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SPLIN-B DWIKUBIK DAN SPLIN PLAT NIPIS UNTUK PENGHAMPIRAN

PERMUKAAN

ABSTRAK

Dalam hidup hakiki, titik data 2D atau 3D sedia ada biasanya tidak berpola dan

dicemari oleh hingar. Hingar ditakrifkan sebagai variasi dalam suatu set titik data.

Kaedah penghampiran ialah cara yang sesuai digunakan berbanding kaedah interpo-

lasi dalam menyesuaikan titik data tersebut. Adalah penting bagi suatu kaedah peng-

hampiran untuk mengekalkan bentuk dan sifat-sifat model dalam kehadiran hingar.

Penghampiran splin-B dan splin plat nipis dikaji dalam tesis ini. Keberkesanan peng-

gunaan algoritma penghampiran splin-B yang diubahsuai telah dikaji dalam pengham-

piran permukaan splin-B dwikubik daripada sampel titik data bertaburan yang diambil

daripada model set titik. Algoritma tersebut digunakan untuk menentukan titik kawal-

an splin-B yang tidak diketahui dan diikuti dengan penghasilan penampal permukaan

splin-B dwikubik. Keputusan eksperimen menunjukkan bahawa algoritma pengham-

piran splin-B yang diubahsuai berjaya membina permukaan yang menyerupai bentuk

sampel titik set asal tanpa melalui penghampiran permukaan berbilang aras. Penge-

kalan pinggir tajam dalam permukaan splin-B dwikubik turut dikaji. Algoritma yang

berasaskan kaedah pemurataan cangkuk but dicadangkan dan pinggir tajam dapat dike-

kalkan. Kajian dilanjutkan bagi melihat kesan hingar dalam pengekalan pinggir tajam.

Kaedah penghampiran splin plat nipis, yang merupakan salah satu fungsi asas jejarian

juga digunakan untuk menyesuaikan titik data dalam kajian ini. Perbandingan kesan

hingar antara penyesuaian permukaan splin-B dwikubik dan penyesuaian permukaan

splin plat nipis dilakukan dan didapati bahawa permukaan splin-B adalah sensitif akan

hingar berbanding splin plat nipis. Dalam kehadiran data hingar, skim penghampir-

xv



an splin plat nipis digunakan, maka, nilai parameter pelicinan yang sesuai diperlukan

untuk mengawal kualiti penyesuaian bagi mengelakkan masalah terlebih suai dan ter-

kurang suai. Bagi mendapatkan parameter pelicinan otpimum, ujian penganggaran

cangkuk but leave-one-out digunakan bagi model set titik dengan liku dan tanpa liku.

Perbandingan juga dilakukan antara penyesuaian splin plat nipis dengan penyesuaian

permukaan polinomial kubik dan kuartik dalam konteks pembinaan semula permuka-

an yang berasaskan ujian penganggaran ralat cangkuk but. Didapati splin plat nipis

merupakan penyesuaian permukaan terbaik jika parameter pelicinan yang sesuai dipi-

lih. Parameter pelicinan optimum splin plat nipis boleh digunakan untuk melicinkan

permukaan. Kehadiran data hingar ialah suatu perkara biasa dalam pemodelan set

titik, maka penyah-hingaran set titik perlu diberi perhatian. Penggunaan algoritma

pelicinan yang bergantung kepada fungsi asas jejarian berdasarkan cangkuk but telah

dicadangkan. Kaedah yang dicadangkan telah menggabungkan carian jiran terdekat

k dan kemudian set titik diunjurkan ke permukaan splin plat nipis yang telah diham-

pirkan. Akhir sekali, kaedah yang dicadangkan telah dibandingkan dengan algoritma

pelicinan Laplacian Humphrey’s Clasess dan algoritma pelicinan permukaan set titik

algebra. Keputusan menunjukkan bahawa algoritma pelicinan yang dicadangkan telah

menunjukkan keupayaan yang setanding untuk melicinkan model titik set hingar dan

memelihara sifat-sifat model set titik.
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BICUBIC B-SPLINE AND THIN PLATE SPLINE ON SURFACE

APPROXIMATION

ABSTRACT

In real life, the available data points which are either 2D or 3D are normally

scattered and contaminated with noise. The noise is defined as the variation in a set

of data points. To fit these data points, the approximation methods are considered as

a suitable mean compared to the interpolation methods. It is important for the ap-

proximation methods to preserve the shape and features of the model in the presence

of any noise. B-spline and thin plate spline approximation are being studied in this

thesis. The effectiveness of the modified B-spline approximation algorithm is inves-

tigated in approximating the bicubic B-spline surface from the samples of scattered

data points taken from the point set model. The algorithm is used to determine the

unknown B-spline control points and followed by the construction of bicubic B-spline

surface patch. The experimental results show that the modified B-spline approxima-

tion algorithm manages to construct the surfaces that resemble the shape of original

samples point set without going through the multilevel surface approximation. The

sharp edge preservation in bicubic B-spline surface is also being studied. On top of

that, an algorithm which is based on bootstrap averaging method is proposed and able

to achieve the sharp edge preservation. Further studies are carried out to investigate

the effect of noise with different noise levels in preserving the sharp edge. The ap-

proximation scheme of the thin plate spline which is one of the radial basis functions

is also used to fit the data points in this study. A comparison is carried out to observe

the effect of noise in the bicubic B-spline surface fitting and the thin plate spline sur-

face fitting, which reveals that the B-spline surface is sensitive to the noise compared
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to the thin plate spline. The approximation scheme for a thin plate spline is used in

the presence of noisy data; hence, an appropriate value for the smoothing parameter

is needed to control the quality of fitting, that is to prevent the problem of overfit-

ting and underfitting. The bootstrap leave-one-out error estimator is applied to find an

optimum smoothing parameter for the point set models with and without the feature.

Apart from that, a comparison is also carried out to compare the thin plate spline fitting

with the cubic and quartic polynomial surface fitting in the context of surface recon-

struction, which is based on the bootstrap test error estimation. It is found that the

thin plate spline is the best surface fitting among the three if an appropriate smoothing

parameter is selected. The optimum smoothing parameter of thin plate spline can be

applied in the process of surface smoothing. The presence of noisy data is consid-

ered a common issue in the point set modelling, thus the point set denoising is one of

the main concerns. A smoothing algorithm that relies on a bootstrap-based thin plate

spline function is proposed, which incorporates a k-nearest neighbour search and then

the point set is projected to the approximated thin plate spline surface. Finally, the

proposed method is compared with the Humphrey’s Classes Laplacian smoothing al-

gorithm and the algebraic point set surface smoothing algorithm. The results show that

the proposed smoothing algorithm has shown the comparable capability of smoothing

the noisy point set model and preserving the features of the point set models.
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CHAPTER 1

INTRODUCTION

Computer aided geometric design (CAGD) is a branch of applied mathematics that

studies the algorithms for the smooth curves and surfaces design. Apart from that, it

also concerns the mathematical representation and approximation of shapes and other

geometric features of objects. CAGD can be related to the field of computer graphics,

data structure, numerical analysis, and the theory of approximation. The advantages of

the computers allow the products which are available in the automotive and aerospace

industries to be initially processed, analysed, manipulated, and visualised within the

computer before being entered into the production line. The algorithms can be devel-

oped using the programming language such as C/C++, which then will be performed

on AutoCAD to display the graphical result. However, the researchers have come

out with another alternative which utilise Mathematica and MATLAB to conduct the

research instead of the traditional programming languages due to the efficiency and

friendly features of both the mathematical computational software.

1.1 History of Curves and Surfaces in CAGD

The brief history on the developments of curves and surfaces in CAGD will be pro-

vided in this section to propose for some views on the topics that will be discussed in

the following sections and chapters. The term “Computer Aided Geometric Design"

was devised by R. Barnhill and R. Riesenfled in 1974 in a conference that was held

at the University of Utah, United States. The conference was considered as the foun-
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dation of the field of CAGD, in which the researchers from United States and Europe

were brought together to have a meet (Farin, 2002).

The earliest use of curves in a manufacturing environment was in shipbuilding,

which was in early Anno Domini (A.D.) Roman times. Next, the spline function was

established from the work of draftsmen who were often needed to draw smooth curves.

Hence, the French curve (as shown in Figure 1.1) which is a plastic template that com-

posed of a number of curves of different curvature was used to draw the smooth curves.

Apart from that, the elastic long strips of wood were also used to draw the smooth

curves which passed through the control points by the weights laid on the draftsman’s

table and attached to the strips. Around the year 1891, the weights were known as

“ducks" while the strips of wood were known as “splines". They are shown in the Fig-

ure 1.2. The manual process of drawing the smooth curves was further developed and

translated into the mathematical theory (Cheney and Kincaid, 2008).

Figure 1.1: Some French curves (Lunday, 2007)

Figure 1.2: The weights (“ducks") and strips of wood (“splines") (Brogan, 2004)
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Shipbuilders were the first to mechanise the operation by developing the mathemat-

ical model of surfaces to overcome the storage problem of the full-size drawings. In

the 1960s, the aircraft and car manufacturers began to use the computers to automate

the design of their vehicles. Hence, there was a slow replacement from the tradi-

tional method that involved the making of clay models and the production of stamp

molds into the mathematical models (Salomon, 2006). The process to design the sur-

face section was eventually more interactive with the aid of computer. The area of

computer graphics became well known in the 1960s and 1970s, while some sophisti-

cated software systems were developed in the 1980s for several general use such as in

manufacturing, modelling of chemical molecules, geoscience, and modelling of three-

dimensional (3D) buildings in the area of architecture. The hardware developments

in the 1980s enabled the CAGD techniques to be applied in the computer-generated

special effects for movie such as the Jurassic Park film in 1993 (Salomon, 2006). The

full length computer-animated film were also produced in some movies such as Toy

Story (1995), Finding Nemo (2003), The Incredibles (2004), Frozen (2013), Inside Out

(2015), Moana (2016), and many others.

1.2 Surface Reconstruction

Surface reconstruction is one of the research areas in computer graphics, which

is referred as a reverse engineering problem that is naturally emerged from CAGD.

Surface reconstruction is applied in medical imaging, the manufacturing of ship hulls

and car bodies, and other free-forms objects such as geologic surface (Pandunata and

Shamsuddin, 2013). The point set surface reconstruction is the main concern of the

thesis because the point set has gained its popularity in the area of computer graphics

3



due to the advancement of scanning devices. The point set surface reconstruction is

defined as the process of obtaining a surface from a set of 3D data points using the com-

puter and the reconstructed surface which is similar or has the best approximation of

the origin surface. The set of 3D data points which is obtained from a scanning device

such as the 3D scanner is often dense in 3D space, normally the three-dimensional Eu-

clidean space, R3. Therefore, the set of 3D data points is named as point cloud. Each

point in the point cloud is represented in the standard 3D Cartesian coordinate system

with x,y,z-coordinate, which is capable to indicate its location in 3D space.
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(a) The ordered point cloud
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(b) The scattered point cloud

Figure 1.3: The types of point cloud

The point cloud can be categorised into two types, namely the ordered point cloud

and the scattered point cloud as shown in Figure 1.3. The ordered point cloud refers

to the point cloud which is smooth and organised; whereas the scattered point cloud is

known to be unorganised and noisy. Unfortunately, the point cloud is often scattered

in the real life practical problem; therefore it is a challenging and difficult task to

reconstruct the surface from the scattered point cloud. If the reconstructed surface

shows the shape of the original point cloud, thus it is regarded as the outcome of the

surface reconstruction.
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One of the common point set surface reconstruction pipelines starts from the data

acquisition procedure which is obtained from the point cloud from the real life object

via the scanning device. Next, the registration is carried out to combine the multiple

point clouds which are obtained through different angles. The registered point cloud

undergoes the pre-processing step such as simplification, outlier removal, and denois-

ing. The procedure is continued with the normal estimation and normal orientation.

After all the procedures are conducted, the point cloud is clean and equipped with

the oriented normal, followed by the surface reconstruction (Alliez et al., 2011). Free

data set such as Stanford Bunny, Happy Buddha, Dragon, and others can be obtained

from the Stanford University’s 3D scanning repository. These data sets can be used as

samples for the purpose of testing and validating the reconstruction process when the

scanning facilities are unavailable.

Surface representation should be identified before the surface reconstruction. Hence,

there are two types of surface representation, namely explicit and implicit (Zhao et al.,

2001). Mathematically, the explicit surface has the general form which is given by

the equation z = F(x,y), whereas the equation for the implicit surface is, F(x,y,z) =

0. The examples of explicit representation are parametric surface and triangulated

surface. The parametric surfaces include B-spline surface, non uniform rational B-

spline (NURBS) surface, and Bézier surface. Meanwhile, Delaunay triangulation and

Voronoi diagram are the examples of the triangulated surface. Next, the examples of

the implicit representation include the moving least square, radial basis function, and

signed distance function. The implicit surface can provide a better topology for arbi-

trary objects and possess the property to fill up the holes automatically compared to

the explicit surface (Xie et al., 2004). The detail reviews on the surface reconstruction
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techniques are discussed in the work of Lim and Haron (2014).

There are some general issues that will be the concern in surface reconstruction

such as the time complexity of the method in handling the point cloud, the existing of

the noise and outliers in the point cloud, and the preservation of sharp features of the

surface. Note that the feature of the surface refers to a model with a crease, corner, dart,

or cusp as shown in Figure 1.4. Finally, a proper procedure is essential to eliminate or

at least minimise the issues to obtain a good surface representation.

(a) The close-up views of three parts of sharp
features including dart, crease, and cusp, which
are bounded by the yellow, red, and green dotted
square, respectively (Wang et al., 2016)

(b) The red points denote the corner
feature, whereas the green points de-
note the edge feature (Kobbelt et al.,
2001)

Figure 1.4: The types of surface feature

1.3 Research Background

B-spline is one of the topics in the context of numerical analysis. The B-spline

function is constructed as linear combinations of B-spline with a set of control points.

B-splines was studied by Lobachevky as early as the nineteenth century, while Laplace

discovered that it possesses the connection with the probability density function (Farin,

2002). The term “B-spline" was coined by Schoenberg (1946), whereby the designa-

tion “B" in B-spline stands for basis. Schoenberg’s work dealt with the B-splines
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over uniform knots, whereas the B-splines over non-uniform was suggested by his

colleague, Curry (1947). The importance of B-splines towards the CAGD was sig-

nificantly enhanced with the discovery of the recursion relation by de Boor (1972),

Cox (1972), and Mansfield independently in the same year. The recursion relations

were named as de Boor’s recursion formula, which is known to be fast and numeri-

cally stable. Originally, the B-splines were tedious mathematical approach which is

divided differently and numerically unstable. In 1974, Riesenfeld and Gordon applied

the de Boor’s recursion formula in parametric B-spline curve and realised that the B-

spline was the natural generalisation of the de Casteljau recursive formula in Bézier

curve evaluation (Farin, 2002). The B-spline curves are further generalised to the non-

uniform rational B-splines (NURBS), which had successfully become the standard

form of curve and surface in the CAD and CAM industry. There are two schemes of

B-spline, namely approximation and interpolation. The approximation scheme of B-

spline is selected when there is a presence of noise or insufficient data points, whereas

the interpolation scheme is used when the set of data points is in ordered form.

The topic of radial basis functions (RBFs) should also be discussed in this section.

Hardy (1971) proposed a new analytical method to fit and represent the irregular sur-

faces using the multiquadric function. Another RBF, the thin plate splines which were

based on the minimum bending energy theory of the thin plate surface were proposed

by Duchon (1977). A test on 29 different scattered data interpolation methods in differ-

ent context which include storage, timing, accuracy, visual pleasantness of the surface,

and ease of implementation was carried out. The experimental result revealed that the

multiquadric function and thin plate spline were both selected as the best method from

the stated context (Franke, 1982). Other RBFs besides the multiquadric function and
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thin plate spline will be discussed in the coming chapter. Generally, RBFs are widely

applied in the area of computer graphics, data processing, and economics (Chen et al.,

2014). Similar to the B-splines, there are interpolation and approximation scheme of

RBFs. In this thesis, the approximation scheme of B-splines and RBFs are extensively

studied due to the fact that the real life models are often contaminated with noise.

Generally, there are two methods to assess the quality and the accuracy of the

reconstructed surface. The methods include the subjective method such as visual in-

spection, or objective method such as error estimation which can be applied to carry

out the surface evaluation. Visual inspection refers to the human use of their sense of

sight, together with their expertise to carry out the inspection. However, it is important

to note that different persons may provide different conclusions, which may unlikely

contradict each other. This subjective method can still be served as the initial assess-

ment of the surface. However, the subjectivity of human in assessing the quality of

surface should be minimised when the accuracy of the surface becomes an essential

issue. For instance, the accuracy of surface fitting is difficult to be determined in the

presence of low level of noise. Therefore, the objective method which is the error es-

timation has to play its role in determining the accuracy of the surface. The statistical

methods are being used to minimise the error that arises from the noise in the process

of surface reconstruction. On top of that, the statistical methods are powerful approach

to analyse and interpret the problem in actuarial science, economics, business, biol-

ogy, signal processing, quality control, machine learning, and others. The integration

of statistical method in the area of CAGD is considered as a great introduction because

the statistical approach enables the assessment of the surface to be conducted quantita-

tively, without having to rely on the visual approach alone. In this thesis, the bootstrap
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method is selected as the statistical tool because it provides an error estimation of the

surface fitting. Efron (1979) introduced a model averaging method called the bootstrap

method to estimate the sampling distribution. Multiple data sets are created from the

same sample based on the bootstrap procedure. Each new data set consists of N points

which are randomly taken from the data sample of N size with replacement. The reuse

of the data as a result of repetitive resampling is particularly helpful if the available

data is sparse.

The error estimation of the surface fitting in the presence of noise can be deter-

mined with the aid from the bootstrap method, which can minimise the error of a

fitting. The information achieved from the bootstrap error estimation is also helpful

in the denoising process. The denoising process is defined as the process of removing

the noise from the point clouds for the purpose of having a better and organised point

clouds. The term denoising is widely used interchangeably with the term smoothing

based on the existing literature. There are two types of denoising algorithms, namely

mesh and point set denoising. The main difference between the point set denoising

with mesh denoising is the absence of connectivity (Ramli, 2012). The aim of the

denoising process is not only to remove the noise from the data, but also to preserve

the existing features. The detailed mathematical background as well as discussions on

the previous works related to this topic will be further elaborated and explored in the

coming chapters.
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1.4 Problem Statements

The point clouds obtained from some of the scanning devices maybe scattered

and unorganised instead of being uniformly distributed. Therefore, an appropriate ap-

proach to reconstruct the smooth surface from this particular type of point clouds is

using the approximation method. According to Mooney and Swift (1999), the inter-

polation method is considered inappropriate for the data points with large amount of

random fluctuation or noise because it interpolates and passes through all the data

points which eventually produce an undesired and unsmooth surface with significant

errors, thus it is not to be applied in this study. In this thesis, the approximation scheme

of the B-spline is studied, whereby the B-spline is defined locally which indicates that

a change in the particular parameter will only affect the model locally. The motivation

is gained from the previous work on the multilevel B-spline surface fitting from a set

of scattered data points. Lee et al. (1997) mentioned that the B-spline approximation

algorithm had the capability to process the large amount of data points. Therefore, it

is possible to modify the multilevel setting into the single level setting for the purpose

of simplifying the algorithm while retaining the comparable result. The multilevel

B-spline algorithm is computationally expensive when it is applied to a large number

of data points (Lee et al., 2005a). The modified B-spline approximation algorithm is

being tested from the aspect of the surface patch fitting. Apart from that, sharp fea-

tures preservation such as the sharp edge preservation is a general issue for the surface

approximation because this feature has the tendency to be smoothed out; therefore, a

B-spline sharp edge preservation algorithm is proposed and its efficiency is validated

when noise is presented in the sample of scattered data points.
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Another approximation method that has been used is known as radial basis func-

tion, specifically the thin plate spline. In comparison to the B-spline, the thin plate

spline is defined globally, which means that a change in the particular parameter will

induce a change to the whole model. The presence of noise in data points will affect

the surface approximation for these two types of approximation method; therefore, a

comparison is carried out in order to identify which method has the minimum effect

towards the noise in the surface approximation.

The approximation scheme of the thin plate spline is studied due to its ability in

dealing with the noisy points in the point cloud. The approximation quality of the ap-

proximation scheme of the thin plate spline is controlled by the smoothing parameter,

which can prevent the problem of underfitting and overfitting. However, the method

to select an optimum smoothing is still unknown. Therefore, it has been decided that

the training error and a statistical approach known as the bootstrap error estimation

will be used to determine the optimum smoothing parameter from a proposed range of

smoothing parameters. The experiment to search for the optimum smoothing param-

eter is conducted for the non-feature and feature point set models with different noise

levels.

In this thesis, the point set models will be used throughout this study and knowing

that some of the obtained point clouds are contaminated with noise; therefore, point

set denoising is also investigated. A new point set denoising algorithm is proposed

by extending the result of determining the optimum smoothing parameter of thin plate

spline using the statistical approach. The proposed denoising algorithm is applied to

denoise the point set model which is corrupted by the moderate level of noise. The
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proposed denoising algorithm is simple and able to preserve the features of the point

set model.

1.5 Research Objectives

The purpose of this research is mainly to study the approximation scheme of the

B-spline surface as well as the thin plate spline surface. This study further investigates

the issue by searching for the smoothing parameter of the thin plate spline as well as

the point set denoising method using the thin plate spline. The specific objectives of

this research are as follows:

• To introduce a single level B-spline surface approximation algorithm by modi-

fying the existing multilevel B-spline surface approximation algorithm to fit sets

of scattered data points. The modified approximation algorithm is validated by

observing the surface fitting at different noise levels.

• To propose a B-spline sharp edge preservation algorithm to preserve sharp edges.

The proposed algorithm will be validated at different noise levels to observe its

efficiency.

• To minimise the effect of the noise on surface approximation by identifying a

better surface approximation algorithm from the modified B-spline approxima-

tion algorithm and the thin plate spline approximation algorithm through the

comparison method.

• To handle the issue of underfitting and overfitting for the approximation scheme

of the thin plate spline when fitting the sample with non-feature and feature 3D
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data points with different noise levels. The statistical-based error estimation

methods are applied in order to search for the optimum smoothing parameter

from a proposed interval of smoothing parameters.

• To denoise the 3D point set models corrupted by the moderate noise levels by

designing a point set denoising algorithm based on the optimum smoothing pa-

rameter of the thin plate spline which are obtained using the statistical method.

The performance of the denoising algorithm is justified by the real life point set

model at different noise levels. A comparison is carried out between the point

set denoising algorithm with other denoising algorithms.

1.6 Research Methodology

The following research methodology is used to achieve the research objectives:

• The related literature need to be reviewed as well as the mathematics background

needs to be studied thoroughly in order to modify the existing multilevel B-spline

algorithm. The B-spline approximation method that exists in the multilevel B-

spline algorithm is further to be modified to become single-level B-spline algo-

rithm. The observation is not limited to the B-spline surface approximation from

a set of scattered data points, but also the effect of noise on the surface fitting.

• The variance-based detection method is extended and integrated in the proposed

B-spline sharp edge preservation algorithm. The effect of noise in preserving

the sharp edges is also being observed. The graphical results from the first and

second objectives are displayed by writing the programming codes using Math-

ematica 9.
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• The bicubic B-spline surface that is fitted by the modified B-spline approxi-

mation algorithm is compared with the approximation scheme of the thin plate

spline surface fitting at different noise levels in order to observe the effect of

noise towards these two surface approximations. A small value of the smoothing

parameter is being selected, and this parameter controls the quality of approxi-

mation of the thin plate spline. The subjective method that involves the visual

inspection is being used to observe the graphical results generated from Math-

ematica 9. The visual inspection is used to assess the results in the second and

third objectives. Therefore, a survey will be served as the validation tool. A

total of 21 respondents are invited to respond and give their feedback. The re-

spondents are limited to the academic staffs and students from Universiti Sains

Malaysia who have the knowledge in computer aided geometric design.

• The existing smoothing parameter in the thin plate spline will enable the approx-

imation quality to be controlled, that is to prevent the problem of underfitting and

overfitting. Therefore, it is important to search for the optimum smoothing pa-

rameter of the thin plate spline through the statistical method which allows for

an objective opinion to be provided by giving the error of estimation for the sur-

face approximation. The training error and bootstrap leave-one-out error of the

point set model at different noise levels are determined using MATLAB R2012a.

The numerical values that were achieved are tabulated and plotted to search for

the optimum smoothing parameter. The specific regions of the point set model

are selected using the k-nearest neighbour search algorithm to justify the result,

which is then fitted by the thin plate spline with the optimum smoothing parame-

ter and other smoothing parameters. The experiment is carried out for both point
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set model with and without features.

• In the context of application, specifically the denoising process for the noise cor-

rupted 3D point sets, a point set denoising algorithm is designed by applying

the result gained from the optimum smoothing parameter. The point set model

with moderate noise levels is selected to test the performance of the proposed

algorithm. The proposed algorithm does not involve all the data points in the

point cloud; hence the features of the model can be preserved. The sample of

data points with neighbourhood of size k is selected from the point cloud, which

is then fitted by the thin plate spline surface with the optimum smoothing pa-

rameter. Next, the sample of data points is projected to the surface, and similar

procedure is carried out for other selected neighbourhoods. The proposed al-

gorithm eventually updates the position of the data points which leads to the

smoothing effect. The codes are programmed in Mathematica 9 and the results

are visualised through MeshLab 1.3.2. The proposed algorithm is also compared

to other denoising algorithms.

The flow chart of the research objectives and the research methodology is shown

in Figure 1.5.
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Figure 1.5: The flow chart of the research objectives and the research methodology

1.7 Thesis Organisation

The organisation of this thesis is as follows:

Chapter 1: The history of the curves and surfaces is briefly described, which is then

followed by the basic introduction of the surface reconstruction. The research back-

ground, problem statements, research objectives, research methodology, and thesis or-

ganisation are also provided in this chapter.
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Chapter 2: The related literature review and mathematical background are discussed

in this chapter. The literature review is included to introduce the basic understanding

on the works that have been conducted previously. The mathematical background such

as B-spline, radial basis function, k-nearest neighbour search algorithm, normal esti-

mation using principal component analysis, bootstrap method, and others are discussed

because they act as the main theoretical framework for this thesis. The aim of these

theoretical parts is to enhance the understanding of the subsequence chapters.

Chapter 3: The modified version of B-spline approximation algorithm together with

the graphical results are described in detail. The effect of different levels of noise

on the modified B-spline surface fitting algorithm and the sharp edge preservation are

investigated in this chapter. Next, the modified B-spline surface fitting algorithm is

further examined by comparing it with the thin plate spline surface fitting in the context

of fitting and noise. The smoothing parameter of the thin plate spline is manually

selected with a small value. In the next chapter, the search for the optimum smoothing

parameter is further studied.

Chapter 4: The statistical approach is used to determine the optimum smoothing pa-

rameter of the thin plate spline. Firstly, the experiment is carried out for the point set

model without features because it can be served as the initial observation or ground

truth before proceeding with the point set model with features. The training error and

bootstrap leave-one-out error estimation are used as the tool to calculate the error of

the fitting by the thin plate spline for the point set model at different noise levels. The

numerical values of these errors are tabulated and plotted, which enables the optimum

smoothing parameter to be determined. The validation is carried out by selecting a
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region of the point set model which is fitting using the thin plate spline with the op-

timum and other smoothing parameter values. The similar experiment is repeated for

the point set model with features to observe the real life application.

Chapter 5: The proposed point set denoising algorithm is discussed in this chapter.

The proposed algorithm makes use of the optimum smoothing parameter to denoise

the point set models that are contaminated by a moderate noise level. Apart from that,

the comparisons and validations are conducted for other existing denoising algorithms

by looking at their denoising efficiency in the presence of noise at a moderate level.

Chapter 6: The conclusion of this thesis and the possible directions for future research

are discussed in this chapter.
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CHAPTER 2

BACKGROUND THEORY AND LITERATURE REVIEW

In this chapter, the mathematical backgrounds that will be used frequently in the

following chapters are presented and the relevant literature is reviewed.

2.1 Background Theory

2.1.1 Curve continuity

The concern of this section is the continuity at the joint of two neighboring curve

segments; hence it is important to know how the individual segments can be connected.

The following definitions taken from Pressley (2010) are necessary to be discussed

before the types of continuity are introduced.

Definition 2.1 A parametrised curve in Rn is a map γ : (α ,β ) → Rn, for some α ,β

with −∞ ≤ α < β ≤ ∞. The symbol (α ,β ) denotes the open interval such that

(α,β ) = {t ∈ R | α < t < β}.

The parametrisation of a curve is not unique as there is infinitely number of differ-

ent parametrisation. This concept can be formalised based on the following definitions:

Definition 2.2 Let (α̃ , β̃ ) and (α ,β ) being open intervals in R. A parametrised curve

γ̃ : (α̃ , β̃ )→Rn is a reparametrisation of a parametrised curve γ : (α ,β )→Rn if there
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is a smooth bijective map ϕ : (α̃, β̃ )→ (α,β ) (the reparametrisation map) such that

the inverse map ϕ−1 : (α,β )→ (α̃ , β̃ ) is also smooth and

γ̃(t̃) = γ(ϕ(t̃)) ∀t̃ ∈ (α̃ , β̃ ).

Note that ϕ has a smooth inverse, γ is a reparametrisation of γ̃:

γ̃(ϕ−1(t)) = γ(ϕ(ϕ−1(t))) = γ(t) ∀t ∈ (α,β ).

The reparametrisation results are geometrically identical, which means that the two

curves have the same image.

The concept of continuity can be introduced in detail based on the two definitions.

The two types of continuity to be considered are as follows (Salomon, 2006):

• Parametric continuity, Cn- It is known as nth-order parametric continuity, where

n usually is 0, 1, and 2. The algebra is used to describe the smoothness of the

parameter’s value along the curve. It is natural in analysis, but leads to an unsat-

isfactory model of smoothness which is too stiff in practical cases. In addition,

it is not invariant with respect to the reparametrisation. Furthermore, the curve

is viewed as a function rather than a shape.

• Geometric continuity, Gn- It is called as nth-order geometric continuity, where n

normally is 0, 1, and 2. It is a less restrictive form compared to the parametric

continuity because it can be defined using only the shape of the curve, but the

choice of parametrisation does not affect the outcome. In addition, it is invariant
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under any transformation of the parameter.

If two consecutive segments meet at a point, the total curve is said to have G0

geometric continuity. Next, if the directions of the tangent vectors of the two segments

are the same at the join point, then it is said to have G1 continuity. In general, a curve

has Gn at join point if every pair of the first n derivatives of the two segments has the

same direction at the join point.

If the same derivatives also have identical magnitudes at the join point, then the

curve is said to have Cn parametric continuity at the join point. C0, C1, and C2 referred

as point, tangent, and curvature continuity, respectively. Apart from that, C−1 indicates

the curve which includes discontinuities. Since Cn is more restrictive than Gn, thus a

curve that has Cn continuity at a join point ensures the Gn continuity, but not vice-

versa. Therefore, a curve which tangent vector and curvature vector are continuous

everywhere is said to have G2 continuity.

2.1.2 B-splines

There are number of ways to define the B-splines. They are defined as divided

differences of truncated power function by Curry and Schoenberg (1966), blossom-

ing by Ramshaw (1987) and recurrence formula by de Boor (1972), Cox (1972), and

Mansfield. The recurrence formula is widely used because it is suitable for computer

implementation (Kong, 2013). Some of the advantages of B-spline curve include the

B-spline curve that features local control and any desired degree of continuity without

having to depend on the number of control points. There is an approach to control

the shape of the curve which is known as knots. Let T = {t0, t1, t2, . . . , tn} be a non-
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decreasing sequence of real numbers, t0 ≤ t1 ≤ t2 ≤ ... ≤ tn. Each ti is called a knot

and t = (t0, t1, t2, . . . , tn) is known as the knot vector.

The equation of B-spline is defined as follows:

Given the knot vector, t such that

t = (t0, t1, t2, . . . , tn−1, tn, tn+1, . . . , tn+k).

The associated B-spline basis functions of order k (degree k−1), which is denoted as

Nk
i (t), is defined recursively by

N1
i (t) =


1, ti ≤ t < ti+1

0, otherwise

for k = 1 and

Nk
i (t) =

t − ti
ti+k−1 − ti

Nk−1
i (t)+

ti+k − t
ti+k − ti+1

Nk−1
i+1 (t)

for k > 1 and i = 0,1,2, . . . ,n.

If the knot vectors are equally spaced that is ti+1 − ti = constant, for all i, then

it produces uniform knot vectors and the resulting B-spline are called uniform B-

splines. The example of uniform knot vector is (0,1,2,3,4,5). If the knot vectors

are non-equally spaced but subjected to the constraint such that ti ≤ ti+1, for all i,

then it is a non-uniform knot vector. The example of non-uniform knot vector is

(0,2,5,6,6,11,20). Another type is known as open uniform knot vectors which has

k equal knot values at each end. An open knot vector can be generated based on the
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values for n and k as shown below:

ti =



t0, 0 ≤ i ≤ k−1

ti : t j+1 − t j = constant,k−1 ≤ j ≤ n, k ≤ i ≤ n

tn+k, n+1 ≤ i ≤ n+ k.

Figure 2.1 shows the plot of the first four B-spline basis functions, Nk
i (t) on the

same axes.

Figure 2.1: The uniform B-spline basis functions for 1 ≤ k ≤ 4 and i = 0

Figure 2.2 shows the plot of the uniform B-spline basis functions, Nk
i (t) of order

k = 3.

Figure 2.2: The uniform B-spline basis functions of order k = 3 and 0 ≤ i ≤ 2
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The general (uniform and non-uniform) B-spline curve of order k (degree k-1) can

be defined as

Q(t) =
n

∑
i=0

PiNk
i (t), tk−1 ≤ t ≤ tn+1.

The vectors Pi ∈ R2 (or R3) for i such that 0 ≤ i ≤ n, are known as de Boor points or

control points of the curve. The polygon formed by connecting the de Boor points with

the line segments is called the de Boor polygon or control polygon of the curve. The

curve Q(t) is in the parametric form. Each control point is multiplied by its basis that is

Nk
i (t) and in the range of knot values [tk−1, tn+1]. The basis blends the contributions of

the different control points. In addition, any terms of the form 0
0 or x

0 in the calculation

of the basis functions are assumed to be zero. Each basis function Nk
i (t) > 0 when it

has support on the interval (ti, ti+k), whereas it is zero outside its support. The partition

of unity, that is the basis are barycentric such that ∑n
i=0 Nk

i (t) = 1 for t ∈ [tk−1, tn+1].

The basis Nk
i (t) has parametric continuity Ck−2 at each simple knot ti. The knot vec-

tor (t0, t1, . . . , tn+k) consists of n+ k+ 1 nondecreasing real numbers ti. A few more

properties of B-spline curve include:

i) The B-spline curve can be plotted by varying the parameter t over the range of

knot values [tk−1, tn+1].

ii) Each segment of the curve (between two consecutive knot values) depends on k

control points, which implies the local control property of the curve.

iii) Any control point participates in at most k segments.

iv) The curve and its first k−2 derivatives are continuous over the entire range. The

non-uniform B-splines can have discontinuities.
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