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Abstract:  Parkinson's  disease (PD) is  characterized  by severe  locomotor  deficits  due to  the

disappearance of dopamine (DA) from the dorsal striatum. The development of PD symptoms

and  treatment-related  complications  such  as  dyskinesia  have  been  proposed  to  result  from

complex  alterations  in  intracellular  signaling  in  both  direct  and  indirect  pathway  striatal

projection neurons (dSPNs and iSPNs, respectively) following loss of DA afferents. To identify

cell-specific and dynamical modifications of signaling pathways associated with PD, we used a

hemiparkinsonian mouse model with 6-hydroxydopamine (6-OHDA lesion) combined with two-

photon  fluorescence  biosensors  imaging  in  adult  corticostriatal  slices.  After  DA  lesion,

extracellular signal-regulated kinase (ERK) activation was found increased in response to DA D1

receptor  (D1R)  or  α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic  acid  (AMPA)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

1

mailto:nicolas.gervasi@inserm.fr
mailto:denis.herve@inserm.fr


stimulation.The  cAMP-dependent  protein  kinase  (PKA)  pathway  contributing  to  ERK  activation

displayed  supersensitive  responses  to  D1R  stimulation  after  6-OHDA  lesion.  This  cAMP/PKA

supersensitivity  was  specific  of  D1R-responding  SPNs  and  resulted  from Gαolf  upregulation  and

deficient phosphodiesterase activity. In lesioned striatum, the number of D1R-SPNs with spontaneous

Ca2+ transients augmented while Ca2+ response to AMPA receptor stimulation specifically increased in

iSPNs.  Our  work  reveals  distinct  cell  type-specific  signaling  alterations  in  the  striatum after  DA

denervation.  It  suggests  that  over-activation of  ERK pathway,  observed in  PD striatum,  known to

contribute to dyskinesia, may be linked to the combined dysregulation of DA and glutamate signaling

pathways in the two populations of SPNs. These findings bring new insights into the implication of

these respective neuronal  populations in  PD motor  symptoms and the occurrence of PD treatment

complications.
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dihydroxyphenylalanine;  PD, Parkinson’s  disease;  PKA,  cAMP-dependent  protein  kinase/protein
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1- Introduction

The striatum is the main input structure of the basal ganglia, which play a major role in motor control,

and habitual and goal-directed actions (Redgrave et al., 2010). The functions of the striatum are based

on the balance of two distinct  populations  of GABAergic striatal  projection neurons (SPNs, a.k.a.

medium-size spiny neurons). SPN activity is driven by abundant glutamatergic inputs from the cerebral

cortex  and  some thalamic  nuclei.  The  direct  pathway SPNs  (dSPNs)  directly  project  to  the  basal

ganglia  output  structures  (substantia  nigra  pars  reticulata and  globus  pallidus  pars  interna)  and

promote selected actions. The indirect pathway SPNs (iSPNs), in contrast, project to the same output

structures through relays in the  globus pallidus pars externa and subthalamic nucleus, and suppress

unselected actions (Albin et al., 1989). Dopamine (DA) release by afferent neurons from the substantia

nigra pars compacta positively activates dSPNs and inhibits iSPNs, which preferentially express DA

D1 (D1R) and D2 (D2R) receptors, respectively (Gerfen et al., 1990).

In Parkinson’s disease (PD), the progressive loss of DA afferents to the dorsal striatum (caudate

nucleus and putamen) is responsible for the motor and possibly non-motor symptoms. Bradykinesia,

akinesia, and rigidity are attributed to the loss of dSPN activation and iSPN inhibition  (Albin et al.,

1989; Alcacer et al., 2017; Kravitz et al., 2010). Various alterations of signaling pathways have been

reported in PD patients and animal models of DA neuron lesion. Extracellular signal-regulated kinase

(ERK) can be activated by the stimulation of corticostriatal afferents in the intact striatum (Gerfen et

al., 2002; Sgambato et al., 1998), but following lesion of DA neurons, ERK becomes very strongly

activated by DA replacement therapy, L-3,4-dihydroxyphenylalanine (L-DOPA) (Darmopil et al., 2009;

Gerfen et al., 2002; Pavón et al., 2006; Santini et al., 2007; Westin et al., 2007) in a  cAMP/protein

kinase A(PKA)- and Ca2+-dependent manner (Alcacer et al., 2012; Fieblinger et al., 2014a; Santini et

al., 2007). The cAMP/PKA pathway is strongly activated in response to D1R stimulation in the DA-

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

4



denervated  striatum  (Santini  et  al.,  2007).  In  the  dorsal  striatum,  cAMP concentration  reflects  the

balance between its production, depending on the levels of Gαolf (Hervé, 2011), the G protein subunit

which  couples  D1R to  adenylyl  cyclase  (AC)  (Corvol  et  al.,  2001),  and  its  degradation,  through

phosphodiesterase (PDE) activity  (Nishi et al., 2008; Polito et al., 2015). However the dynamics and

cell type specificity of signaling alterations in SPNs resulting from the chronic absence of DA are still

poorly characterized, hampering our understanding of their pathophysiological consequences. 

To identify the alterations of ERK, cAMP, and Ca2+-dependent pathways in dSPNs and iSPNs in

a chronic rodent model of PD, we used fluorescent biosensors for two-photon imaging of identified

living neurons in mouse corticostriatal slices. We used Förster resonance energy transfer (FRET)-based

biosensors, ERK activity reporter (EKAR-EV) and cAMP-dependent protein kinase (PKA) activity

reporter  (AKAR3)  (Allen  and  Zhang,  2006;  Castro  et  al.,  2013;  Komatsu  et  al.,  2011) and  we

monitored Ca2+ dynamics with the Ca2+ indicator (GCaMP6s) (Chen et al., 2013). Striatal DA terminals

were lesioned by local microinjection of 6-hydroxydopamine (6-OHDA). The responses in intact and

DA-denervated  striatum  were  compared  following  application  of  D1R  agonist  and/or  AMPA,

mimicking  the  effects  of  dopaminergic  and  glutamatergic  afferents.  We  found  specific  increased

activity  of  ERK-  and  cAMP/PKA-dependent  pathways  in  response  to  D1R  stimulation  without

modification  of  Ca2+ signaling  in  response  to  AMPA.  In  contrast,  in  iSPNs,  AMPA-induced  Ca2+

transients were increased in the DA-denervated striatum, while the cAMP-dependent pathways was not

significantly  affected.  Hence  our  results  indicate  that  DA and  glutamate-induced  responses  were

differentially disrupted in dSPNs and iSPNs. They also suggest that complications in the PD treatments

at  late  stages  may  be  linked  to  the  inability  to  appropriately  regularize  both  DA and  glutamate

responses in both populations.

2- Materials and Methods
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2.1 - Animals

C57BL/6JRj mice (Janvier Labs; Le Genest Saint Isle, France) were used for experiments in wild type

animals, aged P8-P20 for experiments in young animals and aged from 6 to 8 weeks for experiments in

adult males. Gnal+/- mice (Gnaltm1Rax, (Belluscio et al., 1998)) were mated with C57BL/6J mice (Charles

River  Lab France; L’Arbresle,  France) to  produce male and female  Gnal+/- and  Gnal+/+ littermates.

Adult  Drd1::Cre  [Tg(Drd1a-cre)EY262Gsat,  (Gong  et  al.,  2007)]  and  Adora2a::Cre  [Tg(Adora2a-

cre)2MDkde, (Durieux et al., 2009)] mice in which the Cre recombinase is targeted to specific neuronal

subtypes,  were backcrossed for at  least  10 generations on a C57Bl/6J background. The mice were

genotyped by PCR analysis of genomic DNA using standard PCR protocols. The mice were kept in

groups (maximum five per cage) on a 12 h light/dark cycle at a constant temperature of 22°C with

access to food and water  ad libitum. All experiments were in accordance with the guidelines of the

French Agriculture and Forestry Ministry for handling animals (decree 87-848).  The animal facility

was approved licensed by the  Sous-Direction de la Protection Sanitaire et de l’Environnement de la

Préfecture de Police (arrêté préfectoral DTPP 2018-20, D 75-05-22). The experimental protocols were

approved by the  Ministère de l’éducation nationale, de l’enseignement supérieur et de la recherche

(authorization # 02635.02). The principal investigators had a personal agreement (D.H., license C-75-

828; J.-A.G., license 75-877).

2.2 - 6-OHDA lesions, AAV injections and postoperative care

Mice were anesthetized with a mixture of xylazine (10 mg/kg) and ketamine (75 mg/kg) (Centravet)

and mounted in a digitalized stereotactic frame (Stoelting Europe) equipped with a mouse adaptor. 6-

OHDA-HCl (6.0 mg/ml, Sigma-Aldrich) was dissolved in a solution containing 0.2 g/L ascorbic acid in

saline. The AAV stock suspension was diluted 5 times in the 6-OHDA ascorbic acid solution. Mice

received a unilateral injection (1.25 µL) of a mix of 6-OHDA and AAV into the right striatum at the
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following coordinates according to a mouse brain atlas (Paxinos and Franklin; 2001): anteroposterior

(AP), +0.3 mm and lateral (L), +2.3 mm from bregma; dorsoventral (DV), -3.4 mm (from the skull

surface). Sham mice were injected with vehicle only (ascorbic acid in saline) in which the AAV virus

was also diluted 5 times. Before and after surgery, the mice received a subcutaneous injection of a non-

steroidal anti-inflammatory drug (flunixin meglumine, 4 mg/kg; Sigma-Aldrich) and were placed on a

warm plate during about ≈10 h after surgery to avoid hypothermia. Mice were allowed to recover for 3

weeks  before  sacrifice  and  brain  slicing.  Lesions  were  assessed  at  the  end  of  experiments  by

determining the striatal levels of tyrosine hydroxylase (TH) using immunoblotting (see below) on the

striata from the slice or its adjacent slice. Only animals with a TH level reduction by >70% in the

lesioned striatal area compared with the control side were included in the analyses.

2.3 - Biosensors and viral vectors

The GECI GCaMP6s (Chen et al 2013), FRET-based A-kinase activity reporter AKAR3 (Allen and

Zhang 2006) and ERK activity reporter EKAR-EV (Komatsu et al., 2011) were used in the present

study.  pAAV.Syn.GCaMP6s.WPRE.SV40  and  pAAV.Syn.Flex.GCaMP6s.WPRE.SV40  were  a  gift

from the  Genetically  Encoded  Neuronal  Indicator  and  Effector  Project  (GENIE)  & Douglas  Kim

(Addgene viral  prep # 100843-AAV9 and Addgene viral  prep # 100845-AAV1). Plasmid encoding

AKAR3  and  EKAR-EV  were  a  gift  from  Jin  Zhang  and  Michiyuki  Matsuda  respectively.

pAAV.hSyn.AKAR3.WPRE  was  constructed  by  Ted  Abel  and  pAAV.hSyn.EKAREV.WPRE  was

synthetized from GenScript HK USA and viral preparations were performed by Upenn Vector Core.

AAVs  were  injected  into  the  striatum as  described  in  the  corresponding  section  and  brains  were

typically sliced 2 to 5 weeks after surgery.

2.4 - Preparation of brain slices

Before  brain  removal,  the  animals  were  anesthetized  with  a  mixture  of  xylazine  (10  mg/kg)  and

ketamine  (75  mg/kg),  following the  guidelines  of  our  institution.  Then ice-cold  “cutting”  choline-
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artificial cerebrospinal fluid (choline-ACSF) solution, containing (mM) 110 choline Cl, 0.5 CaCl2, 7

MgCl2, 1.25 NaH2PO4, 25 NaHCO3, 2.5 KCl, 11.6 ascorbic acid, 3.1 sodium pyruvate and 25 glucose,

saturated with 5% CO2 and 95% O2, was perfused to the brain by intracardiac perfusion. Brains were

quickly isolated and placed in ice-cold “cutting” choline-ACSF solution. Sections (250 µm) were made

using a vibrating microtome (Thermo Scientific)  in  a parahorizontal  plane as described previously

(Kawaguchi et al.,  1989). After cutting, brain slices were transferred 15 min to recover in standard

ACSF solution at 35°C, containing (mM): 125 NaCl, 1 CaCl2, 1 MgCl2, 1.25 NaH2PO4, 26 NaHCO3,

2.5 KCl, and 25 glucose, saturated with 5% CO2 and 95% O2. Brain slices were then kept in a custom-

made interface chamber on an optic paper lying on a non-woven compress net, placed at the interface

between the ACSF solution gassed with 95% O2/5% CO2 and incubated for 1 h at room temperature in

a 95% O2/5% CO2 atmosphere, a time needed to recover a pH/metabolic equilibrium.

2.5 - Two-photon slice imaging

Experiments were performed at the Institut du Fer à Moulin Cell and Tissue Imaging Facility. On the

microscope stage,  a  nylon/platinum harp  stabilized  the  slice  while  suspended on a  nylon mesh to

facilitate continuous perfusion over the whole slice at  5 mL/min with ACSF at 32°C. Two-photon

imaging was performed using an upright Leica TCS MP5 microscope with resonant scanning (8 kHz),

a  Leica  25X/0.95  HCX  IRAPO  immersion  objective  and  a  tunable  Ti:sapphire  laser  (Coherent

Chameleon Vision II) with dispersion correction set to 860 nm for CFP excitation (FRET experiments)

and 920 nm for GCaMP6s excitation. The emission path consisted of an initial 700 nm low-pass filter

to  remove  excess  excitation  light  (E700  SP,  Chroma  Technologies),  505  nm  dichroic  mirror  for

orthogonal separation of emitted signal, 483/32 CFP emission filter, 535/30 YFP emission filter for

AKAR3 and EKAR-EV imaging, and a 560 nm dichroic mirror for orthogonal separation of emitted

signal, 525/50 GFP emission filter for GcAMP6s experiments, and a two-channel Leica HyD detector
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for  simultaneous acquisition.  Due to  the high quantum efficiency and low dark noise of the HyD

photodetectors,  detector  gain  was  typically  set  at  10–20%  with  laser  power  at  1–5%  (which

corresponds to a laser power under the objective of 3 - 5 mW). For AKAR3 and EKAR-EV image

acquisition, Z-stack images (12-bit; 512 x 512) were typically acquired every 15 s. The z-step size was

1–2 µm and total stack size was typically 40–60 sections depending on the slice (≈60–120 µm). For

GCaMP imaging, z-stack images (12 bits, 512 x 512) were typically acquired every 1s. The z-step size

was 5 µm and total stack size was typically 3 to 5 sections depending on the slice (≈ 10 to 20 µm). 

2.6 - Drug treatments

(RS)-AMPA  hydrobromide  (0.5  µM;  Tocris),  SKF81297  hydrobromide  (10  µM,  Tocris),  and

CGS21680  hydrochloride  (10  µM,  Biotechne)  were  freshly  prepared  in  ultrapure  Milli-Q  water.

Forskolin (10 µM; Sigma), U0126 (5 µM, Tocris), and IBMX (10-300 µM; 3,7-dihydro-1-methyl-3-(2-

methylpropyl)-1H-purine-2,6-dione;  Tocris)  were  prepared  in  100%  DMSO.  Concentrated  stock

solutions were diluted in standard ACSF saturated with 95% O2/5% CO2 and continuously bubbled

during  perfusion,  final  concentration  of  DMSO  0.1%  (vol/vol).  The  imaging  chamber  of  the

microscope was continuously perfused with the recording ACSF solution saturated with 95% O2/5%

CO2 at  a  rate  of  5 mL/min.  For  bath application,  smoothly switching between different  reservoirs

allowed  for  changing  the  bathing  solution  to  a  solution  containing  drugs,  without  mechanically

disturbing the preparation.  For precise time application of the drug, a 18G needle was linked to a

Valvebank®4  circuitry  (AutoMate  Scientific,  Inc.)  designed  for  solution-switching  use  with  valve

opening at the desired time of compound application with 10 ms accuracy. The pipette holder was

mounted onto a micromanipulator, like those used for patch-clamp experiment. The pipette was filled

with ACSF or the drug of interest at its final concentration and positioned using the micromanipulator

system, in close proximity to the slice.

2.7 - Immunoblotting
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At the end of the imaging experiments, striata from both sides were separately dissected from each

250-µm-thick corticostriatal slice and were immediately frozen at -80°C. Striata were sonicated in 10

g/L SDS, and placed at 100°C for 5 min. Aliquots (5 µL) of the homogenate were used for protein

determination using a bicinchoninic acid assay kit (Pierce Europe). Equal amounts of total protein (20

µg) were separated by SDS-PAGE on 4–15% precast gels (Bio-Rad) and transferred electrophoretically

to nitrocellulose membranes (GE Healthcare).  The membranes were then incubated in TH chicken

polyclonal antibodies (AVES, dilution 1:1000), GFP rabbit polyclonal antibodies (Invitrogen, A-6455)

and  actin  monoclonal  mouse  and  rabbit  antibodies  (Sigma-Aldrich,  dilution  1:5000).  Secondary

antibodies (1:5000) were IRDye 800CW-conjugated anti-chicken IgG; IRDye 800 CW-conjugated anti-

mouse IgG, IRDye 700 CW-conjugated anti-mouse IgG and IRDye 700 CW-conjugated anti-rabbit IgG

(Rockland  Immunochemical).  Bound  antibodies  were  visualized  using  an  Odyssey  infrared

fluorescence detection system (LI-COR), followed by quantification by Odyssey version 1.2 software.

Fluorescence intensity values were normalized to actin values for variations in loading and transfer.

2.8 - Image analysis and post-acquisition processing

Images were processed with ImageJ and Icy software by using maximum z projections (ICY-A9L7V2)

followed by translation and rotation registration correction to correct for x/y movements and temporal

drift (ICY-E4L7S9). Regions of interest (ROIs) were selected for measurement if they could only be

measured for the whole experimental time course for AKAR3 and EKAR-EV experiments. For GCaMP

experiments, ROI were selected if they appeared during the time course of the experiment, as GCaMP

basal fluorescence is usually low and only increases when a response is observed. ROIs were placed

around  the  periphery  of  the  soma.  After  ROI  placement,  raw  CFP and  YFP  or  GFP  intensity

measurements  for  the  entire  time  course  were  imported  into  Microsoft  Excel  (ICY-Y5X4A1).  A

fluorescence ratio was calculated for each time point in each ROI series and was normalized to the

average baseline ratio for each respective ROI (average of 20 to 30 frames during the period before
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first stimulus) as  ΔR [YFP/CFP]/R0 for AKAR3 or EKAR-EV experiments and  ΔF/F0 for GCaMP

experiments.  In all the FRET experiments, responsive cells are defined by two linked parameters: a

clear change in the slope of the FRET emission ratio and a change in the amplitude above the baseline

noise. In the GCaMP6s experiments, if the amplitude of the fluorescent signal (ΔF/F0) increased over

>3SD (i) during baseline, cell was considered as “spontaneously active” or (ii) after pharmacological

stimulation, cell was considered as “responsive to treatment” (see Fig. 5A). Statistical analysis was

performed in Matlab or GraphPad Prism. Categorical variables are expressed as the percent of the

number  of  responsive  cells  to  a  stimulus  over  the  total  number  of  cells  assessed;  and continuous

variables as mean ± SEM. Quantitative variables were compared using a one-way ANOVA followed by

Tukey’s multiple comparison test in case of Gaussian distribution or Kruskal-Wallis test followed by

Dunn’s multiple comparison test in case of non-Gaussian distribution when there were three or more

groups. Two-tailed, unpaired t-test was used to compare quantitative variables when two groups were

compared. Categorical variables were compared using the chi-square test or with Fisher exact test when

numbers were too small.

3 - Results 

3.1 - Imaging ERK activity dynamics in striatal neurons 

In order to monitor ERK activity in striatal neurons we first compared several FRET-based optical

biosensors  that  allow  quantitative  real-time  analysis  of  ERK  activity  dynamics  with  single  cell

resolution  in  tissue  to  determine  which  one  was  best  suited  for  our  study.  We  tested  EKARcyto,

EKAR2G1, and EKAR-EV (Fritz et al., 2013; Harvey et al., 2008; Komatsu et al., 2011). EKARcyto is

comprised of a fluorescent protein-based FRET pair (mCerulean-mVenus), a phosphorylation substrate

peptide containing ERK target sequence (PDVPRTPVGK) and docking site (FQFP), and the proline-

directed  WW  phospho-binding  domain  (Harvey  et  al.,  2008).  EKAR2G1  uses  the  backbone  of
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EKARcyto with a substitution of mCerulean at the N terminus and mVenus at the C terminus by variants

of mTFP1 (mTFP1/cp227) and Venus (Venus/cp173), respectively  (Fritz et al., 2013). EKAR-EV is

optimized with the YFP/CFP fluorescent protein variant pair (Ypet/ECFP) and a long, flexible linker

between the WW domain and the phosphorylation substrate sequence of EKARcyto, which was shown to

markedly increase the gain of FRET signals  (Komatsu et al., 2011). To compare their sensitivity, we

transfected striatal neurons in culture (DIV 7) with the three EKAR variants using lipofectamine 2000

and we applied on the neurons brain-derived neurotrophic factor (BDNF, 10 ng/mL, for 5 min), which

activates ERK signaling through BDNF receptors  (Fig.  1A).  EKAR-EV exhibited a larger  BDNF-

induced YFP/CFP emission ratio (FRET ratio) than EKARcyto and EKAR2G1 (Fig. 1A, middle panel).

To quantify FRET responses, we normalized the FRET ratio increases by their corresponding FRET

ratio baseline (i.e.,  ΔR/R0), as in previous studies  (Gervasi et al., 2007, 2010). EKAR-EV showed a

higher FRET increase (12.5 ± 1.6%, mean ± S.E.M) than EKARcyto (6.6 ± 0.9%) and EKAR2G1 (2.9 ±

0.3%) (Fig. 1A, right panel). Based on these results, we chose EKAR-EV to monitor ERK activity

dynamics in striatal brain slices.

Since Sindbis viruses were previously used to transduce biosensors to monitor other signaling

pathways in young brain slices (Castro et al., 2013; Gervasi et al., 2007; Luczak et al., 2017), we used

them to express EKAR-EV in striatal slice preparations from immature mice (P8-P12) and monitor

changes in ERK activity in real time by ratiometric two-photon microscopy. We first checked whether

EKAR-EV was able to report ERK activation in striatal neurons after a global depolarization induced

by KCl (25 mM) application for 1 min. This treatment produced, in about 90% of the EKAR-EV-

expressing neurons, an increase in the FRET ratio, which peaked around 6 min and then decreased

slowly (Fig. 1B middle panel). Application of AMPA (5 μM) for 30 s or KCl for 1 min yielded an
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increase in the FRET emission ratio of 4.7 ± 0.5% and 7.8 ± 0.6% respectively  (mean ± S.E.M., Fig.

1C).

To  study  ERK  activity  dynamics  in  6-OHDA-lesioned  mice,  we  needed  to  perform  ERK

imaging in mature striatal network (above 8-week old). Since Sindbis virus does not allow effective

neuronal infection in adult striatal slices, we produced a recombinant adeno-associated virus (AAV,

serotype 2/1) encoding EKAR-EV. The biosensor was expressed in the adult mouse striatum via AAV

injection  and was  subsequently  imaged  in  acute  brain  slices  (2–4 weeks  post  injection,  Fig.  1D).

Application of a D1 agonist (SKF81297 10  μM) for 30 s rapidly increased FRET emission ratio in

some of the neuronal somas indicating an increase in ERK activity (Fig. 1E). Subsequent addition of

KCl (25 mM) further increased FRET emission ratio (1.2 ± 0.2% for SKF81297 versus 3.4 ± 0.25% for

KCl,  Fig. 1F).  The response to KCl application was used as a positive control for cell  health and

responsiveness in all experiments. The SKF81297- and KCl-induced increases in FRET emission ratio

were dependent on the activity of mitogen-activated protein kinase/ERK kinases, MEK1/2, the kinases

activating ERK, since all the responses were abolished in the presence of U0126 (5 μM), a selective

inhibitor of MEK1/2 (Fig. 1D-F). We noticed that each local application, whatever the drug applied,

was followed by a transient decrease in the FRET emission ratio. This decrease also occurred after

local  application  of  ACSF  whereas  ACSF  did  not  produce  any  significant  increase  in  the  FRET

emission ratio (0.15 ± 0.09%). Similar decreases were also recorded in the presence of U0126 for all

the stimulations (Fig. 1E). We concluded that these transient decreases in FRET ratio were artefactual

and  since  they  were  short-lived,  they  did  not  preclude  measurement  of  ERK  activity  after  their

disappearance. In summary, we showed that EKAR-EV biosensor was appropriate to monitor ERK

activity in neurons in culture as well as in young and adult striatal slices.
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3.2 - Biosensor expression and dopamine depletion after 6-OHDA injection into the striatum of adult

mice

We co-injected 6-OHDA and AAV expressing biosensors into the dorsal striatum of 4-6-week old mice

that were allowed to recover for 4 weeks before acute brain slicing and two-photon imaging (Fig. 2A).

Striatal depletion of DA terminals following 6-OHDA microinjection was checked by the decrease of

tyrosine  hydroxylase  (TH)  immunoreactivity  only  in  the  6-OHDA-injected  side,  as  indicated  by

immunoblotting (Fig. 2B). Microinjection of 6-OHDA and DA denervation did not alter the expression

of AKAR3 biosensors (Fig.  2C).  Similar results were observed when we co-injected 6-OHDA and

AAVs expressing EKAR-EV or GCaMP6s biosensors (Fig 2 C).

3.3 - ERK responses are increased after dopamine depletion induced by 6-OHDA lesion

ERK signaling has been reported to be activated by combination of DA D1 and glutamate signals in

SPNs in response to drugs of abuse (see (Girault et al., 2007) for a review). Since the activation of ERK

is particularly intense after the first L-DOPA treatment in the DA-denervated striatum (Darmopil et al.,

2009;  Pavón et  al.,  2006; Santini  et  al.,  2007),  we sought  to  determine whether  responsiveness to

glutamate or DA or both was increased following the lesion. We compared ERK activity dynamics in

response to the application of a DA D1 agonist and/or AMPA stimulation for 30 s, in control and 6-

OHDA-lesioned striata. In 6-OHDA-lesioned striata, this maximal increase after D1R stimulation by

SKF81297 (10 µM) was significantly enhanced as compared to non-lesioned control animals (mean ±

SEM: non-lesioned, 0.9 ± 0.19%, lesioned, 2.4 ± 0.18%, p<0.0001, Fig. 3A and B). AMPA (0.5 µM)

application also produced a higher increase in FRET emission ratio in the 6-OHDA-lesioned striata

than in  the non-lesioned striata  (mean ± SEM: non-lesioned, 1.0 ± 0.17%, lesioned, 1.6 ± 0.17%,

p<0.05, Fig. 3A and B). The co-application of AMPA and SKF81297 increased the FRET emission

ratio more in 6-OHDA-lesioned striata than in control striata (non-lesioned, 1.0 ± 0.12%, lesioned, 1.8
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± 0.19%, p<0.05, Fig. 3A and B), although the amplitude of the effects was not increased as compared

to those of SKF or AMPA alone. In contrast, the 6-OHDA lesion did not modify the FRET emission

ratio of striatal neurons in response to ACSF or KCl (Fig. 3B). We also compared the percentage of

neurons responsive to these various stimuli among all the EKAR-EV-expressing neurons in the field of

view. In all the FRET experiments, responsive cells were defined by a clear change in the slope of the

FRET emission ratio and an increase in the amplitude above the baseline noise. In 6-OHDA-lesioned

slices, the percentage of responsive neurons was significantly increased as compared to non-lesioned

controls, only after AMPA and SKF81297 co-application (non-lesioned, 43 ± 3%, lesioned, 67 ± 4%,

p<0.05, Fig. 3C). The proportion of responsive cells after ACSF, SKF81297, AMPA or KCl application

was not modified by the lesion (Fig. 3C).

These results  showed upregulation of  ERK signaling in  response to  D1R agonist  and/or  to

AMPA after DA denervation by 6-OHDA. The upregulation of ERK resulted in an increased response

amplitude  but  did  not  lead  to  the  recruitment  of  additional  cells  following  stimulation  of  AMPA

receptor or D1R alone. The percentage of responsive neurons to the combined stimulation of D1R and

AMPA receptor was increased and reached about 70% of striatal neurons, indicating that ERK was

activated in these conditions in both populations of  SPNs. The effects of SKF81297 and AMPA on

ERK activation in different SPN populations could explain why the co-application of these drugs  had

no synergistic effect on the amplitude of ERK activation in SPNs. Howerer it appeared that the co-

application  of  SKF81297 and AMPA was  able  to  recruit  additional  cells.  To  address  the  possible

mechanisms of the effects of the DA lesion on ERK signaling, we further investigated, the dynamic

changes in two signaling pathways leading to ERK activation in SPN, namely the cAMP/PKA pathway,

which is activated after D1R stimulation, and the glutamate-induced Ca2+ increase.
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3.4 - PKA responses to D1R stimulation are increased in dSPN after 6-OHDA lesions

Since an increase in PKA signaling could explain the enhancement of ERK responsiveness to D1R

agonist, we investigated PKA responses in control and 6-OHDA-lesioned animals. We injected an AAV

vector encoding AKAR3, a biosensor for PKA activity  (Allen and Zhang, 2006), into the striatum of

adult mice and used corticostriatal slices 3-4 weeks later for real-time imaging of PKA activity (Fig. 4).

Since  previous  studies  from  other  laboratories  used  very  young  animals,  we  first  validated  our

approach in adult mice (8-10-week old). As in those previous studies, we stimulated the slices with

D1R and A2AR agonists to differentiate putative dSPNs and iSPNs, expected to respond to D1R and

A2AR agonists, respectively  (Castro et al., 2013; Polito et al., 2015; Yapo et al., 2017). In the dorsal

striatum, application of the A2AR agonist CGS21680 (10 µM) for 1 min yielded an increase in the

FRET emission ratio to 5.9 ± 0.2% (Fig. 4A-C) in less than half of the neurons present in the field of

view (40 ± 3%, Fig. 4D), revealing the A2AR-expressing neurons. After 10 min of CGS21680 washout,

application of the D1R agonist, SKF81297 (10 µM), for 1 min increased FRET emission ratio to 6.1 ±

0.3% in  about  the  other  half  of  the  neurons present  in  the  field  of  view (46 ± 4%) (Fig.  4A-D),

revealing the D1R-expressing SPN. This was consistent with studies showing that D1R and A2AR are

segregated in the two major subsets of SPNs present in equal proportions and globally corresponding to

the  direct  and  indirect  pathways,  respectively  (Bertran-Gonzalez  et  al.,  2008;  Schiffmann  and

Vanderhaeghen, 1993). These results were also in agreement with FRET biosensor studies performed in

striatal slices from immature mice (Polito et al., 2015; Yapo et al., 2017). We randomly alternated the

order  of  SKF81297 and  CGS21680  applications  with  no  effect  on  either  the  amplitude  of  FRET

emission ratio or the proportion of responsive SPNs. In all the experiments, a subsequent application of

forskolin (FSK, 10  μM) that directly activates AC, produced a maximal increase in FRET emission

ratio to 11.7± 0.3% (Fig. 4A-D), indicating the cell health and the correct AKAR3 responsiveness to
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AC activation in all experiments. We also measured the rise time of AKAR3 responses that was shorter

for FSK than for SKF81297 and longer for CGS21680 (Fig. 4E).

Since these experiments showed that our experimental approach reliably allowed studying PKA

responses in adult striatal slices, we then compared PKA activation in control and 6-OHDA-lesioned

striata. We co-injected 6-OHDA with an AAV expressing AKAR3 in the dorsal striatum of 4-6-week

old mice. In 6-OHDA-lesioned striata, the increase in FRET emission ratio after the application of

SKF81927 was significantly higher than in non-lesioned striata (non-lesioned, 4.4 ± 0.3 %, lesioned,

7.7 ± 0.3%, p<0.001, Fig. 4F). In contrast,  no significant change was detected after application of

CGS21680  (non-lesioned,  4.7  ±  0.2%,  lesioned,  4.9  ±  0.3%)  nor  after  application  of  FSK (non-

lesioned, 11 ± 0.5%, lesioned, 10.6 ± 0.4%, Fig. 4F). There was no significant change in the percentage

of cells responsive to the D1R agonist after 6-OHDA lesion (non-lesioned, 44 ± 5%, lesioned, 50 ± 5%,

Fig. 4G). The lesion did not alter either the percentage of cells responsive to the A2AR agonist (non-

lesioned, 52 ± 4%, lesioned, 54 ± 5%) or FSK (non-lesioned 94 ± 3%, lesioned, 98 ± 2%, Fig. 4G).

Together, these results show that PKA responses are specifically amplified in D1R-expressing SPNs

after DA denervation by 6-OHDA lesion, with no change in the number of responsive cells. We then

investigated the possible mechanism of this amplification.

3.5 - Gαolf protein contributes to cell type-specific 6OHDA-induced increase in PKA activation

In the dorsal striatum, D1R activates AC through its coupling to Gαolf (Corvol et al., 2001; Hervé et al.,

1993). Increase of Gαolf protein levels in the dorsal striatum has been reported after 6-OHDA-lesion

(Alcacer et al., 2012; Hervé et al., 1993; Ruiz-DeDiego et al., 2015) and in the putamen of PD patients

(Corvol et al., 2004). Therefore, we used Gαolf gene knockout mice to investigate the mechanism of

increased PKA activity after 6-OHDA lesion. Homozygous Gαolf gene knockout mice (Gnal-/-) have a
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severe phenotype combining olfactory and striatal deficits (Belluscio et al., 1998; Corvol et al., 2001;

Zhuang et al., 2000). These mice usually die in the early postnatal period and could not be used in our

study.  In  contrast,  Gnal+/- mice,  which  develop  and  breed  normally,  provide  an  interesting  model

because they display a decrease of about 50% in Gαolf protein levels (Alcacer et al., 2012; Corvol et al.,

2007).

We co-injected saline or 6-OHDA with AAV expressing AKAR3 into the striatum of 4-6 week-

old  Gnal+/- and  Gnal+/+ littermates.  When  DA innervation  was  intact,  the  FRET emission  ratio  in

response to CGS21680 (Gnal+/+, 5.2 ± 0.2%,  Gnal+/-, 3.6 ± 0.2%, p<0.001, Fig. 5A) and SKF81297

application (Gnal+/+, 5.9 ± 0.2%, Gnal+/-, 3.6 ± 0.3%, p<0.001, Fig. 5B) was lower in Gnal+/- mice than

in wild type littermates. No change was detected after application of FSK (Gnal+/+, 11.4 ± 0.3%, Gnal+/-,

11.5 ± 0.2%) meaning that AC was not altered and could still be directly activated by FSK in the Gnal+/-

mice (Fig. 5C). No significant change was observed in the percentage of responsive cells in  Gnal+/-

mice after CGS21680 (Gnal+/+, 36 ± 3%, Gnal+/-, 39 ± 2%), SKF81297 (Gnal+/+, 50 ± 3%, Gnal+/-, 48 ±

2%), or FSK (Gnal+/+, 91 ± 1%, Gnal+/-, 92 ± 2%). Our results show that the activation of AC by D1R

or A2AR is markedly impaired when Gαolf protein is reduced, leading to a decreased PKA activation in

both populations of SPNs. Our results are in contrast to a study in young mice (P8-12) that do not show

any change in PKA responses in Gnal+/- mice (Castro et al., 2013). This is likely due to the fact that the

Gαs/Gαolf switch has not yet fully taken place at P8-12 (Iwamoto et al., 2004) and that AC responses to

D1R or A2AR agonists in young mice are less dependent on Gαolf levels.

In 6-OHDA-lesioned  Gnal+/- mice no modification of the FRET emission ratio was observed

when CGS21680 was applied when compared to non-lesioned Gnal+/- mice (non-lesioned, 3.7 ± 0.2%,

lesioned, 3.6 ± 0.3%, Fig. 5A). In contrast, SKF81297 increased the FRET emission ratio to a higher

level in 6-OHDA-lesioned Gnal+/- mice than in non-lesioned mutant mice (non-lesioned, 3.6 ± 0.2%,
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lesioned, 6.1 ± 0.5%, p<0.001, Fig. 5B). However, this increase in FRET response did not reach the

level attained in 6-OHDA-lesioned striata from wild type mice (7.8 ± 0.3% in 6-OHDA-lesioned wild

type striata, indicated by a green dashed line in Fig. 5B). No significant change was observed in the

FRET emission ratio after FSK application (non-lesioned, 11.1 ± 0.3%, lesioned, 11.9 ± 0.5%, Fig. 5C).

In  addition,  the  percentage  of  responsive  cells  was  unaffected  by  the  lesion  in  Gnal+/- mice  after

CGS21680 (non-lesioned, 39 ± 2%, lesioned, 42 ± 2%), SKF81297 (non-lesioned, 48 ± 2%, lesioned,

45 ± 2%), or FSK (non-lesioned, 92 ± 1%, lesioned, 89 ± 2%).

These  results  suggest  that  in  6-OHDA-lesioned animals,  increased  PKA activity  after  D1R

stimulation is compatible with an increase in Gαolf levels in D1R-expressing SPNs. This increase is cell

type-specific because no modification was observed in A2AR-expressing SPNs.

3.6 - Cell type-specific decrease in PDE activity contributes to DA lesion-induced increase in PKA

PDEs are important negative regulators of PKA activity. Regulation of the striatal expression of PDEs

has been reported in PD patients and animal models of PD, particularly a down-regulation of PDE4 and

PDE10 (Heckman et al., 2018; Niccolini et al., 2015, 2017). Hence, we tested if PDE activity could be

implicated in the cell type-specific upregulation of PKA activity observed after DA denervation. We

examined the effects of application of a broad-spectrum PDE inhibitor, 3-isobutyl-1-methylxanthine

(IBMX). We first observed that, as expected, AKAR3 was activated by IBMX in SPNs of adult non-

lesioned mice in a dose dependent-manner (Fig. 5D). These results were similar to those previously

reported  in  immature  mice  (Polito  et  al.,  2015).  They  showed  that  in  our  conditions,  cAMP was

tonically produced in striatal slices and that PDEs constantly degraded it.

We  then  investigated  PKA  responses  in  adult  striatal  slices  in  the  presence  of  a  low

concentration of IBMX (30 μM for 10 min), which had no effects on basal FRET emission ratio (Fig.
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5D). At this concentration, IBMX enhanced the PKA responses to CGS21680 (no IBMX, 5.4 ± 0.3%,

IBMX 9.3 ± 0.5%, p<0.001, Fig. 5E), SKF81297 (no IBMX, 5.0 ± 0.3%, IBMX 9.0 ± 0.3%, p<0.001,

Fig. 5F) and FSK (Fig. 5G and H). This confirmed that PDE activity exerted a strong negative tuning

on PKA responses in adult SPNs. In 6-OHDA-lesioned animals, IBMX (30  μM) also increased the

amplitude of FRET emission ratio in response to CGS21680 (no IBMX, 4.1 ± 0.3%, IBMX, 8.2 ±

0.3%, p<0.001, Fig. 5E). In contrast, it did not further increase the response to SKF81297 (no IBMX,

7.5 ± 0.3%, IBMX 8.2 ± 0.5%, Fig. 5F).  Pretreatment with IBMX did not alter  the proportion of

responsive cells to the D1R agonist in the 6-OHDA-lesioned striata as compared to non-lesioned ones

(non-lesioned, no IBMX, 39 ± 7%, IBMX, 53 ± 4%; lesioned, no IBMX, 48 ± 6%, IBMX, 54 ± 5%) or

A2AR agonist-responsive  SPNs  (non-lesioned,  no  IBMX, 44 ±  7%,  IBMX, 49± 9%,  lesioned,  no

IBMX, 49 ± 3%, IBMX, 48 ± 4%). Our data show a loss of responsiveness of PKA activity to a PDE

inhibitor  in D1R agonist-responsive SPNs after  6-OHDA lesion,  but not  in  A2AR-responsive SPN.

Even if the global response to FSK was apparently not changed in lesioned SPNs (see Fig. 4F), we

analyzed separately FSK-induced PKA activity in the two types of SPNs to test whether the loss of

responsiveness  to  IBMX  was  restricted  to  the  D1R  pathway  or  was  more  generalized  in  D1R-

expressing-  SPNs.  Pretreatment  with IBMX, increased the responses  to  FSK in the A2AR agonist-

responsive SPNs in non-lesioned (no IBMX, 8.9 ± 0.4%, IBMX, 12.4 ± 0.8%, p<0.001) and 6-OHDA-

lesioned slices (no IBMX, 8.2 ± 0.4%, IBMX, 13.7 ± 0.5%, p<0.001, Fig. 5G). The pretreatment with

IBMX also increased the responses to FSK in the D1R-expressing SPNs of non-lesioned slices (no

IBMX, 9.6 ± 0.5%, IBMX, 11.3 ± 0.4%, p<0.05, Fig. 5H).  However, the effect of IBMX was not

observed in the 6-OHDA-lesioned slices (no IBMX, 11.3 ± 0.5%, IBMX, 10.7 ± 0.4%, Fig. 5H and

Table S1). This suggested an occlusion of the effect of IBMX by the lesion of DA neurons. The lack of

effect of the PDE inhibitor specifically in D1R-responsive neurons, following 6-OHDA lesion can be
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explained by a decrease in PDE activity specifically in these neurons. This change in PDE activity is

likely to contribute to the enhanced PKA activation in response to D1R or AC stimulation.

3.7 - Spontaneous Ca2+ transient activity is increased in 6-OHDA-lesioned D1R-expressing striatal

neurons

Intracellular Ca2+ increase has been implicated in ERK activation in many models ranging from  C.

elegans (Tomida et  al.,  2012) to CA1 pyramidal  neurons  in  rodents  (Zhai  et  al.,  2013) and  DA-

denervated SPNs  (Fieblinger et al., 2014a). Hence, we investigated intracellular free Ca2+ in striatal

neurons of non-lesioned and 6-OHDA-lesioned mice using the biosensor GCaMP6s. We co-injected 6-

OHDA or vehicle with an AAV expressing GCaMP6s (Chen et al., 2013) in the dorsal striatum of 4-6-

week old mice, and 3-4 weeks later, acute striatal slices were imaged under a 2-photon microscope. In

our experimental conditions, some SPNs were spontaneously active and showed transient increases in

intracellular Ca2+ detected by the normalized fluorescence ratio (ΔF/F0). We therefore sorted the striatal

neurons  on  the  basis  of  their  spontaneous  activity  during  the  baseline  recording  period  into  two

categories, as described in the Methods section, spontaneously active and non-spontaneously active

SPNs (Fig. 6A). The number of spontaneously active SPNs was higher in 6-OHDA-lesioned than in

non-lesioned striata (non-lesioned, 13.1%, n= 274/2085, lesioned, 18.2%, n= 319/1748, p<0.001, Fig.

6B).  To  determine  whether  this  higher  spontaneous  activity  affected  dSPNs  and/or  iSPNs,  we

microinjected an AAV Cre-dependently expressing GCaMP6s (AAV-flex-GCaMP6s), into the striatum

of  Drd1::Cre (D1Cre) and  Adora2A::Cre (A2ACre) mice. In the 6-OHDA-lesioned  D1Cre mice, cells

expressing GCaMP6s were spontaneously more active than in the non-lesioned animals (non-lesioned,

11.3%, n= 58/512, lesioned, 19.7%, n= 179/910, p<0.001, Fig. 6B). In contrast, in the A2ACre mice, no

significant difference was observed between lesioned and non-lesioned striata (non-lesioned 15.4%, n=
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80/518,  lesioned,  18.2%, n= 69/379,  Fig.  6B).  These results  suggested that  a  higher  proportion of

dSPNs had spontaneous Ca2+ activity in DA-depleted striatum.

3.8 - Specific enhancement of AMPA-induced intracellular Ca2+ dynamics in A2AR-expressing striatal

neurons after 6-OHDA lesion

As mentioned above, co-application of AMPA and SKF81297 activated ERK in a larger number of

neurons in the 6-OHDA-lesioned striatum than in the intact striatum (see Fig. 3B). These effects could

be indicative of alterations in Ca2+ responses to AMPAR stimulation in the DA-denervated striatum. To

address this question,  we monitored intracellular Ca2+ dynamics following a 30 s AMPA (0.5 µM)

application in 6-OHDA-lesioned and control mice. We focused our analysis on the non-spontaneously

active  SPNs  because  spontaneous  activity  rendered  the  drug-induced  Ca2+  responses  difficult  to

evaluate.  In the non-lesioned animals,  AMPA-induced Ca2+ responses, evaluated by the normalized

fluorescence ratio, were very variable from one neuron to another, but the average response was small

(Fig.  7A middle  panel).  In  contrast,  in  the  6-OHDA-lesioned  animals,  we  observed  a  prolonged

increase of the fluorescence ratio in response to AMPA application, showing an overall increase in Ca2+

responses (area under the curve [AUC]: non-lesioned 1.97 ± 0.26 x103 %.s, lesioned, 12.55 ± 0.63 x103

%.s, Fig. 7A right lower panel). When KCl (25 mM, 30 s) was applied at the end of all experiments, it

produced a general and transient activation of virtually all neurons expressing GCaMP6s in the slices

(Fig. 7A-C left panels). This stimulation allowed us to test the viability of striatal neurons in brain

slices and also to determine the total number of responsive cells and, thus, the percentage of cells

responsive  to  the  application  of  AMPA.  This  calculation  revealed  a  significant  increase  in  the

percentage of responsive cells following 6-OHDA lesion (non-lesioned 44.2%, n=206/466, lesioned,

and 61.2%, n= 120/196, Fig. 7A right upper panel). 
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To  determine  in  which  SPN  population(s)  the  increase  in  AMPA-induced  Ca2+ transients

occurred in the DA-denervated striatum, we first microinjected AAV-flex-GCaMP6s into the striatum

of  D1Cre mice. In these mice the lesion did not modify the AMPA-induced increase in normalized

fluorescence ratio (AUC: non-lesioned, 5.06 ± 0.93 x103  %.s, lesioned, 3.50 ± 0.52 x103  %.s, Fig. 7B

right  lower panel).  In  addition,  the  percentage of  responsive  cells  was not  changed (non-lesioned,

23.8%, n=62/261, lesioned, 25.6%, n= 103/403, Fig. 7B right upper panel).

We then microinjected AAV-flex-GCaMP6s into the  striatum of  A2ACre mice  to  selectively

study the iSPNs. In these mice,  AMPA markedly increased the normalized fluorescence ratio in 6-

OHDA-lesioned compared to non-lesioned mice (AUC: non-lesioned, 7.62 ± 1.04 x103  %.s, lesioned,

18.38 ± 3.14 x103  %.s, Fig. 7C right lower panel). In addition, the percentage of AMPA-responsive

iSPNs was strongly enhanced (non-lesioned, 57.8%, n=52/90, lesioned, and 83.9%, n= 47/56, Fig. 7C

right  upper  panel).  These results  indicated a  pronounced iSPN-specific  increase  in  AMPA-induced

intracellular Ca2+ transients after 6-OHDA lesion.

In conclusion, this series of experiments shows that 6-OHDA lesion increases the amplitude of

AMPA-induced  Ca2+ responses  and  the  number  of  AMPA-responsive  cells,  and  that  this  effect  is

selectively taking place in A2AR-expressing cells, presumably iSPNs.

4 - Discussion 

Our work reveals the spatiotemporal dynamics of Ca2+, PKA and ERK signaling using multiphoton

biosensor imaging in the DA-denervated striatum of adult mice. Our results show that 6-OHDA lesion

increases ERK and PKA activation in response to D1R stimulation. The increased activation of PKA

results at least in part from an increase in Gαolf combined with a deficit in phosphodiesterase activity

selectively  in  dSPNs.  Monitoring  Ca2+ signals  revealed  that  the  spontaneous  Ca2+ transients  are

increased  in  D1R-expressing  dSPNs  of  the  DA-denervated  striatum.  In  contrast,  although  their
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spontaneous activity  is  unchanged,  the  Ca2+ transients  induced by stimulation  of  AMPA glutamate

receptors in iSPNs is highly increased. Our work reveals distinct cell type-specific signaling alterations

in the two populations of SPNs and suggests possible mechanisms for these alterations.

4.1 - The activity of D1R-Gαolf-PKA pathway is increased in dSPNs after 6-OHDA lesion

D1R signal transduction in SPNs is mediated by Gαolf, the G protein that activates AC in these neurons

(Corvol et al., 2001; Hervé et al., 1993; Zhuang et al., 2000). We found that after DA denervation the

PKA response was specifically amplified in SPNs responsive to a D1R agonist, presumably dSPNs.

Studies in transgenic mice expressing GFP under the control of the D1R gene promoter have shown

that  the D1-SPNs project  to  the  substantia nigra pars  reticulata  and globus pallidus  pars  interna

(reviews in Gerfen and Surmeier, 2011; Valjent et al., 2009). In contrast less than 1% of striatonigral

neurons express D2R (Matamales et al., 2009). However, in mice expressing GFP under the control of

D1R promoter, a low GFP-positive innervation was also observed in the globus pallidus pars externa

(Cazorla et al., 2014; Matamales et al., 2009) corresponding to axon collaterals of dSPNs (Cazorla et

al., 2015; Parent et al., 2000). Finally, in the dorsal striatum the of SPNs expressing both D1Rs and

D2Rs, is very low, less than 2% (Gagnon et al., 2017). Therefore it is possible to conclude that, in the

mouse dorsal striatum, D2-SPN are virtually exclusively iSPN while D1-SPNs are dSPNs but they can

contribute a minor component of the indirect pathway, mostly as collateral projection.

The PKA pathway upregulation did  not  occur  in  the iSPNs since no modification of  PKA

signaling was observed after A2AR stimulation. This can account for the previously reported enhanced

phosphorylation of PKA substrates, DARPP-32 Thr-34 and GluA1 Ser-845, after acute administration

of L-DOPA (Santini et al., 2007). Striatal levels of D1R (Hurley et al., 2001) and other mediators of

D1R signaling (Girault et al., 1989) show no major modifications after DA denervation. In contrast, the
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levels of Gαolf are increased in the striatum of DA-denervated rodents and in postmortem samples from

PD patients (Alcacer et al., 2012; Corvol et al., 2004; Ruiz-DeDiego et al., 2015). DA lesion selectively

increases  Gαolf amounts  associated  with  D1Rs,  leaving  unaffected  those  associated  with  A2ARs

(Morigaki  et  al.,  2017).  Striatal  Gαolf levels  are  regulated by DA and D1R utilization,  presumably

through post-translational mechanisms (Hervé et al., 2001; Ruiz-DeDiego et al., 2015). In Gnal+/- mice,

which display a decrease of ≈50% in Gαolf protein levels (Alcacer et al., 2012; Corvol et al., 2007), we

found a decrease in PKA activation in response to D1R agonist confirming that Gαolf is a rate-limiting

factor for the D1R-dependent cAMP/PKA pathway activation (Corvol et al., 2007). The PKA response

to  the  D1R agonist  was increased  in  6-OHDA-lesioned  Gnal+/- mice as  compared to  non-lesioned

mutant mice, but remained lower than in 6-OHDA-lesioned wild type mice, in agreement with previous

biochemical results  (Alcacer et al.,  2012). Our present observations combined with previous results

show that increased striatal Gαolf levels are an important factor leading to sensitized PKA responses to

D1R stimulation in the DA-denervated striatum. Importantly, such Gαolf upregulation was detected in

the putamen of PD patients (Corvol et al., 2004) showing that similar pathological processes occur in

human.  Our  study  identifies  another  factor  contributing  to  enhanced  cAMP signaling  in  dSPNs

following DA lesion, namely a selective decrease in PDE activity. PDEs are a family of enzymes that

degrade cAMP and/or cGMP, participate  in the regulation of their  intracellular  levels,  and directly

contribute to the spatial and temporal dynamics of cAMP/PKA pathway in neurons (Castro et al., 2010;

Gervasi  et  al.,  2007,  2010).  In  adult  striatal  neurons,  cAMP is  constantly  produced  by  ACs  and

degraded by PDEs since phosphodiesterase inhibition with IBMX enhances cAMP levels and activates

PKA in both dSPNs and iSPNs, as revealed by an increase of AKAR3 FRET fluorescence in our study.

In non-lesioned striatum a low concentration of IBMX (30 µM), devoid of effect by itself, enhanced

AKAR3 signal in response to stimulation of D1R, A2AR or AC. However, this effect was specifically
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lost in D1R-responsive neurons after DA denervation. A possible explanation of this loss is that the

effects of 30 µM IBMX were occluded by a preexisting decrease in endogenous PDE activity. This

putative decrease in PDE activity only occurred in D1R-expressing SPNs since the low concentration

of PDE inhibitor remained effective in the A2AR-expressing neurons of 6-OHDA-lesioned striatum,

increasing the PKA responses to A2AR agonist or forskolin. Several PDE families are expressed in the

striatum, including PDE1, PDE4, and PDE10, and play a critical role in modulating cAMP-mediated

DA signaling. Knockout of PDE1B in mice increases locomotor activity and responses to DA agonists

(Ehrman  et  al.,  2006),  but  in  6-OHDA-lesioned  mice  an  upregulation  of  PDE1B  was  reported

(Sancesario et al., 2004). In contrast, studies in PD patients point to a reduced expression of PDE10A

which correlates with PD duration and severity  of motor  symptoms  (Niccolini  et  al.,  2015) and a

decrease in PDE4 (Niccolini et al., 2017). However, in the striatum, PDE4 is predominantly active in

DA terminals, regulating TH phosphorylation  (Nishi et al., 2008). The improvement observed in PD

following treatment with a  PDE4 inhibitor  (Rolipram) was attributed to  a protective effect  on DA

neuron degeneration (Yang et al., 2008). In rodents, PDE10A mRNA and protein levels are decreased

in 6-OHDA-lesioned striatum (Giorgi et al., 2008). This reduction in PDE10A levels is associated with

higher cAMP-dependent phosphorylation in response to D1R stimulation (Mango et al., 2014). Thus,

decreased PDE10A activity is a strong candidate to explain our observations and further work is needed

to test this hypothesis.

Although not  investigated  in  the  present  study,  changes  in  ACs may also  contribute to  the

increased cAMP responses  in  DA-lesioned mice.  Among the ten   different  ACs,  AC5 is  the  most

abundant subtype in the striatum  (Iwamoto et  al.,  2004).  Work in rat  showed that DA denervation

increases activity and expression of AC5 in the striatum (Rangel-Barajas et al., 2011). In conclusion,

the  combination  of  several  alterations,  including increases  in  Gαolf and  AC5 and decrease  in  PDE
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activity may account for the increased responsiveness of the PKA pathway in D1R-expressing SPNs

following dopaminergic lesion. 

4.2 - Differential changes in intracellular Ca2+ transients in SPNs after 6-OHDA lesion 

In this  study, we observed that in DA-denervated striatal  slices SPNs displayed more spontaneous

intracellular Ca2+ transients than in non-lesioned slices, a modification that occurred predominantly in

dSPNs. It has been previously shown that spontaneous Ca2+ transients and firing rate of SPNs are

enhanced after DA denervation (Jáidar et al., 2010), without identification of the SPN population. This

increased activity could be linked to the elevated intrinsic excitability of dSPN after 6-OHDA lesion,

attributed to a possible homeostatic response to the loss of excitatory D1R signaling (Fieblinger et al.,

2014b; Suárez et al., 2014; Suarez et al., 2016, 2018). It is noteworthy that the intrinsic excitability is

higher in iSPNs than in dSPNs in basal conditions, which correlates with a more frequent occurrence of

Ca2+ transients in iSPNs than in dSPNs observed in the non-lesioned striata (Gertler et al., 2008). It was

proposed that DA denervation reduces this difference between excitability of dSPNs and iSPNs, mostly

by increasing dSPN excitability (Maurice et al., 2015). Accordingly, in our experiments the proportions

of spontaneously active neurons in the dSPN and iSPN populations appeared to equalize following DA

denervation.  

The increased spontaneous activity of dSPNs in ex vivo corticostriatal slices contrasts with in

vivo observations. A recent study reported that following 6-OHDA lesion, dSPN activity in awake mice

was decreased while iSPN activity was increased when animals were immobile  (Ryan et al., 2018).

These observations confirmed and expanded previous reports in anaesthetized rodents  (Mallet et al.,

2006). The increased basal activity of iSPNs in vivo is attributed to their enhanced sensitivity to cortical

inputs (Escande et al., 2016; Mallet et al., 2006; Ryan et al., 2018). In our slice study we observed an

increase in AMPA-induced intracellular Ca2+responses specifically in iSPNs of lesioned mice, without
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change in dSPN. These findings are  in agreement  with several  works that  identified corticostriatal

synaptic reorganization following lesion of DA neurons. Indeed, DA denervation induces a pruning of

cortical synapses associated with an increase of dendritic excitability specifically in iSPN, resulting in

an  enhancement  of  the  average  amplitude  of  corticostriatal  synaptic  responses  (Fieblinger  et  al.,

2014b).  iSPNs  express  functional  Ca2+-permeable  AMPA receptors  at  corticostriatal  synapses  and

AMPA receptor subunit phosphorylation, trafficking, and alternative splicing are enhanced in animal

models of PD, possibly contributing to an enhanced function of AMPA receptors  (Ba et  al.,  2011;

Kobylecki  et  al.,  2013).  These  various  modifications  could  provide  potential  mechanisms  for  the

enhancement  of  AMPA-induced intracellular  Ca2+ transients  we observed in  iSPNs.  Increased  Ca2+

transients can have numerous impacts on neuronal function including regulation of synaptic strength,

cellular  excitability,  and  gene  expression,  as  well  as  modulation  of  calcium-activated  potassium

channels  that  control  the duration and intervals of  action potentials  (Trusel  et  al.,  2015).  Synaptic

plasticity  in  iSPN  has  been  shown  to  be  calcium-dependent  (Trusel  et  al.,  2015).  Inflammation

increases  AMPA  responses  through  Ca2+-permeable  AMPA  receptors  and  voltage-gated  calcium

channels specifically in iSPNs of the dorsal striatum (Winland et al., 2017). Since DA lesion triggers an

inflammatory response (Cicchetti et al., 2002), it will be important to examine its contribution to the

altered responsiveness of iSPNs. 

It  is remarkable that although our understanding of the basal ganglia circuits is much more

complete and complex than it was 30 years ago, the in vivo results in 6-OHDA-lesioned mice as well

as our observations in slices are consistent with the model proposed for primates by DeLong in which

the loss of striatal DA resulted in an increase in transmission through the indirect pathway (DeLong,

1990).

4.3 - ERK activity is increased after 6-OHDA lesion
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Phosphorylation  of  ERK  is  triggered  in  neurons  by  various  external  stimuli,  including

neurotransmitters and growth factors, leading to a wide range of plastic responses through activation of

cytosolic and nuclear targets [reviews in (Girault, 2012)]. In the striatum ERK activation is essential for

instrumental learning (Shiflett et al., 2010) and long-lasting effects of addictive drugs  (Valjent et al.,

2000).  Conditional deletion of ERK1/2 in  dSPNs or iSPNs induces pathway-specific alterations in

motor function, synaptic properties, and plasticity-related gene expression, emphasizing the importance

of ERK for SPNs function  (Hutton et al., 2017). In non-lesioned animals D1R activation leads to a

modest activation of ERK in SPNs (Fieblinger et al., 2014a; Gerfen et al., 2002). In contrast, in DA-

lesioned mice, treatment with D1R agonists or L-DOPA results in pronounced and sustained activation

of ERK that depends on the canonical  PKA signaling pathway and MEK1/2  (Gerfen et  al.,  2002)

(Darmopil et al., 2009; Fieblinger et al., 2014a; Pavón et al., 2006; Santini et al., 2007). Our imaging

experiments with ERK biosensor confirm the limited responses to D1R agonist in non-lesioned striata

and the upregulation of ERK responses after 6-OHDA lesion. ERK activation was detected in close to

half of the cells in both conditions indicating that in the DA-denervated striatum, the increase in D1R-

induced ERK responses is mostly attributable to an increased response in a specific set of SPNs, and

not  to  the  recruitment  of  additional  SPNs.  In  hippocampal  neurons,  ERK  can  be  activated  after

glutamate receptor stimulation through increases in intracellular calcium  (Zhai et  al.,  2013).  In the

striatum, we showed that pharmacological AMPA receptor stimulation, mimicking cortical or thalamic

glutamatergic inputs, can also activate ERK in a small population of SPNs. This is in agreement with

previous  reports  showing  that  excitatory  glutamatergic  synaptic  transmission  and  corticostriatal

stimulation activate ERK in the striatum, mainly in iSPNs (Gerfen et al., 2002; Sgambato et al., 1998).

AMPA-induced  ERK  activation  was  increased  after  DA-denervation.  Since  our  imaging  study

indicated that AMPA-induced intracellular Ca2+ increase was limited to iSPN after 6-OHDA lesion, we

can hypothesize that ERK activation by AMPA is due to Ca2+ increase in these neurons. This hypothesis

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

29



is  in  line  with  previous  findings  by  Gerfen  and colleagues  who found that  after  DA-denervation,

corticostriatal stimulation elicited ERK activation in iSPN, identified by histochemical localization of

enkephalin  mRNA  (Gerfen  et  al.,  2002).  In  D1R-expressing  dSPNs,  Ca2+ and  cAMP signaling

pathways synergize to  activate  ERK in response to  addictive  drugs  and,  possibly  in  physiological

circumstances, leading to long-term changes (Girault et al., 2007), including modification of neuronal

excitability,  changes in activity-induced gene expression and modulation of dendritic spine density

(Cerovic et  al.,  2013).  In  our  experiments,  the combination of  D1R and AMPA receptor  agonists,

produced an ERK activation of comparable amplitude as the D1R agonist alone, in non-lesioned or

DA-denervated mice. This is in agreement with data indicating that D1R agonist-induced activation of

ERK  signaling  in  DA-denervated  striatum  is  not  completely  depending  on  ionotropic  glutamate

receptors (Fieblinger et al., 2014a; Gerfen et al., 2002). However, the use of ERK imaging at the single

cell level allowed us to detect an increase in the number of responsive cells. When AMPA and D1R

agonist were co-applied, ERK was activated in 43% of the SPNs in the non-lesioned striatum and 67%

after 6-OHDA lesion. This result implies that ERK activation took place in the two SPN populations

after 6-OHDA lesion. 

4.4 - Conclusions

Our work using 2-photon biosensor imaging in the DA-denervated striatum of adult mice underlines

the complex signaling dysregulations in SPNs in the absence of DA inputs. It reveals distinct cell type-

specific alterations of cAMP, Ca2+ and ERK responses in the two populations of SPNs. These results

emphasize the need to take into consideration these differences for the development of treatments in PD

and  the  importance  of  acting  both  dSPNs  and  iSPNs  for  the  normalization  of  signaling  pathway

dynamics after DA denervation.

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

30



Acknowledgments: We thank Pierre Vincent, Regine Hepp, Karel Svoboda, Olivier Pertz, Jun-ichi

Miyazaki, Michiyuki Matsuda, Jin Zhang and Ted Abel for providing viruses and plasmids, Alban de

Kerchove d'Exaerde for providing Adora2A::Cre mice. We thank the cell and tissue imaging facility of

the Institut du Fer à Moulin, where all image acquisition and analysis have been performed. 

Funding: The present work was supported in part by Inserm and Sorbonne University, by ERC-2009-

AdG_20090506, FRM  DEQ20081213971, and  CRCNS/ANR 1515686 to JAG and ANR09-MNPS-

014,  ANR-16-CE37-0003-01  AMEDYST and  France  Parkinson  to  DH.  LLM  was  supported  by

L’Oréal-UNESCO -  Bourse  française  Pour  les  Femmes  et  la  Science,  Journées  de  Neurologie  de

Langue Française and French Society of Neurology, and a poste d’accueil INSERM). 

Author contributions: L.L.M, J.A.G., D.H, and N.G. designed the experiments. L.L.M conducted the

toxin and AAV injection. L.L.M., N.G., conducted the two-photon experiments and the analysis; and

L.L.M and S.L. conducted the immunoblot experiment. L.L.M, J.A.G., D.H., and N.G. wrote the paper.

  

References

Albin, R.L., Young, A.B., and Penney, J.B. (1989). The functional anatomy of basal ganglia disorders. 
Trends Neurosci. 12, 366–375.

Alcacer, C., Santini, E., Valjent, E., Gaven, F., Girault, J.-A., and Hervé, D. (2012). Gα(olf) mutation 
allows parsing the role of cAMP-dependent and extracellular signal-regulated kinase-dependent 
signaling in L-3,4-dihydroxyphenylalanine-induced dyskinesia. J. Neurosci. 32, 5900–5910.

Alcacer, C., Andreoli, L., Sebastianutto, I., Jakobsson, J., Fieblinger, T., and Cenci, M.A. (2017). 
Chemogenetic stimulation of striatal projection neurons modulates responses to Parkinson’s disease 
therapy. J. Clin. Invest. 127, 720–734.

Allen, M.D., and Zhang, J. (2006). Subcellular dynamics of protein kinase A activity visualized by 
FRET-based reporters. Biochem. Biophys. Res. Commun. 348, 716–721.

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

31

https://www.ncbi.nlm.nih.gov/pubmed/?term=Matsuda%20M%5BAuthor%5D&cauthor=true&cauthor_uid=21976697


Ba, M., Kong, M., Yu, G., Sun, X., Liu, Z., and Wang, X. (2011). GluR1 phosphorylation and persistent
expression of levodopa-induced motor response alterations in the Hemi-Parkinsonian rat. Neurochem. 
Res. 36, 1135–1144.

Belluscio, L., Gold, G.H., Nemes, A., and Axel, R. (1998). Mice deficient in G(olf) are anosmic. 
Neuron 20, 69–81.

Bertran-Gonzalez, J., Bosch, C., Maroteaux, M., Matamales, M., Hervé, D., Valjent, E., and Girault, J.-
A. (2008). Opposing patterns of signaling activation in dopamine D1 and D2 receptor-expressing 
striatal neurons in response to cocaine and haloperidol. J. Neurosci. 28, 5671–5685.

Castro, L.R.V., Gervasi, N., Guiot, E., Cavellini, L., Nikolaev, V.O., Paupardin-Tritsch, D., and 
Vincent, P. (2010). Type 4 phosphodiesterase plays different integrating roles in different cellular 
domains in pyramidal cortical neurons. J. Neurosci. 30, 6143–6151.

Castro, L.R.V., Brito, M., Guiot, E., Polito, M., Korn, C.W., Hervé, D., Girault, J.-A., Paupardin-
Tritsch, D., and Vincent, P. (2013). Striatal neurones have a specific ability to respond to phasic 
dopamine release. J. Physiol. (Lond.) 591, 3197–3214.

Cazorla, M., de Carvalho, F.D., Chohan, M.O., Shegda, M., Chuhma, N., Rayport, S., Ahmari, S.E., 
Moore, H., and Kellendonk, C. (2014). Dopamine D2 receptors regulate the anatomical and functional 
balance of basal ganglia circuitry. Neuron 81, 153–164.

Cazorla, M., Kang, U.J., and Kellendonk, C. (2015). Balancing the basal ganglia circuitry: a possible 
new role for dopamine D2 receptors in health and disease. Mov. Disord. 30, 895–903.

Cerovic, M., d’Isa, R., Tonini, R., and Brambilla, R. (2013). Molecular and cellular mechanisms of 
dopamine-mediated behavioral plasticity in the striatum. Neurobiol Learn Mem 105, 63–80.

Chen, T.-W., Wardill, T.J., Sun, Y., Pulver, S.R., Renninger, S.L., Baohan, A., Schreiter, E.R., Kerr, 
R.A., Orger, M.B., Jayaraman, V., et al. (2013). Ultrasensitive fluorescent proteins for imaging 
neuronal activity. Nature 499, 295–300.

Cicchetti, F., Brownell, A.L., Williams, K., Chen, Y.I., Livni, E., and Isacson, O. (2002). 
Neuroinflammation of the nigrostriatal pathway during progressive 6-OHDA dopamine degeneration in
rats monitored by immunohistochemistry and PET imaging. Eur. J. Neurosci. 15, 991–998.

Corvol, J.C., Studler, J.M., Schonn, J.S., Girault, J.A., and Hervé, D. (2001). Galpha(olf) is necessary 
for coupling D1 and A2a receptors to adenylyl cyclase in the striatum. J. Neurochem. 76, 1585–1588.

Corvol, J.-C., Muriel, M.-P., Valjent, E., Féger, J., Hanoun, N., Girault, J.-A., Hirsch, E.C., and Hervé, 
D. (2004). Persistent increase in olfactory type G-protein alpha subunit levels may underlie D1 receptor
functional hypersensitivity in Parkinson disease. J. Neurosci. 24, 7007–7014.

Corvol, J.-C., Valjent, E., Pascoli, V., Robin, A., Stipanovich, A., Luedtke, R.R., Belluscio, L., Girault, 
J.-A., and Hervé, D. (2007). Quantitative changes in Galphaolf protein levels, but not D1 receptor, alter
specifically acute responses to psychostimulants. Neuropsychopharmacology 32, 1109–1121.

32



Darmopil, S., Martín, A.B., De Diego, I.R., Ares, S., and Moratalla, R. (2009). Genetic inactivation of 
dopamine D1 but not D2 receptors inhibits L-DOPA-induced dyskinesia and histone activation. Biol. 
Psychiatry 66, 603–613.

DeLong, M.R. (1990). Primate models of movement disorders of basal ganglia origin. Trends Neurosci.
13, 281–285.

Durieux, P.F., Bearzatto, B., Guiducci, S., Buch, T., Waisman, A., Zoli, M., Schiffmann, S.N., and de 
Kerchove d’Exaerde, A. (2009). D2R striatopallidal neurons inhibit both locomotor and drug reward 
processes. Nat. Neurosci. 12, 393–395.

Ehrman, L.A., Williams, M.T., Schaefer, T.L., Gudelsky, G.A., Reed, T.M., Fienberg, A.A., Greengard, 
P., and Vorhees, C.V. (2006). Phosphodiesterase 1B differentially modulates the effects of 
methamphetamine on locomotor activity and spatial learning through DARPP32-dependent pathways: 
evidence from PDE1B-DARPP32 double-knockout mice. Genes Brain Behav. 5, 540–551.

Escande, M.V., Taravini, I.R.E., Zold, C.L., Belforte, J.E., and Murer, M.G. (2016). Loss of 
Homeostasis in the Direct Pathway in a Mouse Model of Asymptomatic Parkinson’s Disease. J. 
Neurosci. 36, 5686–5698.

Fieblinger, T., Sebastianutto, I., Alcacer, C., Bimpisidis, Z., Maslava, N., Sandberg, S., Engblom, D., 
and Cenci, M.A. (2014a). Mechanisms of dopamine D1 receptor-mediated ERK1/2 activation in the 
parkinsonian striatum and their modulation by metabotropic glutamate receptor type 5. J. Neurosci. 34, 
4728–4740.

Fieblinger, T., Graves, S.M., Sebel, L.E., Alcacer, C., Plotkin, J.L., Gertler, T.S., Chan, C.S., Heiman, 
M., Greengard, P., Cenci, M.A., et al. (2014b). Cell type-specific plasticity of striatal projection 
neurons in parkinsonism and L-DOPA-induced dyskinesia. Nat Commun 5, 5316.

Fritz, R.D., Letzelter, M., Reimann, A., Martin, K., Fusco, L., Ritsma, L., Ponsioen, B., Fluri, E., 
Schulte-Merker, S., van Rheenen, J., et al. (2013). A versatile toolkit to produce sensitive FRET 
biosensors to visualize signaling in time and space. Sci Signal 6, rs12.

Gagnon, D., Petryszyn, S., Sanchez, M.G., Bories, C., Beaulieu, J.M., De Koninck, Y., Parent, A., and 
Parent, M. (2017). Striatal Neurons Expressing D1 and D2 Receptors are Morphologically Distinct and 
Differently Affected by Dopamine Denervation in Mice. Sci Rep 7, 41432.

Gerfen, C.R., and Surmeier, D.J. (2011). Modulation of striatal projection systems by dopamine. Annu. 
Rev. Neurosci. 34, 441–466.

Gerfen, C.R., Engber, T.M., Mahan, L.C., Susel, Z., Chase, T.N., Monsma, F.J., and Sibley, D.R. 
(1990). D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal 
neurons. Science 250, 1429–1432.

Gerfen, C.R., Miyachi, S., Paletzki, R., and Brown, P. (2002). D1 dopamine receptor supersensitivity in
the dopamine-depleted striatum results from a switch in the regulation of ERK1/2/MAP kinase. J. 
Neurosci. 22, 5042–5054.

33



Gertler, T.S., Chan, C.S., and Surmeier, D.J. (2008). Dichotomous anatomical properties of adult 
striatal medium spiny neurons. J. Neurosci. 28, 10814–10824.

Gervasi, N., Hepp, R., Tricoire, L., Zhang, J., Lambolez, B., Paupardin-Tritsch, D., and Vincent, P. 
(2007). Dynamics of protein kinase A signaling at the membrane, in the cytosol, and in the nucleus of 
neurons in mouse brain slices. J. Neurosci. 27, 2744–2750.

Gervasi, N., Tchénio, P., and Preat, T. (2010). PKA dynamics in a Drosophila learning center: 
coincidence detection by rutabaga adenylyl cyclase and spatial regulation by dunce phosphodiesterase. 
Neuron 65, 516–529.

Giorgi, M., D’Angelo, V., Esposito, Z., Nuccetelli, V., Sorge, R., Martorana, A., Stefani, A., Bernardi, 
G., and Sancesario, G. (2008). Lowered cAMP and cGMP signalling in the brain during levodopa-
induced dyskinesias in hemiparkinsonian rats: new aspects in the pathogenetic mechanisms. Eur. J. 
Neurosci. 28, 941–950.

Girault, J.-A. (2012). Integrating neurotransmission in striatal medium spiny neurons. Adv. Exp. Med. 
Biol. 970, 407–429.

Girault, J.A., Raisman-Vozari, R., Agid, Y., and Greengard, P. (1989). Striatal phosphoproteins in 
Parkinson disease and progressive supranuclear palsy. Proc. Natl. Acad. Sci. U.S.A. 86, 2493–2497.

Girault, J.-A., Valjent, E., Caboche, J., and Hervé, D. (2007). ERK2: a logical AND gate critical for 
drug-induced plasticity? Curr Opin Pharmacol 7, 77–85.

Gong, S., Doughty, M., Harbaugh, C.R., Cummins, A., Hatten, M.E., Heintz, N., and Gerfen, C.R. 
(2007). Targeting Cre recombinase to specific neuron populations with bacterial artificial chromosome 
constructs. J. Neurosci. 27, 9817–9823.

Harvey, C.D., Ehrhardt, A.G., Cellurale, C., Zhong, H., Yasuda, R., Davis, R.J., and Svoboda, K. 
(2008). A genetically encoded fluorescent sensor of ERK activity. Proc. Natl. Acad. Sci. U.S.A. 105, 
19264–19269.

Heckman, P.R.A., Blokland, A., Bollen, E.P.P., and Prickaerts, J. (2018). Phosphodiesterase inhibition 
and modulation of corticostriatal and hippocampal circuits: Clinical overview and translational 
considerations. Neurosci Biobehav Rev 87, 233–254.

Hervé, D. (2011). Identification of a specific assembly of the g protein golf as a critical and regulated 
module of dopamine and adenosine-activated cAMP pathways in the striatum. Front Neuroanat 5, 48.

Hervé, D., Lévi-Strauss, M., Marey-Semper, I., Verney, C., Tassin, J.P., Glowinski, J., and Girault, J.A. 
(1993). G(olf) and Gs in rat basal ganglia: possible involvement of G(olf) in the coupling of dopamine 
D1 receptor with adenylyl cyclase. J. Neurosci. 13, 2237–2248.

Hervé, D., Le Moine, C., Corvol, J.C., Belluscio, L., Ledent, C., Fienberg, A.A., Jaber, M., Studler, 
J.M., and Girault, J.A. (2001). Galpha(olf) levels are regulated by receptor usage and control dopamine 
and adenosine action in the striatum. J. Neurosci. 21, 4390–4399.

34



Hurley, M.J., Mash, D.C., and Jenner, P. (2001). Dopamine D(1) receptor expression in human basal 
ganglia and changes in Parkinson’s disease. Brain Res. Mol. Brain Res. 87, 271–279.

Hutton, S.R., Otis, J.M., Kim, E.M., Lamsal, Y., Stuber, G.D., and Snider, W.D. (2017). ERK/MAPK 
Signaling Is Required for Pathway-Specific Striatal Motor Functions. J. Neurosci. 37, 8102–8115.

Iwamoto, T., Iwatsubo, K., Okumura, S., Hashimoto, Y., Tsunematsu, T., Toya, Y., Hervé, D., 
Umemura, S., and Ishikawa, Y. (2004). Disruption of type 5 adenylyl cyclase negates the 
developmental increase in Galphaolf expression in the striatum. FEBS Lett. 564, 153–156.

Jáidar, O., Carrillo-Reid, L., Hernández, A., Drucker-Colín, R., Bargas, J., and Hernández-Cruz, A. 
(2010). Dynamics of the Parkinsonian striatal microcircuit: entrainment into a dominant network state. 
J. Neurosci. 30, 11326–11336.

Kawaguchi, Y., Wilson, C.J., and Emson, P.C. (1989). Intracellular recording of identified neostriatal 
patch and matrix spiny cells in a slice preparation preserving cortical inputs. J. Neurophysiol. 62, 
1052–1068.

Kobylecki, C., Crossman, A.R., and Ravenscroft, P. (2013). Alternative splicing of AMPA receptor 
subunits in the 6-OHDA-lesioned rat model of Parkinson’s disease and L-DOPA-induced dyskinesia. 
Exp. Neurol. 247, 476–484.

Komatsu, N., Aoki, K., Yamada, M., Yukinaga, H., Fujita, Y., Kamioka, Y., and Matsuda, M. (2011). 
Development of an optimized backbone of FRET biosensors for kinases and GTPases. Mol. Biol. Cell 
22, 4647–4656.

Kravitz, A.V., Freeze, B.S., Parker, P.R.L., Kay, K., Thwin, M.T., Deisseroth, K., and Kreitzer, A.C. 
(2010). Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. 
Nature 466, 622–626.

Luczak, V., Blackwell, K.T., Abel, T., Girault, J.-A., and Gervasi, N. (2017). Dendritic diameter 
influences the rate and magnitude of hippocampal cAMP and PKA transients during β-adrenergic 
receptor activation. Neurobiol Learn Mem 138, 10–20.

Mallet, N., Ballion, B., Le Moine, C., and Gonon, F. (2006). Cortical inputs and GABA interneurons 
imbalance projection neurons in the striatum of parkinsonian rats. J. Neurosci. 26, 3875–3884.

Mango, D., Bonito-Oliva, A., Ledonne, A., Nisticò, R., Castelli, V., Giorgi, M., Sancesario, G., Fisone, 
G., Berretta, N., and Mercuri, N.B. (2014). Phosphodiesterase 10A controls D1-mediated facilitation of 
GABA release from striato-nigral projections under normal and dopamine-depleted conditions. 
Neuropharmacology 76 Pt A, 127–136.

Matamales, M., Bertran-Gonzalez, J., Salomon, L., Degos, B., Deniau, J.-M., Valjent, E., Hervé, D., 
and Girault, J.-A. (2009). Striatal medium-sized spiny neurons: identification by nuclear staining and 
study of neuronal subpopulations in BAC transgenic mice. PLoS ONE 4, e4770.

35



Maurice, N., Liberge, M., Jaouen, F., Ztaou, S., Hanini, M., Camon, J., Deisseroth, K., Amalric, M., 
Kerkerian-Le Goff, L., and Beurrier, C. (2015). Striatal Cholinergic Interneurons Control Motor 
Behavior and Basal Ganglia Function in Experimental Parkinsonism. Cell Rep 13, 657–666.

Morigaki, R., Okita, S., and Goto, S. (2017). Dopamine-Induced Changes in Gαolf Protein Levels in 
Striatonigral and Striatopallidal Medium Spiny Neurons Underlie the Genesis of l-DOPA-Induced 
Dyskinesia in Parkinsonian Mice. Front Cell Neurosci 11, 26.

Niccolini, F., Foltynie, T., Reis Marques, T., Muhlert, N., Tziortzi, A.C., Searle, G.E., Natesan, S., 
Kapur, S., Rabiner, E.A., Gunn, R.N., et al. (2015). Loss of phosphodiesterase 10A expression is 
associated with progression and severity in Parkinson’s disease. Brain 138, 3003–3015.

Niccolini, F., Wilson, H., Pagano, G., Coello, C., Mehta, M.A., Searle, G.E., Gunn, R.N., Rabiner, 
E.A., Foltynie, T., and Politis, M. (2017). Loss of phosphodiesterase 4 in Parkinson disease: Relevance 
to cognitive deficits. Neurology 89, 586–593.

Nishi, A., Kuroiwa, M., Miller, D.B., O’Callaghan, J.P., Bateup, H.S., Shuto, T., Sotogaku, N., Fukuda, 
T., Heintz, N., Greengard, P., et al. (2008). Distinct roles of PDE4 and PDE10A in the regulation of 
cAMP/PKA signaling in the striatum. J. Neurosci. 28, 10460–10471.

Parent, A., Sato, F., Wu, Y., Gauthier, J., Lévesque, M., and Parent, M. (2000). Organization of the 
basal ganglia: the importance of axonal collateralization. Trends Neurosci. 23, S20-27.

Pavón, N., Martín, A.B., Mendialdua, A., and Moratalla, R. (2006). ERK phosphorylation and FosB 
expression are associated with L-DOPA-induced dyskinesia in hemiparkinsonian mice. Biol. Psychiatry
59, 64–74.

Polito, M., Guiot, E., Gangarossa, G., Longueville, S., Doulazmi, M., Valjent, E., Hervé, D., Girault, J.-
A., Paupardin-Tritsch, D., Castro, L.R.V., et al. (2015). Selective Effects of PDE10A Inhibitors on 
Striatopallidal Neurons Require Phosphatase Inhibition by DARPP-32. ENeuro 2.

Rangel-Barajas, C., Silva, I., Lopéz-Santiago, L.M., Aceves, J., Erlij, D., and Florán, B. (2011). L-
DOPA-induced dyskinesia in hemiparkinsonian rats is associated with up-regulation of adenylyl 
cyclase type V/VI and increased GABA release in the substantia nigra reticulata. Neurobiol. Dis. 41, 
51–61.

Redgrave, P., Rodriguez, M., Smith, Y., Rodriguez-Oroz, M.C., Lehericy, S., Bergman, H., Agid, Y., 
DeLong, M.R., and Obeso, J.A. (2010). Goal-directed and habitual control in the basal ganglia: 
implications for Parkinson’s disease. Nat. Rev. Neurosci. 11, 760–772.

Ruiz-DeDiego, I., Naranjo, J.R., Hervé, D., and Moratalla, R. (2015). Dopaminergic regulation of 
olfactory type G-protein α subunit expression in the striatum. Mov. Disord. 30, 1039–1049.

Ryan, M.B., Bair-Marshall, C., and Nelson, A.B. (2018). Aberrant Striatal Activity in Parkinsonism and
Levodopa-Induced Dyskinesia. Cell Rep 23, 3438-3446.e5.

36



Sancesario, G., Giorgi, M., D’Angelo, V., Modica, A., Martorana, A., Morello, M., Bengtson, C.P., and 
Bernardi, G. (2004). Down-regulation of nitrergic transmission in the rat striatum after chronic 
nigrostriatal deafferentation. Eur. J. Neurosci. 20, 989–1000.

Santini, E., Valjent, E., Usiello, A., Carta, M., Borgkvist, A., Girault, J.-A., Hervé, D., Greengard, P., 
and Fisone, G. (2007). Critical involvement of cAMP/DARPP-32 and extracellular signal-regulated 
protein kinase signaling in L-DOPA-induced dyskinesia. J. Neurosci. 27, 6995–7005.

Schiffmann, S.N., and Vanderhaeghen, J.J. (1993). Adenosine A2 receptors regulate the gene 
expression of striatopallidal and striatonigral neurons. J. Neurosci. 13, 1080–1087.

Sgambato, V., Pagès, C., Rogard, M., Besson, M.J., and Caboche, J. (1998). Extracellular signal-
regulated kinase (ERK) controls immediate early gene induction on corticostriatal stimulation. J. 
Neurosci. 18, 8814–8825.

Shiflett, M.W., Brown, R.A., and Balleine, B.W. (2010). Acquisition and performance of goal-directed 
instrumental actions depends on ERK signaling in distinct regions of dorsal striatum in rats. J. 
Neurosci. 30, 2951–2959.

Suárez, L.M., Solís, O., Caramés, J.M., Taravini, I.R., Solís, J.M., Murer, M.G., and Moratalla, R. 
(2014). L-DOPA treatment selectively restores spine density in dopamine receptor D2-expressing 
projection neurons in dyskinetic mice. Biol. Psychiatry 75, 711–722.

Suarez, L.M., Solis, O., Aguado, C., Lujan, R., and Moratalla, R. (2016). L-DOPA Oppositely 
Regulates Synaptic Strength and Spine Morphology in D1 and D2 Striatal Projection Neurons in 
Dyskinesia. Cereb. Cortex 26, 4253–4264.

Suarez, L.M., Alberquilla, S., García-Montes, J.R., and Moratalla, R. (2018). Differential Synaptic 
Remodeling by Dopamine in Direct and Indirect Striatal Projection Neurons in Pitx3-/- Mice, a Genetic
Model of Parkinson’s Disease. J. Neurosci. 38, 3619–3630.

Tomida, T., Oda, S., Takekawa, M., Iino, Y., and Saito, H. (2012). The temporal pattern of stimulation 
determines the extent and duration of MAPK activation in a Caenorhabditis elegans sensory neuron. 
Sci Signal 5, ra76.

Trusel, M., Cavaccini, A., Gritti, M., Greco, B., Saintot, P.-P., Nazzaro, C., Cerovic, M., Morella, I., 
Brambilla, R., and Tonini, R. (2015). Coordinated Regulation of Synaptic Plasticity at Striatopallidal 
and Striatonigral Neurons Orchestrates Motor Control. Cell Rep 13, 1353–1365.

Valjent, E., Corvol, J.C., Pages, C., Besson, M.J., Maldonado, R., and Caboche, J. (2000). Involvement 
of the extracellular signal-regulated kinase cascade for cocaine-rewarding properties. J. Neurosci. 20, 
8701–8709.

Valjent, E., Bertran-Gonzalez, J., Hervé, D., Fisone, G., and Girault, J.-A. (2009). Looking BAC at 
striatal signaling: cell-specific analysis in new transgenic mice. Trends Neurosci. 32, 538–547.

37



Westin, J.E., Vercammen, L., Strome, E.M., Konradi, C., and Cenci, M.A. (2007). Spatiotemporal 
pattern of striatal ERK1/2 phosphorylation in a rat model of L-DOPA-induced dyskinesia and the role 
of dopamine D1 receptors. Biol. Psychiatry 62, 800–810.

Winland, C.D., Welsh, N., Sepulveda-Rodriguez, A., Vicini, S., and Maguire-Zeiss, K.A. (2017). 
Inflammation alters AMPA-stimulated calcium responses in dorsal striatal D2 but not D1 spiny 
projection neurons. Eur. J. Neurosci. 46, 2519–2533.

Yang, L., Calingasan, N.Y., Lorenzo, B.J., and Beal, M.F. (2008). Attenuation of MPTP neurotoxicity 
by rolipram, a specific inhibitor of phosphodiesterase IV. Exp. Neurol. 211, 311–314.

Yapo, C., Nair, A.G., Clement, L., Castro, L.R., Hellgren Kotaleski, J., and Vincent, P. (2017). 
Detection of phasic dopamine by D1 and D2 striatal medium spiny neurons. J. Physiol. (Lond.) 595, 
7451–7475.

Zhai, S., Ark, E.D., Parra-Bueno, P., and Yasuda, R. (2013). Long-distance integration of nuclear ERK 
signaling triggered by activation of a few dendritic spines. Science 342, 1107–1111.

Zhuang, X., Belluscio, L., and Hen, R. (2000). G(olf)alpha mediates dopamine D1 receptor signaling. 
J. Neurosci. 20, RC91.

Legends

Fig 1. Single-cell spatiotemporal dynamics of ERK activity in SPNs in culture and brain slices.

In all cases, ERK responses were imaged by two-photon microscopy of the indicated FRET biosensor.

(A) Comparison of three ERK biosensors in cultured striatal neurons. EKARcyto, EKAR2G1 or EKAR-

EV biosensors were transfected into striatal  neurons in culture (DIV 7) using Lipofectamine 2000.

Twenty-four hours after lipofection, brain-derived neurotrophic factor (BDNF, 10 ng/mL) was bath-

applied for  5  min.  Left  panel,  representative FRET images of  ERK biosensors  in  neurons before

(Baseline) and after stimulation with BDNF. All  images are pseudo-colored according to the same

FRET  scale  to  show  the  differences  in  response  amplitudes  across  biosensors.  Middle  panel,

representative time course traces and right panel, maximal amplitude responses (ΔR/R0 in %) of the

indicated ERK biosensors. **p < 0.01 for EKAR2G1 versus EKAR-EV (Kruskal–Wallis test followed
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by Dunn’s test, see Table S1). (B) ERK imaging in striatal slice preparations from neonatal mice (P8-

P12) using a recombinant Sindbis virus expressing EKAR-EV biosensor. ERK responses were recorded

16-20 h after viral infection.  Left panel, two-photon image of YFP channel obtain with a maximal

projection of a z stack in the dorsal striatum (top left) and representative FRET images of EKAR-EV

before (Baseline, a), 300 s (b) after the beginning of the stimulation with KCl (25 mM, 1 min) and after

the recovery (c). Middle panel, representative time course of normalized FRET ratio following 25 mM

KCl application (indicated by a horizontal bar) experiment (a, b and c indicate the time at which left

panel pictures were taken). (C) Maximal amplitude responses to AMPA (5 µM, 30 s) and KCl (25 mM,

1  min)  responses.  (D-E)  ERK  activation  in  adult  mice  striatal  slices.  Recombinant  AAV  virus

expressing EKAR-EV was stereotaxically injected into the striatum 3-5 weeks before imaging. (D)

Two-photon image of YFP channel with maximal projection of a z-stack in the dorsal striatum (left

pictures)  and  representative  FRET images  of  EKAR-EV biosensor  before  (Baseline,  a)  and  after

stimulation with SKF81297 (SKF, 10 µM, b) and KCl (25 mM, c) in ACSF (Control, upper row), or in

the presence of a MEK inhibitor (U0126, 5 µM, lower row). (E) Representative time course of a typical

FRET experiment in control condition (red) and with U0126 (black). a, b and c indicate the time at

which pictures in D were taken. (F) Maximal amplitudes of FRET ratio responses after application of

ACSF (30 s), SKF81297 (10 µM, 30 s) and KCl (25 mM, 30 s). *p < 0.05 for SKF81297 versus

SKF81297+U0126  and  ***p<0.001  for  KCl  versus  KCl+U0126  (Kruskal–Wallis  test  followed  by

Dunn’s test, see Table S1). In A, B, and E lines represent the mean value and shaded envelopes indicate

SEM. Scale bars, 20 µm.
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Fig  2.  Biosensor  and  tyrosine  hydroxylase  expression  after  DA-denervation  in  the  dorsal

striatum.

(A) General experimental design. Mice (4-6-week-old) were injected with a solution containing the

biosensor-expressing AAV with or without 6-OHDA in the right striatum. After a 4-week recovery, 2-

photon  imaging  was  performed  on  acute  parahorizontal  corticostriatal  slices.  At  the  end  of  each

experiment,  striata  were  homogenized  for  TH  quantification  by  immunoblot.  (B)  Example  of

immunoblot and quantification of TH levels by immunoblotting. Data are expressed as percentage of

the mean in non-lesioned (NL) side and are means ± SEM. ***p<0.001 for NL versus L side (paired t-

test, see Table S1). (C) Stereotaxic co-injection with 6-OHDA of AAV viruses encoding biosensors did

not modify biosensor expression. Wide field image of the dorsal striatum in Dodt gradient contrast

mode (upper left panel) and in the YFP channel (lower left panel). Scale bar 100 µm. Two-photon

images  of  the  dorsal  striatum in  the  YFP excitation/emission  channel  in  mice  injected  with AAV-

AKAR3, EKAR-EV and GCaMP6s with and without 6-OHDA. Scale bar 20 µm.

Fig 3. ERK activity induced by a D1 agonist and AMPA is increased after 6-OHDA lesion in the

striatum 

(A)  Time  course  of  responses  to  SKF81297  (SKF,  10  µM,  30  s),  AMPA (2.5  µM,  30  s)  and

SKF+AMPA (30 s)  in  non-lesioned and 6-OHDA lesioned striatum.  Gray bars  represent  the  drug

application time. The non-specific FRET ratio responses to drug application were removed for a better

visualization of normalized ratio changes. (B) ERK maximal amplitude response after application of

ACSF (30 s), SKF (10 µM, 30 s), AMPA (2.5 µM, 30 s) and KCl (25 mM, 30 s) in 6-OHDA-lesioned

(+) and non-lesioned (-) corticostriatal slices (drugs were applied on different slices except for KCl that
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was added at the end of all the experiments). Mann-Whitney test,  see Table S1. (C) Percentage of

responsive cells among the total number of EKAR-EV-expressing cells, after the indicated treatments

as in B, in 6-OHDA-lesioned (+) and control (-) striatal slices. Mann-Whitney test, see Table S1. *p <

0.05, ***p<0.001. 

Fig 4. PKA responses to D1R stimulation are increased in dSPNs after 6-OHDA lesion in the

striatum

(A-B) Identification of putative dSPNs and iSPNs in the dorsal striatum using AKAR3 PKA biosensor

2-photon imaging. (A) Representative FRET pseudocolor images of AKAR3 before (Baseline, a) and

after stimulation with an A2A agonist,  CGS21680 (CGS, 10 µM, b), then a D1 agonist,  SKF81297

(SKF, 10 µM, c) and forskolin (FSK, 10 µM, d). Scale bar,  20 µm. (B) Time course of a typical

AKAR3 experiment. After recording a FRET baseline, sequential application of CGS and SKF was

used to activate PKA signaling. Based on their agonist selective responses, neurons were classified as

A2AR-expressing SPNs (red) and D1R-expressing SPNs (blue). At the end of the experiment FSK was

applied to directly activate AC in both types of neurons. a, b, c and d indicate the time at which pictures

in A were taken. Traces for cells responsive to CGS or SKF were separated with different y axes, but

they correspond to neurons in the same field and the time x axis is the same. (C) AKAR3 maximal

responses after application of ACSF, CGS21680 (10 µM), SKF81297 (10 µM), and FSK (10 µM). The

order of SKF and CGS application was alternated between slices. Only neurons in which the AKAR3

response to the specific drug or FSK was significant were considered. Kruskal–Wallis followed by

Dunn’s test, see Table S1. (D) Percentage of responsive cells after treatments as in B. Kruskal–Wallis

followed by Dunn’s test, see Table S1. (E) Rise time (10-90%) of the same treatments as in B. Kruskal–
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Wallis followed by Dunn’s test, see Table S1. (F-G) Comparison of AKAR3 responses between non-

lesioned  and  6-OHDA-lesioned  striatal  slices.  (F)  Maximal  FRET emission  ratio  responses  after

application of ACSF, CGS21680 (10 µM), SKF81297 (10 µM), and FSK (10 µM) in non-lesioned mice

(-, light color) and 6-OHDA-lesioned slices (+, dark color).  Mann-Whitney test,  see Table S1. (G)

Percentage of responsive cells among the total number of AKAR3-expressing cells. Same conditions as

in  F.  (C-G)  Error  bars  indicate  SEM, statistical  significance  of  pairwise  comparisons,  *p < 0.05,

***p<0.001.

Fig 5. Role of Gαolf and PDEs in the upregulation of PKA response to D1R agonist in the 6-

OHDA-lesioned striatum

(A-C) AKAR3 responses in A2AR-agonist- and D1R-agonist responsive SPNs in  Gnal heterozygous

mice. (A) Maximal AKAR3 FRET emission ratio in response to CGS21680 (CGS, 10 µM) in Gnal+/-

heterozygous mice (expressing 50% of the normal Gαolf levels) without (-) or with (+) 6-OHDA lesion

and non-lesioned wild type littermates (Gnal+/+) (as in figure 4F). For comparison, FRET emission ratio

response observed in the 6-OHDA-lesioned striatum of wild type animals (data from figure 3F) are

indicated by a green dashed line. One-way ANOVA followed by Tukey’s test (see Table S1). (B) Same

as in  A, but in response to SKF81297 (SKF, 10 µM). (C) Same as in  A but in response to forskolin

(FSK,  10  µM).  (D-H)  Effects  of  a  phosphodiesterase  (PDE)  inhibitor  on  AKAR3 responses.  (D)

Maximal  AKAR3 FRET emission  ratio  in  response  to  the  indicated  concentrations  of  the  broad-

spectrum PDE inhibitor, 3-isobutyl-1-methylxanthine (IBMX), in non-lesioned striatum of wild type

mice. Kruskal–Wallis test followed by Dunn’s test, see Table S1. (E) Effects of a low concentration of

IBMX (30 µM) on maximal FRET emission ratio responses to CGS21680 (CGS, 10 µM) in non-
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lesioned and 6-OHDA-lesioned striatal slices. Kruskal–Wallis test followed by Dunn’s test, see Table

S1. (F) Same as in  E but in response to SKF81297 (SKF, 10 µM). Kruskal–Wallis test followed by

Dunn’s test, see Table S1. (G) Effects of 30 µM IBMX on FSK-induced responses in CGS-responsive

cells. One-way ANOVA followed by Tukey’s test, see Table S1. (H) Effects of 30 µM IBMX on FSK-

induced responses in SKF-responsive cells. One-way ANOVA followed by Tukey’s test, see Table S1.

(A-H) Post-hoc pairwise comparisons *p<0.05, ***p<0.001.

Fig 6. Spontaneous Ca2+ transients are increased in D1R-expressing neurons of 6-OHDA-lesioned

striatum

(A) Sorting neurons based on their spontaneous activity and response to AMPA stimulation. Maximal

change of normalized fluorescence ratio (ΔF/F0) of GCaMP6s biosensor was calculated for all the cells

in the fields of view and all the time courses for the neurons (All recorded SPNs) from different slices

were plotted in 3D (one black line per neuron).  Cells  were separated in two groups based on the

baseline  activity.  Cells  were  classified  as  spontaneously  active  if  during  baseline  recording  they

presented a ΔF/F0 increase >3 standard deviation (SD) calculated on the basal activity of all the cells

(red curves). The other cells (non-spontaneously active) were further sorted according to their increase

in ΔF/F0 after the application of AMPA. They were classified as responsive if they presented a ΔF/F0

increase >3 SD after AMPA application (0.5 µM, 30 s, green curves) and as non-responsive if not (blue

curves). (B) Comparison of the percentage of spontaneously active cells in non-lesioned (NL) and 6-

OHDA-lesioned striatal slices. Left panel: wild type C57BL/6 mice injected with an AAV expressing

GCaMP6s in all neurons.  Middle panel:  Adora2A::Cre (A2ACre) mice injected with a Cre-dependent
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AAV  (AAV-flex-GCaMP6s).  Right  panel:   Drd1::Cre  (D1Cre)  mice  injected  with  AAV-flex-

GCaMP6s. Two-tailed Chi-square test (see Table S1), ***p<0.001.

Fig 7. Specific upregulation of AMPA-induced intracellular Ca2+ dynamics in A2AR-expressing

neurons in 6-OHDA-lesioned striatum

Intracellular Ca2+ increase after AMPA application in non-spontaneously active cells (see figure 6A)

measured with GCaMP6s biosensor in striatal slices of non-lesioned (NL) and 6-OHDA-lesioned (6-

OHDA)  mice.  (A)  Wild  type  C57Bl/6  mice  expressing  GCaMP6s  in  all  neurons.  Left  panel:

representative pseudocolor-coded images representing ΔF/F0 during the baseline (a), after AMPA (0.5

µM, 30 s, b), then KCl (25 mM) application. Middle panel: time course of AMPA-induced intracellular

Ca2+ dynamics in non-lesioned and 6-OHDA-lesioned striatal slices. a and b indicate the time at which

left panel pictures were taken. Right upper panel: Percentage of responsive cells, test two-tailed Chi-

square see (Table S1). Right lower panel: area under the curve (AUC) of Ca2+ responses in striatal

neurons after application of AMPA (0.5 µM, 30 s), Mann-Whitney test, see Table S1. (B) Same as in A,

in  Drd1::Cre mice (D1Cre) injected with a Cre-dependent AAV (AAV-flex-GCaMP6s) (see Table S1

for statistical analysis). (C) Same as in A, in  Adora2A::Cre mice (A2ACre) injected with AAV-flex-

GCaMP6s. (see Table S1 for statistical anlaysis). (A-C) *p<0.05, **p<0.01, ***p<0.001.

Supplementary material

Table S1. Statistical analysis of results shown in the Figures 1-7
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