007). Chaudhry 

et al. (2009, Mackaness & Chaudhry (2011) propose methods to automatically 

retrieve urban functional partonomies such as schools (Fig. 5) or retail areas from 

their sub-components. 

 



 

Fig. 5 The toponym, buildings, sports fields and footpaths are all functionally related to the 

complex object school (outlined with dashes) 

Steiniger & Weibel (2007) proposed a vast classification of spatial relations be-

tween more than two objects, divided into two main categories: statistical and 

density relations and structural relations which cover the partonomies and func-

tional relations. Ternary relations such as above or left, with a reference as third 

object, are also worth noting (Borrmann & Rank 2009). 

1.3 An Ontology of Spatial Relations 

In light of the literature previously presented, this section describes a spatial re-

lation ontology dedicated to generalisation and on-demand mapping, first pro-

posed by Touya et al. (2012). The first subsection presents the general model of 

the ontology, the second proposes a taxonomy integrated to the ontology, and the 

third focuses on multiple representations relations. 

1.3.1 Modelling Spatial Relations 

This section describes the formalisation of spatial relations, proposed by Touya 

et al. (2012), as the upper concepts of an ontology that would contain the spatial 

relations relevant to generalisation or on-demand mapping (Fig. 6). Fig. 7 shows 

an instance of the “cycle route follows the road” relation that will be used to ex-

plain the features of the proposed model. 

A spatial relation has two members denoted as spatial features (e.g. linear 

road). Each of these spatial features is described by a geographic entity (e.g. road), 

its geometric primitive (e.g. line) and possibly its feature type (e.g. roads in the 

INSPIRE schema). As relations are not all symmetrical (e.g. Fig. 9e), the property 

‘has members’ is divided into ‘has member 1’ and ‘has member 2’. 

 



 

Fig. 6 An OWL model of spatial relations (Touya et al. 2012) 

The ‘condition of achievement’ property describes the configurations where the 

spatial relation holds. It only applies to binary relations. For instance, a cycle route 

follows a road when the distance between a part of the route and a part of the road 

is small. In some geographic contexts, a spatial relation may become irrelevant, 

which can be described by the ‘condition of relevance’ property of the ontology. 

For instance, there is no proximity relation between two close buildings that are 

separated by a river. A spatial relation may be described by several properties. For 

instance, the follow relation is described by the convergence points (two per con-

vergence section) on the road (Fig. 7) and the distance between lines. Finally, 

relevance and achievement can be assessed by an operation, e.g. the achievement 

of the follow relation is assessed by a network matching operation (Chapter 5).  

 

 
Fig. 7 A cycle route that follows a road 

1.3.2 A Taxonomy of Spatial Relations for Generalisation 

Touya et al. 2012 proposed to fill the ontology with spatial relations following 

a taxonomy, dedicated to generalisation and on-demand mapping, which combines 

various classifications presented in the literature (Section 1.2.1). A spatial relation 

belongs to one of the eight types, and can be sharp or fuzzy (Fig. 8). 

 



 

Fig. 8 Proposed taxonomy for spatial relations between two geographic entities. 

Fig. 9 and Fig. 10 show examples of the different relation types of the taxono-

my. Topological relations include the 9IM relations (e.g. meet Fig. 9a) including 

as well their fuzzy counterpart (Fig. 9b). Relative orthogonality (Fig. 9c) and 

almost parallelism (Fig. 9d) are examples of orientation relations. Position rela-

tions contain relative position relations (Papadias & Theodoridis 1997, Matsakis 

et al. 2008) (Fig. 9f), that can be specific such as the relative position of buildings 

with dead ends proposed by Duchêne et al. (2012) (Fig. 9e). Proximity relations 

represent objects close to each other (Fig. 9g). 

 

 

Fig. 9 Examples of spatial relations. 

Fig. 10a and b present shape and size relations that generalisation typically 

seeks to preserve between buildings. The semantic relations can be illustrated by 

“the road is access to the touristic site” relation (Fig. 10c) or by the “lakes are 

flat” relation with respect to relief, visualised in Fig. 10d through contour lines. 

Finally, so-called movement relations are spatial relations that can be named by a 

movement verb (Mathet 2000) such as “the river circles the building” (Fig. 10e) or 

“the path passes across the forest” (Fig. 10f). 

 



 

Fig. 10 Further examples of spatial relations. 

1.3.3 Multiple Representations Relations 

Different abstractions of real world features lead to different possible represen-

tations for the same features in geographical databases. Mathet (2000) states that 

some features are polymorph, and can be seen either as polygons, or as lines, or 

points, in spatial relations. This can be reformulated as spatial relations that may 

occur between implicit alternative representations of features. For instance, Fig. 

11e shows a follows spatial relation between a river and the implicit linear repre-

sentation of a forest area. 

Mustière & Moulin (2002) claim that spatial relations are a scale-dependant no-

tion: spatial relations may occur between representations of features dedicated to 

different scales. For instance in Fig. 11d, the three forest patches can be seen as a 

line that is a small scale representation of a row of trees along the river. 

Finally, some features may be in relation to some small part of a feature and 

not to the complete feature. For instance, the limit of the forest locally circles the 

building in Fig. 11f, or the building is on a summit in Fig. 11a, which is a charac-

teristic part of the relief. 

Such kinds of relations can be called multi-representations relations and require 

an adjustment of the spatial relations model of Fig. 6 to be included in the ontolo-

gy. Corcoran et al. (2012) propose a method to identify and model the multi-

representations relation “a set of roads is access to a housing estate”. 

 

Fig. 11 Spatial relations between a feature and a part (or an implicit structure) of a feature. 



1.4 Spatial Relations Ontology to Support Automatic 
Processes 

This sections presents research where the spatial relations ontology could be 

used in an automatic mapping environment. This can be accomplished by deriving 

constraints from the ontology or by improving interoperability of automatic pro-

cesses. 

1.4.1 Relational Constraints to Monitor Generalisation 

Chapter 2 showed that user specifications for a map generalisation process are 

commonly expressed by generalisation constraints. Relational constraints are 

constraints on spatial relations that need to be preserved or caricatured (Duchêne 

et al. 2012). The spatial relations ontology proposed in the previous section helps 

to define a relational constraints ontology that would help users define their speci-

fications regarding spatial relations (Fig. 12). The deeper the user goes into the 

ontology hierarchy, the less they have to specify constraint details, when defining 

their specifications. 

 

 

Fig. 12 The constraints ontology derived from Touya et al. (2010) and an example on how the 

axioms restrict the variables for a user to define their constraints. 

The relations ontology helps defining a taxonomy of relational constraints for 

generalisation (Fig. 13). Four types of relational constraints are identified: (i) the 

relational preservation constraints that monitor the preservation of salient relations 

during generalisation; (ii) the relation caricature constraints that monitor only 

fuzzy relations in order to make them sharp (e.g. caricature ‘almost parallel’ rela-

tions into ‘parallel’ relations); (iii) the relation transformation constraints that 

change a relation into another during generalisation (e.g. transform road/building 

parallelism into adjacency); finally, (iv) non-creation constraints that prevent non-



existing relations from being created by generalisation transformations (e.g. no 

relative prominence relation between buildings are allowed to be created by build-

ing enlargement algorithms). 

 

Fig. 13 Four types of relational constraints (Touya et al. 2012) 

1.4.2 From Ontology to Algorithm 

A challenge in defining spatial relations in automatic environments such as 

generalisation is to finding algorithms that assess these relations, i.e. defining the 

‘operation’ in the model of Fig. 6. It is the same challenge that Steiniger & Weibel 

(2007) stated as finding measures to identify relations. With respect to possible 

algorithms, Mathet (2000) proposed geometrical methods to measuring movement 

relations such as circles or passes through, while Duchêne et al. (2012) proposed 

algorithms for the relations handled by the CartACom generalisation process. 

To create the link between relations in an ontology and the algorithms for as-

sessing them, several approaches have been proposed. A simple but non automatic 

solution is to semantically annotate the services that encapsulate the algorithms 

with the relations from the ontology, as proposed in (Touya et al. 2010). When an 

ontology of the measures/algorithms is available, one has only to fill the 

‘achievement can be assessed by’ property of the relations ontology (Balley et al. 

2012). Finally, Gould & Chaudhry (2012) propose an automatic matching between 

relations and an algorithm ontology, provided the algorithm capabilities are de-

scribed in the ontology. 

1.5 Case Study I: Spatial Relations for Urban 3D Models  

(by Bénédicte Bucher, Gilles Falquet) 

This section illustrates the relevance of an ontology of spatial relations in the 

context of applications based on city models. The first subsection describes the 

context of this use case and the requirements for the ontology. The second subsec-



tion describes how CityGML partially meets these requirements and the last sub-

section details design choices for extending the ontology. 

1.5.1 Ontological requirements for urban applications  

With the growing availability of city models, more and more applications have 

begun exploiting possibilities offered by these models to support not only visuali-

sation but also automated operations and analysis. Below are examples of such 

applications. 

Wind comfort for pedestrians in an urban environment is a function of wind ve-

locity. Therefore, the comfort of an urban area can be estimated from the average 

wind velocity at 1.5m above ground. In wind comfort simulation applications, 

such as (Amorim et al. 2012), a 3D city model is needed to provide the geometry 

(terrain, buildings, vegetation) of the space in which the fluid dynamics simulator 

must operate. To visualise and exploit the simulation results, the 3D city model 

must support the representation of air flows and some of their characteristics, such 

as average speed, location of vortices, etc. It must also represent the relationship 

between the air flows direction, open spaces, and meteorological conditions.  

Visual openness and visual exposure are important characteristics that deter-

mine the quality of life in a dwelling area (Fisher-Gewirtzman 2012). Visual ex-

posure measures the number of points from which the interior of an apartment is 

visible. It can depend on the number of openings in other buildings that are in an 

intervisibility relationship with one or more openings of  the considered apart-

ment. Intervisibility is the combination of a metric relation, the distance between 

the openings must be sufficiently short, and a projective relation, no opaque object 

must stand between the two openings.   

Urban planning and civil engineering heavily rely on the formulation and eval-

uation of spatial properties and relations such as solar availability (of a parcel, of a 

room, of a terrace), intervisibility, minimal distance (between two buildings), 

walking distance, and accessibility. Moreover design can be seen as the activity of 

using primitives that can be combined as functional units to compose buildings. 

(Caneporo et al.  2007) proposed an ontology to support the design of new build-

ings based on a set of elementary components and relevant properties and relations 

that act as constraints on the possible combination of these primitives. More re-

cently, (Brasebin et al. 2011) have proposed an implementation in a 3D GIS of 

operations to support the automatic evaluation of 3D spatial relations and proper-

ties relevant to urban rules evaluation. 



                   
(a)     (b) 

Fig. 14 Spatial properties and relations useful in urban planning. (a) : Floor Area Ratio. (b) : 

Distance between features 

The  first 3D city models were merely dedicated to visualisation and entailed 

information about the terrain shape together with appearance (textures). More 

advanced applications call for a more structured model of information. The wind 

comfort application will require summarising the city in terms of canyons and will 

need to deliver its result not only as a 3D coverage but also as features related to 

the cityscape. The visual exposure application will require the evaluation of in-

tervisibility relations. Civil engineering and urban planning will also require com-

puting intervisibility and other spatial relations and properties. Sometimes end 

users do not have the geocomputational expertise to select the relevant type of 

data set and derive the necessary information. Furthermore it should be noted that 

some relations such as “topological relations” or “touches” do not have the same 

meaning depending on the understanding of the author. Topology may refer to the 

fact that at the data level a network is correctly connected. It may also refer to the 

ability for a driver to go from one street to another at a cross road. While relations 

between pure geometric entities (points, lines, planes …) are well established, 

relations between application/urban objects (on the other side, close to, salient …) 

are more elusive. 

To improve the usage of existing city data and the development and sharing of 

useful software we propose an ontology of spatial properties and relations that are 

meaningful to users and define their possible computation on available data, 2D or 

3D (Bucher et al. 2012): 

 It should serve as a vocabulary for researchers and application designers to 

avoid ambiguities.  

 It should support the indexation of algorithms and assist an application devel-

oper to identify contributions from other disciplines. 



 It could serve as a starting point for defining data types or database schemas 

for urban applications. Such schemas would be designed based on commonly 

used algorithms and useful datatypes to support them, such as the topological 

map datatypes to support routing of network data. 

 The formal definition of relations, coupled with automated reasoning, can be 

used to automatically infer relations, and, to a certain extent, automatically 

validate relation computation algorithms. 

1.5.2 CityGML 

Soon after the explosion of virtual globes, (Kolbe et al. 2005) proposed the 

CityGML model to enrich such terrain models with object, semantics and with 

more structured geometric information to support automated calculus. This model 

has been adopted as an OGC standard under continuous revision (OGC 2012). In 

CityGML, the city is modelled through city objects that have a geometric repre-

sentation and a thematic representation. Class definitions are proposed for the 

most important city features: relief, buildings, city furniture, tunnels, bridges, 

water bodies, transportation (roads and railways), and vegetation. The first intro-

duced relation was the aggregation of objects. There is now the concept of 

CityObjectGroup to attach properties to an aggregation of objects and to specify 

the role of each component within the group. 

An important feature of CityGML is to propose a scale to reference meaningful 

scales (or levels of detail) in cities: LOD0 to LOD4. The same object can have 

five different such representation (thematic and geometric) corresponding to the 

different levels in this scale and generalisation relations can also exist between 

aggregated objects to support the browsing of the city from one LODi to another.   

 

CityGML objects can also have appearances features. The model also supports 

the explicit representation of topological relation between features and the terrain 

(or the water) firstly through a property “relativeToTerrain” (resp. “rela-

tiveToWater”) - the values ranging from “entirelyAboveTerrain” to “entirelyBe-

lowTerrain” and secondly, for buildings, through a property terrainIntersection 

whose value is a Multicurve. The geometry used in city models is a profile of the 

GML3 geometry model. It contains 3D primitives and different kinds of combina-

tions of primitives: composites (combination of elements of the same dimension 

with topological connections), aggregates (combination with a topological struc-

ture) and complex (free combination).  

 



 

Fig. 15 CityGML packages (after (OGC 2012)) 

To conclude, CityGML is a big step forward in terms of an ontology of spatial 

relations and properties but does not fully meet our requirements since it contains 

a limited set of relations: aggregation, combination of geometries, topological 

relation with the terrain or water, and a generalisation relation between groups of 

objects. 

1.5.3 Improving CityGML with an ontology of spatial relations 

We therefore propose to extend CityGML with ontological items that will meet 

the requirements listed above. Some items have already been introduced in this 

chapter and others are defined in the following section.  

Several classification schemes for spatial relations have been mentioned in the 

beginning of this chapter. (Clementini 2010) proposal is especially interesting 

since it provides a mapping between unambiguous relations and properties ex-

pressed in an application context and the possible evaluation of these relations and 

properties based on automated manipulation of city data.  It has been extended in 

(Bucher et al. 2012) to better fit urban applications requirements. Spatial relations 

may be:  

Mathematical relations, i.e. relations that exist in the scientific domain of 

mathematics. These can be geometric relations (distance, symmetry) or topologi-

cal relations not always supported by the geometry.  

Computational relations, i.e. relations that can be instantiated based on data 

and Operations (presented earlier in this chapter).  

Application relation, i.e. relations that appear in the user’s expression of needs 

and which reflects their experience of reality and background. Importantly, this 

level contains many common concepts, properties and relations across applica-

tions such as salience, visibility, and shape. As mentioned earlier, application-



level relations often bear the same names as geometric relations: touches, be-

tween, closer, however their exact meaning is much more difficult to define. Other 

application-level relations, such as intervisibility or accessibility, refer to applica-

tion objects, must satisfy complex conditions, and depend on other objects that 

form an evaluation context. For application level relations, it is important to speci-

fy the Context which describes in what universe the relation holds. For example 

the intervisibility relation between two windows may suppose that there is neither 

fog nor truck passing by. This means that for an application, computing intervisi-

bility may require data in addition to the city model, e.g. hypothesis on weather 

conditions. 

 

Fig. 16 Spatial Relations separated into 3 levels: Application, Computational and Mathematical.  

Importantly, two important observations were made by (Bucher et al. 2012) in 

the context of an ontology of spatial relations for urban applications.  

The first is the property FrameOfReference of a spatial relation that refers to 

the point of view from which a spatial relation is observed (Trinh 2012). It can be 

deictic such as in the relations “the street to the right of the church” where the 

meaning of the relations depends on the location of an observer. It can be intrinsic 

when it is attached to an object orientation such as “at the front of the car” (a car 

has a front and a back). In the case where it does not depend on an observer or on 

an object but depends on an absolute reference system such as “north of” it is 

called extrinsic. It is true for relations experienced in reality and for relations ex-

perienced in the representation: there are several ways for a user to interact with a 

3D model of a city: they can manipulate the model as a single object (a digital 

mockup) or focus on an individual object (e.g. a building) or navigate within the 

model to simulate the experience of a human being walking in the city. The 3D 

model may also be used in an augmented reality application on a tablet or 

smartphone. These interaction patterns correspond to different frames of reference 

(absolute, object-centered, user-centered, etc.) and hence to different ways of 

understanding and computing relations such as left of, behind, etc. Frames of 

reference can be absolute - independent from the observer- or relative to an ob-

server point of view (first person or third person). 



The second observation relates to non binary relations that occur in many simu-

lation applications: objects are interfaces between two other objects (e.g. for a car, 

a street network is the interface between an area to downtown). This is an exten-

sion from (Billen et al. 2012) who suggested that buildings be described as a set of 

interfaces between outer empty space and indoor empty space with windows being 

the connections for specific agents (such as air). This proposal sounds very prom-

ising and could be extended to other kinds of interface (such as streets, bridges). 

This would be a vector counterpart to a raster view where a city model is decom-

posed into a mesh to run a simulation algorithm. 

As 3D generalisation is still in its infancy with algorithms for individual fea-

tures, such an extension of CityGML with relations information would greatly to 

step further to complex processes such as the ones presented in this book for two 

dimensions features. 

1.6 Case Study II: Relations for the Extraction of Groups 
of Objects  

(by Stefan Steiniger) 

This second case study illustrates how spatial analysis can be used to model 

spatial relations. More specifically we will model relations for the extraction of 

groups of objects. One case study for this is the generalisation of naturally formed 

objects such as lakes and islands. Here, the preservation - or typification - of ob-

ject groups during generalisation is important as patterns will often relate to the 

process by which they were formed (e.g. glacial processes). An example of the 

generalisation of a lake district, near Lyon in France, is for instance, given in Ber-

tin (1983). Elements of the process he describes are: (1) the recognition of the 

overall shape of the lake group, (2) the identification of the individual lake shapes 

(since they may form a directional pattern), (3) the identification of a structural, 

visual skeleton within the group of lakes, and (4) the visual grouping of large 

lakes in the lake district. 

An important part of Bertin’s generalisation process description is the identifi-

cation of structures, i.e. groups of objects, which are formed only by looking at 

them, i.e. through visual perception and cognition. To detect these groups they 

need to be described. For a group of lakes or islands, such description can be 

achieved by formalising the relations between the objects of the group, for in-

stance by formalising the relation between the islands within one group and be-

tween groups. If these relations are sufficiently formalised, then we can use this 

description to extract the island groups from a dataset.  

In the following two subsections, we describe a particular form of object 

groups, so-called “similarity groups”. These groups emerge from perceptual simi-

larities in shape and size of group individuals, ( islands in our case study). In the 



second subsection, we formulate relations for these types of groupings using the 

presented modelling approach. 

1.6.1 Perceptual grouping of islands by similarity  

In the seminal work by Wertheimer (1938) on the “laws of organization in per-

ceptual forms”, , several principles are described under which single objects, e.g. 

points and lines, are perceived as a group. These principles describe for instance 

inter-object characteristics such as object proximity, object similarity, good con-

tinuation (e.g. a sequence of line segments), and the observers past experience.  

Different authors have noted the importance of the similarity principle in car-

tography (e.g. the work of Bertin (1983) or work on building group detection for 

map generalisation by Li et al. (2004). Steiniger et al. (2006) and Steiniger and 

Hay (2008) describe an experiment in which participants were asked to group 

islands, lakes, and triangles. In that experiment participants seem to have applied 

the principle of similarity to group islands. Three examples for similarity groups, 

taken from that experiment, are shown in Fig. 17. An analysis of such similarity 

groups (i.e. not only those three groups) reveals that the following conditions seem 

to hold: (1) the members of the group are close to each other (proximity principle), 

(2) the members of the group have a similar size, (3) they have a similar shape, 

and (4) for the two groups, SG2 and SG3, the orientation of the island shape seem 

to be similar (see also Williams and Wentz 2008). We now describe these similari-

ty groups by using relations. 

 

 

Fig. 17 Marked with bold lines are groups of islands delineated by participants of an experiment 

described in Steiniger and Hay (2008). These three groups are likely to be grouped due to simi-

larities in size, shape and orientation of the islands. 



1.6.2 Similarity relations among island groups  

We identified four member properties, or conditions, of similarity groups: 

proximity, size similarity, shape similarity, and orientation similarity. Each of 

these four properties should be modelled as relations. This will allow us to detect 

such groups for generalisation and monitor their changes during the generalisation 

process. In the modelling example we will use measures and thresholds that are 

“informed guesses” to illustrate our ideas, rather than using tested measures and 

values. Fig. 18 shows how “similarity in size” can be modelled for the island ex-

ample by adopting the schema of Fig. 6. We assume that a relation is modelled 

only between two geographic features, i.e. island i1 and island i2.  

In Fig. 18, the relation “similarity in size” is described by:  

 the type of relation: isA binary relation,  

 the expression: true if 2/3 size(i1) < size(i2) < 4/3 size(i1), 

 the members/spatial features : entity = Island, type != water, geometric primi-

tive = polygon, 

 the operation for the assessment : polygon area – isA measure operation, isA 

area measure, isA Euclidian 2D area measure, 

 the properties : size-factor(i2) = size(i2) / size(i1), lower limit = 2/3, and upper 

limit = 4/3. 

 

 

Fig. 18 Modelling of the size similarity relation for similarity groups. 

As we don’t have sufficient space to describe the three remaining relations sim-

ilar to the size similarity relation we have summarised this information in Table 1. 

 

Table 1 Relations for micro groups formed by the similarity principle. 

Spatial 

Relation 

Relation Type 

& Expression  

Spatial 

Feature 

Operation, Type and 

Measure 

Properties 

Proximity isA Binary Entity: Distance, isA meas- Distance 



relation, d1,2 < 

dlimit 

Island, 

Feature 

type: not 

water, 

Geom: 

Polygon 

ure operation, isA 

distance measure, 

isA eucl. dist., isA 

maximum distance 

d1,2 

Similarity 

of Size 

isA Binary 

relation, 2/3 

s1< s2 < 4/3 s2 

Polygon area, isA 

measure operation, 

isA absolute area 

measure, isA eucl. 

2D area 

Size factor 

s2 / s1, 

lower limit, 

upper limit 

Similarity 

of Shape 

isA Binary 

relation, 

diff(shape1, 

shape2) < 0.2 

Shumm Shape In-

dex, isA measure 

operation, isA abso-

lute shape measure 

shape1, 

shape2, 

difference 

limit 

Similarity 

of Orienta-

tion 

isA Binary 

relation, do-

rient,1,2 < 25° 

Longest MBR axis 

orientation, isA 

measure operation, 

isA relative orienta-

tion measure 

orientation-

difference 

dorient,1,2, 

difference 

limit 

1.6.3 Open modelling challenges 

There remain a number of open challenges that require further research.. Three 

of these challenges are:  

Challenge 1 - In the applied modelling approach we have assumed that a rela-

tion is formed only between 2 geographic features. But a similarity group has at 

least 3 members. For the distance condition we need to describe at least two dis-

tances if three features exists, i.e. d1,2 and d1,3, assuming that d2,3 may not be im-

portant to establish the existence of the group. While the modelling of only two 

distances avoids redundancies, this will does not allow us to monitor changes of 

d2,3. So the third, seemingly unimportant, distance relation needs to be observed as 

well.   

Challenge 2 - When observing the two island groups that may be formed due to 

similarity principles in Fig. 17, we see that for the group SG 1 on the left side, the 

islands have a fairly compact shape. In this case the orientation of the individuals 

is quite different, and there is no need to treat the similarity of orientations as a 

necessary relation. Thus the existence of an orientation similarity makes the classi-

fication and detection more reliable. Therefore it would be good to have a general 

relation property that allows us to assign a weight or importance value to a rela-

tion. 

Challenge 3 – A broader issue remains: How do we connect the relations to 

each other and to a micro group object, which links to its individuals? One idea is 

to model the micro group object as a “similarity group relation”. This relation 

could be a binary relation where the expression requires all other relations - i.e., 

proximity, shape similarity, size similarity, number of members, and eventually 



orientation similarity - to be evaluated as true. In that case the operation type 

would be a “spatial analysis operation” that links to the 3 (or 4) mentioned rela-

tions. This remains an idea in further need of development. 

1.7 Case Study III: Data migration of user data  

(by Kusay Jaara) 

With the wide availability of topographic data for the general public from Na-

tional Mapping Agencies and from collaborative geographic data resources (e.g. 

OpenStreetMap), users are able to create their own thematic geographic data using 

public topographic data as a reference. At a future point, users could have more 

current versions of their reference data, or they may want to change the reference 

data to use more or less detailed data. In order to obtain consistent data after the 

replacement of reference data, user data has to be processed. We call this pro-

cessing thematic data migration.  

If the relations between the users’ thematic data and reference data are not tak-

en into account during the thematic data migration, then errors can occur. For 

example, an accident (a user dataset) that took place in front of a bridge could be 

located behind the bridge after the migration process. For analysis purposes, such 

a change can be important. Moreover, users may want to emphasise some initial 

relations in order to make them visible. If we take the example of the accident near 

the bridge and the aim to obtain topographic data at a smaller scale, then the user 

may want to exaggerate, i.e. increase, the distance between the accident location 

and the bridge to clarify that the accident took place before the bridge and not on 

it. 

A method of thematic data migration has been proposed in (Jaara et al. 2013). 

It is an automatic process that takes into account geographic relations between a 

user’s thematic data and reference data during data migration. The next sections 

describe the main principles of this method. 

1.7.1 General workflow of thematic data migration 

Relations between thematic and topographic data are not explicit in the initial 

database, so they have to be extracted and represented (Jaara et al. 2012). As the 

representation of the real world changes from one database to another, it is not 

always possible to maintain all initial relations. For instance, a roundabout can be 

represented as a set of road segments forming a round pattern in the initial topo-

graphic database and as a simple crossroad in the final topographic database. Rela-

tions in this case have to be modified according to the differences in representa-

tion of the same object in the topographic database. Relations may change even if 

the reference object is not modified. For example, a disjoint relation between a 

thematic region and a reference region might be discarded if the final reference 



data is presented at a smaller scale and the distance is small. In Fig. 19, the data 

migration workflow of Jaara et al. (2013) is presented.  

 

Fig. 19 Proposed workflow for the thematic data migration 

According to the workflow, thematic data migration consists of: 

a) Relation extraction and modelling: significant types of relations are identi-

fied depending on the application case. Then relevant instances of these relations 

are extracted from the initial data (e.g. accident a1 is on road r1 and accident a2 is 

close to junction j1). These relations are represented using a referencing model 

(Section 1.22). 

b) Matching: initial and final topographic data are matched to detect the corre-

sponding objects and changes on them (chapter 5). 

c) Relations modification: expected relations within the final dataset are in-

ferred, and are also modified when needed. The modification is based on matching 

links between the initial and final topographic data (Section 1.23). 

d) Thematic data relocalisation: the expected relations within the final dataset 

are used to control the spatial relocalisation process, i.e. the propagation of the 

reference data transformations on the thematic data. In some cases, we have to 

ignore one or more relations in order reach a solution (Section 1.24). 



1.7.2 Referencing model between thematic and topographic objects 

The extracted relations have to be modelled in order to be stored and used in 

the subsequent stages. A model for relations between thematic and topographic 

data is presented in (Jaara et al. 2012). In this model (Fig. 20), topographic objects 

are considered as ‘support objects’. A relation connects one support object and 

one thematic object. Another type of support object are characteristic objects, 

which help to obtain a better description of the thematic data, such as roundabouts 

and road-river intersections. Characteristic objects are not explicitly represented in 

the initial data. Hence, they have to be extracted in a data enrichment stage.  Rela-

tions can then be established for topographic objects and for characteristic objects. 

  

 

Fig. 20 Class diagram of the referencing model of (Jaara et al. 2012) 

The ontology of relations (Fig. 6) has been extended to include the thematic da-

ta referencing model – so that a spatial feature can either be characteristic, topo-

graphic or thematic. Every relation has two members: Member1 that is thematic 

and Member2 that is a support object. Fig. 21 shows the resulting modifications. 

 

Fig. 21 Extension to the relations ontology of (Touya et al. 2012) that includes spatial relations 

between thematic and topographic data. 



1.7.3 Modification of relations 

Before the modification of relations step (Fig. 19), initial and final dataset have 

to be matched, the matching links being used by the modification of relations 

process. 

The objective of this step is to modify the relations, if required, in order to re-

flect modifications in the topographic data (Jaara et al. 2013). Transition rules 

have to be defined at the beginning of the process. These rules define acceptable 

changes, necessary changes, and conditions of every transformation of relations. 

For example, a “near parallelism” relation, which is a fuzzy relation (Fig. 4), 

becomes a “parallelism” relation when the difference of scale between the original 

and the target scale exceeds a given (orientation angle) threshold. Rules can be 

used in order to make certain relations particularly visible (exaggeration). A tran-

sition rule for an “almost disjoint” relation between two regions can be defined in 

order to keep a visible distance between both regions in case a smaller scale map 

of the final topographic database is intended. The output of this processing stage is 

the expected relations between the final and initial topographic datasets.  

1.7.4 Relocalisation process 

After identifying the expected relations in the final dataset (either preserving 

the initial or transforming them), the objective will be to find the position for the 

thematic object where these relations are best preserved or transformed. For this 

reason, we introduced the relation satisfaction measure. For a given position of 

thematic data, it measures how well the relation in the final reference data is pre-

served (or transformed). In the framework of the ontology of spatial relations (Fig. 

6) proposed by (Touya et al.2012), the satisfaction measure is an operation that 

assesses the achievement (i.e. existence) of the spatial relation <achievement – I 

don’t understand the meaning of this work in this context>. The calculation of the 

satisfaction measure depends on the relation type and attributes. For quantitative 

relations, the satisfaction is equivalent to the difference of values before and after 

the migration (e.g. distances). For qualitative relations, neighbourhood graphs 

(Egenhofer & Franzosa 1991) could be used to extract the satisfaction, by measur-

ing the distance between the expected relation and the actual relation, i.e. by eval-

uating the satisfaction. 

The relocalisation can be treated as an optimisation problem: solutions are 

based on a local search near the initial position, where possible places for an ob-

ject are calculated by adding regularly spaced vertices on the line that carries the 

object (the object can be moved to one of the vertices). Every possible place has a 

number of satisfaction values, one value for every expected relation. In some 

cases, certain relations have to be ignored in order to obtain a better result. In the 

accident example, in which the accident occurs next to the bridge and, additional-

ly, in front of a building. If the building has a different position in the final topo-

graphic database, we may prefer to ignore the relation with the building and leave 

the accident next to the bridge. It is more important to have an acceptable solution 



than to end up with a bad compromise. To solve the multi-criteria problem the 

PROMETHEE II approach (Brans & Mareschal 2005) has been used, because of 

its suitability and because it can be easily parameterised. It allows us to ignore 

some relations in instances of bad compromise. Solutions are scored and the one 

with the best scores are chosen. 

1.7.5 Results 

The model is illustrated using two examples. The first one illustrates the ad-

vantage of our thematic data migration method over using the simple curvilinear 

ratio method that could be the simple method one could use for data migration. 

With the curvilinear ratio, the thematic data is moved at a point that corresponds 

to the same curvilinear ratio on line length: for instance, if the thematic data is 

located at 50 m on the road curvilinear axis, with the road being 100 m long, then 

it is relocated at 45 m on the generalised road curvilinear axis that is 90 m long. 

The example shows how data migration is improved by the presented method (Fig. 

22). The second example illustrates the usefulness of the chosen multicriteria 

system that favours some relations over others. 

In the first example, two accidents located at different distances from a rounda-

bout have to be migrated (Fig. 22); the final topographic database is a generalised 

version where the roundabout is changed into a crossroad. 

 

 

Fig. 22 Results of thematic data migration  

The main relation that has to be preserved is the proximity relation to the 

roundabout. But as the roundabout is represented by a crossroad in the final data-

base, the proximity relations to the roundabout is changed to a proximity relation 

to the crossroad. A transition rule is defined as follows: If an accident is close to a 

roundabout and if a roundabout is matched with a crossroad, then the accident has 

to be situated in the middle of the crossroad. The relocalisation is done based on 

the changed relations, which gives the result shown in Fig. 22. 

In the second example (Fig. 23), an accident is situated next to the river-road in-

tersection (proximity relation) and in front of a building (relative position rela-

tion). In the final topographic database, the road was generalised and the building 



has been displaced. If we try to keep both relations as much as possible by finding 

a compromise solution, the result will be a partial satisfaction of the two relations. 

The score of the best location while keeping the two relations is calculated. The 

cases when ignoring one of the two relations are also evaluated. The solution with 

the best evaluation is taken. Evaluations are based on relation importance, which 

is related to user needs or the nature of the thematic object.  

 

 

Fig. 23 a) initial data b) migration with compromise between relations c) migration using a 

multicriteria approach 

1.8 Conclusion 

Although research on spatial relations modelling began many years ago, their 

use in automated environments such as map generalisation is quite recent and 

research challenges remain. A model for a spatial relations ontology is proposed in 

this chapter but it requires further development to be useful for automatic process-

es. For instance, all relations identified by cartographers as important in the gener-

alisation process should be included in the ontology. Then, it could be made freely 

available to spread this shared model in the generalisation research community 

and make it a standard resource of generalisation processes as well as of user 

requirement definition systems (see Chapter 2). 

Moreover, the handling of relations during generalisation needs to be im-

proved, particularly in the context of on-demand mapping with thematic data 

mapped onto topographic data. The migration use case raises the question of when 

to take relations into account during the generalisation process: before the process 

as parameters? Or afterwards with conflation or propagation techniques? Also, the 

handling and the definition of so-called multi-representations relations (Section 

1.3.3) requires further research. For instance, how do we handle the relation of a 

building alignment along a dead end street when moving the street is required by 

the city generalisation process? By and large, a better management, in the general-

isation process, of the interactions between geographic objects and their relations 

is required to improve generalisation automation.   
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