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KEBAKBINTANGAN BEBERAPA PENGOPERASI KAMIRAN
DAN SIFAT SUBKELAS FUNGSI HAMPIR CEMBUNG

ABSTRAK

Disertasi ini mengkaji syarat cukup bagi fungsi analisis bernilai kompleks bak-

bintang dalam cakera unit dan ciri-ciri suatu subkelas fungsi hampir cembung. Suatu

kajian ringkas mengenai konsep asas dan keputusan dari teori fungsi univalent anali-

tik telah diberikan. Syarat cukup bagi fungsi analitik yang tertakrif dalam cakera unit

untuk menjadi bak-bintang peringkat β yang mematuhi ketidaksamaan pembezaan ke-

tiga. Dengan menggunakan ketidaksamaan pembezaan ketiga, kebakbintangan suatu

pengoperasi kamiran akan diperoleh. Keputusan yang diperoleh menyatukan hasil ka-

jian terdahulu. Tambahan pula, suatu subklass fungsi hampir cembung yang baru telah

diperkenalkan dan beberapa keputusan menarik telah diperoleh seperti sifat rangkum-

an, anggaran ketidaksamaan Fekete-Szego bagi fungsi tergolong dalam klass, anggaran

pekali, dan syarat cukup.
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STARLIKENESS OF CERTAIN INTEGRAL OPERATORS AND
PROPERTIES OF A SUBCLASS OF CLOSE-TO-CONVEX

FUNCTIONS

ABSTRACT

The present dissertation investigates the sufficient conditions for an analytic func-

tion to be starlike in the open unit disk D and some properties of certain subclass of

close-to-convex functions. A brief survey of the basic concepts and results from the

classical theory of analytic univalent functions are given. Sufficient conditions for ana-

lytic functions satisfying certain third-order differential inequalities to be starlike in D

is derived. As a consequence, conditions for starlikeness of functions defined by triple

integral operators are obtained. Connections are also made to earlier known results.

Furthermore, a new subclass of close-to-convex functions is introduced and studied.

Some interesting results are obtained such as inclusion relationships, an estimate for

the Fekete-Szegö functional for functions belonging to the class, coefficient estimates,

and a sufficient condition.
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CHAPTER 1

INTRODUCTION

1.1 A Short History

Geometric function theory is a branch of complex analysis, which studies the ge-

ometric properties of analytic functions. The theory of univalent functions is one of

the most important subjects in geometric function theory. The study of univalent func-

tions was initiated by Koebe [21] in 1907. One of the major problems in this field had

been the Bieberbach [4] conjecture dating from the year 1916, which asserts that the

modulus of the nth Taylor coefficient of each normalized analytic univalent function

is bounded by n. The conjecture was not completely solved until 1984 by French-

American mathematician Louis de Branges [9].

1.2 Basic Definitions And Properties Of The Class Of Univalent Functions

Let C be the complex plane of complex numbers. A domain is an open connected

subset of C. A domain is said to be simply connected if its complement is connected.

Geometrically, a simply connected domain is a domain without any holes in it. A

complex-valued function f of a complex variable is said to be differentiable at a point

z0 ∈ C if it has a derivative

f ′(z0) = lim
z→z0

f (z)− f (z0)

z− z0

1



at z0. The function f is analytic at z0 if it is differentiable at every point in some

neighborhood of z0. It is one “miracle” of complex analysis that an analytic function f

must have derivatives of all order at z0 and has a Taylor series expansion

f (z) =
∞

∑
n=0

an(z− z0)
n, an =

f (n)(z0)

n!
,

which converges in some open disk centered at z0. It is analytic in a domain if it is

analytic at every point of the domain.

Definition 1.1. [15] A function f on C is said to be univalent (one-to-one) in a domain

D ⊂ C if for z1,z2 ∈ D,

f (z1) = f (z2) ⇒ z1 = z2,

or equivalently

z1 6= z2 ⇒ f (z1) 6= f (z2).

A function f is said to be locally univalent at a point z0 ∈D if it is univalent in some

neighborhood of z0. For analytic functions f , the condition f ′(z0) 6= 0 is equivalent to

local univalence at z0. A function f univalent in a domainD is locally univalent at each

of the points in D, but the converse is not true in general. For example, consider the

function f (z) = z2 in the domain C−{0}. Since f ′(z) = 2z 6= 0 for z 6= 0, it follows

that f (z) = z2 is locally univalent in C−{0}. But f (−z) = (−z)2 = z2 = f (z), so this

function is not univalent in the whole domain C−{0}. However, f (z) = z2 is univalent

on {z ∈ C : ℜz > 0}. (Here, ℜz denote the real part of z.)

Noshiro [36] and Warschawski [56] independently provides a sufficient condition

2



for an analytic function to be univalent in a convex domain D, which is now known

as the Noshiro-Warschawski Theorem. A domain D is convex if the line segment

joining any two points in D lies completely in D, that is, for every z1,z2 ∈ D, we have

z1 + t(z2− z1) ∈ D for 0 ≤ t ≤ 1. Examples of convex domain are circular disk and

half-plane.

Theorem 1.1. (Noshiro-Warschawski Theorem) [36, 56] If f is analytic in a convex

domain D, and ℜ{ f ′} > 0 in D, then f is univalent in D. (Here, ℜ{ f ′} denote the

real part of f ′.)

Proof. We will show that f (z1) 6= f (z2) for all z1,z2 ∈D with z1 6= z2. Choose distinct

points z1,z2 ∈D. SinceD is a convex domain, the straight line segment z = z1+ t(z2−

z1),0 ≤ t ≤ 1, must lie in D. By integrating along this line segment from z1 to z2, we

have

f (z2)− f (z1) =
∫ z2

z1

f ′(z) dz =
∫ 1

0
f ′
(

z1 + t(z2− z1)
)
(z2− z1) dt.

Dividing by z2− z1 and taking the real part, we get

ℜ

{
f (z2)− f (z1)

z2− z1

}
= ℜ

{∫ 1

0
f ′
(

z1 + t(z2− z1)
)

dt

}
.

Since f is analytic in D, f ′ exists and is analytic in D. It is known that an analytic

function is differentiable and continuous in D. It follows that

ℜ

{∫ 1

0
f ′
(

z1 + t(z2− z1)
)

dt

}
=
∫ 1

0
ℜ

{
f ′
(

z1 + t(z2− z1)
)}

dt.

3



Since ℜ{ f ′}> 0 for all z ∈ D, it follows that

ℜ

{
f (z2)− f (z1)

z2− z1

}
=
∫ 1

0
ℜ

{
f ′
(

z1 + t(z2− z1)
)}

dt > 0.

Hence,

f (z2)− f (z1)

z2− z1
6= 0

and so f (z1) 6= f (z2).

Let H denote the class of all analytic functions in the unit disk D := {z ∈ C : |z|<

1}. For a positive integer n and a ∈ C, let

H[a,n] =

{
f ∈H : f (z) = a+

∞

∑
k=n

akzk, z ∈ D

}

and

An =

{
f ∈H : f (z) = z+

∞

∑
k=n+1

akzk, z ∈ D

}
,

withA1 :=A. So,A is the class of analytic functions in D with normalization f (0) = 0

and f ′(0) = 1. The subclass of A consisting of univalent functions is denoted by S.

Example 1.1. An important example of functions in the class S is the Koebe function,

given by

k(z) =
z

(1− z)2 =
∞

∑
n=1

nzn = z+2z2 +3z3 + · · · .

It is easy to verify that the Koebe function is analytic, normalized and univalent

in D. Since the Koebe function is differentiable at every z ∈ D, it follows that Koebe

function is analytic in D. Also, the Koebe function satisfies the condition k(0) = 0 and

4



k′(0) = 1 where k′(z) = (1+ z)/(1− z)3. Hence, the Koebe function is normalized in

D. To see that the Koebe function is univalent in D, suppose that k(z1) = k(z2), that is,

z1

(1− z1)2 =
z2

(1− z2)2 , z1,z2 ∈ D.

After a simple computation, we get

(z1− z2)(1− z1z2) = 0.

Since z1,z2 ∈ D, we have |z1|< 1 and |z2|< 1 and therefore |z1z2|= |z1||z2|< 1. This

shows that 1− z1z2 6= 0 in D. Thus we must have z1− z2 = 0, that is, z1 = z2. So, the

Koebe function, k is univalent in D.

Geometrically, the Koebe function maps D univalently onto the entire complex

plane minus the negative axis from −1/4 to infinity. This can be seen by observing

that the Koebe function can be written as a composition of three univalent analytic

functions, that is,

(u3 ◦u2 ◦u1)(z) =
1
4

[(
1+ z
1− z

)2

−1

]
=

z
(1− z)2 ,

where

u1(z) =
1+ z
1− z

, u2(z) = z2, and u3(z) =
1
4
[z−1].

It is easy to see that u1,u2 and u3 are analytic and they map univalently on this

composition. Since u1 is the quotient of two analytic functions 1+z and 1−z, therefore

it is analytic in D. To see that u1 is univalent in D, suppose that u1(z1) = u1(z2), that

5



is,

1+ z1

1− z1
=

1+ z2

1− z2
, z1,z2 ∈ D.

After simplifying, we obtain z1− z2 = 0 or z1 = z2. Hence, the function u1(z) = (1+

z)/(1− z) is univalent in D. We have

ℜ{u1(z)}= ℜ

{
1+ z
1− z

}
=

1
2

(
1+ z
1− z

+
1+ z
1− z

)
=

1
2

(
1+ z
1− z

+
1+ z
1− z

)
=

1−|z|2

|1− z|2
> 0

for |z| < 1. Since u1(0) = 1, it follows that D is mapped univalently onto the right

half-plane, {z ∈ C : ℜ{z}> 0}, under the mapping u1(z) = (1+ z)/(1− z).

Figure 1.1: The image of unit disk D under the mapping u1(z) = (1+ z)/(1− z). �

Since u2 is the product of two analytic functions z, it follows that u2 is analytic in

the right half plane (a convex domain). For u2(z) = z2, ℜ{z}> 0, we have

ℜ{u′2(z)}= 2ℜ{z}> 0.

Hence, by Noshiro - Warschawski Theorem (Theorem 1.1), the function u2(z) is uni-

valent in the right half plane. Note that the upper right half plane is mapped onto upper

6



half plane, positive real axis is mapped onto positive real axis and the lower right half

plane is mapped onto lower half plane. Note that u2(0) = 0 and the imaginary axis is

mapped onto the negative real axis. Since the origin and the imaginary axis lies out-

side of the right half plane, it follows that the function u2 mapped the right half plane

univalently onto the entire complex plane minus the nonnegative real axis.

Figure 1.2: The image of right half plane under the mapping u2(z) = z2.

Clearly, u3 is analytic in entire complex plane minus the nonnegative real axis. To

see that u3 is univalent, suppose that u3(z1) = u3(z2), that is,

1
4
(z1−1) =

1
4
(z2−1).

After simplifying, we obtain z1− z2 = 0 or z1 = z2. Hence, u3 is univalent in entire

complex plane minus the nonnegative real axis. So, u3 translates the nonnegative real

axis one space to the left and multiplies by a factor of 1/4. Therefore, u3 maps the

entire complex plane except for the nonnegative real axis univalently onto the entire

complex plane minus the negative axis from −1/4 to infinity.

7



Figure 1.3: The image domain under the mapping u3(z) = 1
4(z−1).

For every function f (z) = z+∑
∞
n=2 anzn in S, Bieberbach [4] showed that the sec-

ond coefficient a2 of the series expansion is bounded by 2, which is now known as

Bieberbach’s Theorem.

Theorem 1.2. [4] (Bieberbach’s Theorem) If f (z) = z+∑
∞
n=2 anzn ∈ S, then |a2| ≤ 2,

with equality if and only if f is a rotation of the Koebe function.

The extremal property of the Koebe function tempted Bieberbach [4] to conjecture

that |an| ≤ n holds for all f in S. This conjecture was popularly known as Bieberbach’s

conjecture.

Conjecture 1.1. [4] (Bieberbach’s Conjecture) The coefficients of each function f (z)=

z+∑
∞
n=2 anzn ∈S satisfy |an| ≤ n for n= 2,3, . . . . Strict inequality holds for all n unless

f is the Koebe function or one of its rotations.

The conjecture had been proven for the case n= 2,3,4,5,6 by some researchers be-

fore Louis de Branges [9] proved the general case |an| ≤ n in 1984. This is summarized

in the table below.

8



Researchers Result

Bieberbach [4] (1916) |a2| ≤ 2

Löwner [29] (1923) |a3| ≤ 3

Garabedian and Schiffer [14] (1955) |a4| ≤ 4

Pederson [42] (1968), Ozawa [39] (1969) |a6| ≤ 6

Pederson and Schiffer [41] (1972) |a5| ≤ 5

de Branges [9] (1984) |an| ≤ n

Nowadays, the Bieberbach conjecture is also called the de Branges Theorem.

1.2.1 Function With Positive Real Part And Subordination

Definition 1.2. [15] An analytic function of the form

p(z) = 1+
∞

∑
n=1

cnzn

in D with ℜ{p(z)}> 0 is called a function of positive real part or Carathéodory func-

tion. The set of all functions of positive real part in D is denoted by P.

Example 1.2. The Möbius function

m(z) =
1+ z
1− z

= 1+2z+2z2 + · · ·= 1+2
∞

∑
n=1

zn,

is in the class P since ℜ{(1+ z)/(1− z)}> 0, as shown in Example 1.1. �

Example 1.3. The function

w(z) =
1+ zn

1− zn , n = 1,2,3, . . .

9



belongs to P for |z| < 1. To see this, note that w(0) = 1. Further, w(z) = (m ◦ φ)(z)

where m is the Möbius function and φ(z) = zn. Since |φ(z)| < 1, it follows from Ex-

ample 1.2 that ℜ{w}> 0. �

In 1911, Herglotz [18] obtained an integral formula for functions in the class P.

Theorem 1.3. [18] Let p be an analytic function in D satisfying p(0) = 1. Then p ∈P

if and only if

p(z) =
∫ 2π

0

1+ ze−it

1− ze−it dµ(t),

where dµ(t)≥ 0 and
∫ 2π

0 dµ(t) = µ(2π)−µ(0) = 1.

The Herglotz formula gives the bounds for the coefficients of functions in P. This

result is due to Carathéodory.

Theorem 1.4. [5] If p ∈ P with p(z) = 1+∑
∞
n=1 pnzn, z ∈ D, then |pn| ≤ 2 for all

n ∈ N. These estimates are sharp.

Proof. Since p ∈ P, by Theorem 1.3, we have

p(z) =
∫ 2π

0

1+ ze−it

1− ze−it dµ(t),

where dµ(t)≥ 0 and
∫ 2π

0 dµ(t) = µ(2π)−µ(0) = 1. Therefore,

p(z) =
∫ 2π

0

1+ ze−it

1− ze−it dµ(t)

=
∫ 2π

0
(1+2ze−it +2z2e−2it +2z3e−3it + · · ·)dµ(t)

= 1+
∞

∑
n=1

(
2
∫ 2π

0
e−intdµ(t)

)
zn.

10



Now comparing this with p(z) = 1+∑
∞
n=1 pnzn yields

pn = 2
∫ 2π

0
e−intdµ(t).

Hence,

|pn|= 2

∣∣∣∣∣
∫ 2π

0
e−intdµ(t)

∣∣∣∣∣
≤ 2

∫ 2π

0
|e−int ||dµ(t)|

= 2
∫ 2π

0
dµ(t)

= 2.

The Möbius function in Example 1.2 showed that the bound |pn| ≤ 2 is sharp.

Closely related to the class P is the class of functions with positive real part of

order α,0≤ α < 1.

Definition 1.3. [15] An analytic function p with the normalization p(0) = 1 in D is

said to be a function of positive real part of order α , 0≤ α < 1 if ℜ {p(z)}> α. The

set of all functions of positive real part of order α is denoted by P(α). Observe that

for α = 0, we have P(0) = P.

Example 1.4. Consider the function f (z) = 1/(1− z), z ∈D. Since f is differentiable

for all z ∈ D, it is analytic in D. Clearly, f (0) = 1. Furthermore,

ℜ

{
1

1− z

}
= ℜ

{
1
2

(
1+ z
1− z

+1

)}
=

1
2

ℜ

{
1+ z
1− z

}
+

1
2
> 0+

1
2
=

1
2
.

Therefore, the function f (z) = 1/(1− z) belongs to P(1/2).

11



Figure 1.4: The real part of f (z) = 1/(1− z). �

Example 1.5. The function

f (z) =
1+(1−2α)z

1− z
= (1−α)

(
1+ z
1− z

)
+α = 1 + 2(1−α)

∞

∑
n=1

zn

is in the class P(α) for 0≤ α < 1. Clearly, f (0) = 1. Also,

ℜ

{
(1−α)

(
1+ z
1− z

)
+α

}
= (1−α)ℜ

{
1+ z
1− z

}
+α > α

using the fact that ℜ {(1+ z)/(1− z)}> 0 as in Example 1.1. For α = 0, we have the

inequality

ℜ{ f (z)}= ℜ

{
1+ z
1− z

}
> 0

which has been discussed in Example 1.1.

12



Figure 1.5: The real part of f (z) = (1+ z)/(1− z). �

Definition 1.4. A function ω which is analytic in D and satisfies the properties ω(0) =

0 and |ω(z)| < 1 is called a Schwarz function. The class of all Schwarz functions is

denoted by Ω.

Definition 1.5. For analytic functions f and g on D, we say that f is subordinate to g,

denoted f ≺ g, if there exists a Schwarz function ω in D such that

f (z) = g(ω(z)), z ∈ D.

Example 1.6. The function z2 is subordinate to z in D. Referring to Definition 1.5, we

can choose ω(z) = z2. Clearly, ω is analytic in D and ω(0) = 0. Also, |ω(z)|= |z2|=

|z|2 < 1 since z ∈ D. �

Example 1.7. The function z4 is subordinate to z2 in D. Referring to Definition 1.5, we

can choose ω(z) = z2. Clearly, ω is analytic in D and ω(0) = 0. Also, |ω(z)|= |z2|=

|z|2 < 1 since z ∈ D. In general, we have z2n ≺ z2 in D for n a positive integer. �
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Theorem 1.5. Let f and g be analytic in D. If g is univalent in D, then f ≺ g if and

only if f (D)⊂ g(D) and f (0) = g(0).

Proof. Suppose f ≺ g. By Definition 1.5, there exists a Schwarz function ω such that

f (z)= g(ω(z)). Since ω(D)⊂D, it follows that f (D)= g(ω(D))⊂ g(D). Also f (0)=

g(ω(0)) = g(0).

Conversely, suppose f (D) ⊂ g(D) and f (0) = g(0). Since g is univalent in D, it

follows that g maps D one-to-one onto its image g(D). Therefore, the inverse g−1 exists

in g(D) and maps g(D) onto D. Since g is analytic in D, the inverse g−1 is also analytic

in g(D). Since f (D)⊂ g(D), it follows that the function

ω(z) := g−1( f (z))

is analytic in D and |ω(z)| < 1. Thus, we obtain f (z) = g(ω(z)). From this, we have

g(ω(0)) = f (0) = g(0). Since g is univalent, this forces ω(0) = 0 by Definition 1.1.

So, ω is a Schwarz function such that f (z) = g(ω(z)) for z ∈D. Therefore, f ≺ g.

1.2.2 Subclasses Of Univalent Functions

In the course of tackling the Bieberbach conjecture, new classes of analytic and

univalent functions were defined and some nice properties of these classes were widely

investigated. Examples of such classes are the classes of starlike, convex and close-to-

convex functions.

A domain D ⊂ C is said to be starlike with respect to a point w0 in D if every line

14



joining the point w0 to every other point w inD lies entirely insideD. A domain which

is starlike with respect to the origin is simply called a starlike domain. Geometrically,

a starlike domain is a domain whose all points can be seen from the origin. A function

f ∈ A is called a starlike function if f (D) is a starlike domain. The subclass of S

consisting of all starlike functions is denoted by S∗.

Theorem 1.6. [10, Theorem 2.10] Let f ∈ A. Then f ∈ S∗ if and only if

ℜ

(
z f ′(z)
f (z)

)
> 0, z ∈ D.

Example 1.8. Recall from Example 1.1, the Koebe function k(z) = z/(1− z)2 is ana-

lytic and normalized in D. Moreover, k is in S∗ since

ℜ

{
zk′(z)
k(z)

}
= ℜ

{
z(1+ z)
(1− z)3

(1− z)2

z

}
= ℜ

{
1+ z
1− z

}
> 0. �

Example 1.9. The function

f (z) =
z

1− z2 =
∞

∑
n=0

z2n+1

is analytic in D since f is differentiable at all z ∈ D. Clearly, f (0) = 0. Since f ′(z) =

(1+ z2)/(1− z2)2, it follows that f ′(0) = 1. Also,

ℜ

{
z f ′(z)
f (z)

}
= ℜ

{
z(1+ z2)

(1− z2)2
(1− z2)

z

}
= ℜ

{
1+ z2

1− z2

}
> 0.

The last inequality follows from Example 1.3. Hence, the function f (z) = z/(1− z2)

is starlike on D.
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Figure 1.6: The image of D under the mapping f (z) = z/(1− z2). �

A domainD⊂C is said to be convex if every linear segment joining any two points

in D lies completely inside D. In other words, the domain D is convex if and only if

it is starlike with respect to every point in D. A function f ∈ A is said to be convex

if f (D) is a convex domain. The subclass of S consisting of all convex functions is

denoted by C.

Theorem 1.7. [10, Theorem 2.11] Let f ∈ A. Then f ∈ C if and only if

ℜ

(
1+

z f ′′(z)
f ′(z)

)
> 0, z ∈ D.

Example 1.10. The identity function f (z)= z is a convex function. Note that f ′′(z)= 1

and f ′′(z) = 0. Hence,

ℜ

{
1+

z f ′′(z)
f ′(z)

}
= 1 > 0. �

Example 1.11. The function

f (z) =
z

1− z
=

∞

∑
n=1

zn

16



is analytic in D since f is differentiable in D. Clearly, f (0) = 0. Since f ′(z) = 1/(1−

z)2, it follows that f ′(0) = 1. Also, f ′′(z) = 2/(1− z)3. Hence,

ℜ

{
1+

z f ′′(z)
f ′(z)

}
= ℜ

{
1+

2z(1− z)2

(1− z)3

}
= ℜ

{
1+ z
1− z

}
> 0.

Therefore, the function z/(1− z) is convex in D.

Figure 1.7: The image of unit disk D under the mapping f (z) = z/(1− z). �

Example 1.12. The function

f (z) =− log(1− z) =
∞

∑
n=1

zn

n

is analytic in D since f is differentiable at every z∈D. Clearly, f (0) = 0. Since f ′(z) =

1/(1− z), it follows that f ′(0) = 1. Also, f ′′(z) = 1/(1− z)2. So,

ℜ

{
1+

z f ′′(z)
f ′(z)

}
= ℜ

{
1+

z(1− z)
(1− z)2

}
= ℜ

{
1

1− z

}
.

From Example 1.4, it has been shown that ℜ{1/(1−z)}> 1/2. It follows that ℜ{1/(1−

z)}> 0. Hence, the function f (z) =− log(1− z) is convex on D.
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Figure 1.8: The image of D under the mapping f (z) =− log(1− z). �

Example 1.13. The function

f (z) =
1
2

log
1+ z
1− z

=
∞

∑
n=0

z2n+1

2n+1

is analytic in D since f is differentiable at every z ∈ D. Clearly, f (0) = 0. Note that

f ′(z) = 1/(1− z2) and therefore f ′(0) = 1. Also, f ′′(z) = 2z/(1− z2)2. Hence,

ℜ

{
1+

z f ′′(z)
f ′(z)

}
= ℜ

{
1+

2z2(1− z2)

(1− z2)2

}
= ℜ

{
1+ z2

1− z2

}
> 0,

by Example 1.3. Therefore, f (z) = (1/2)[log(1+ z)/(1− z)] is convex in D.

Figure 1.9: The image of D under the mapping f (z) = (1/2)[log(1+ z)/(1− z)]. �
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Remark 1.1. Every convex function f in D is evidently starlike because the convex

domain f (D) is also a starlike domain (starlike with respect to the origin) since f

always maps origin to origin. The converse is not true in general as shown by the

Koebe function, k(z) = z/(1− z)2. We have seen in Example 1.8 that k is a starlike

function. Now, note that since k′(z) = (1+ z)/(1− z)3 and k′′(z) = 2(z+2)/(1− z)4,

it follows that

ℜ

{
1+

zk′′(z)
k′(z)

}
= ℜ

{
1+

2z(z+2)
(1− z)4

(1− z)3

(1+ z)

}
= ℜ

{
z2 +4z+1

1− z2

}
.

For z =−1/2 ∈ D, we have

ℜ

(
z2 +4z+1

1− z2

)
=−1 < 0.

Hence, Koebe function is not convex in D. Alternatively, we can also show the Koebe

function is not convex in geometric view. Recall that the Koebe function maps D maps

D one-to-one and onto the entire complex plane minus the part of the negative axis

from −1/4 to infinity. Consider the two points −1/4+ i and −1/4− i in the image

domain. Clearly, the line segment joining −1/4+ i and −1/4− i does not lie inside

the image domain. Therefore, the Koebe function is not convex in D.

The two preceding theorems, that is, Theorem 1.6 and Theorem 1.7, provide a

connection between starlikeness and convexity. This was first observed by Alexander

[2] in 1915.

Theorem 1.8. (Alexander’s Theorem) [2] A function f ∈A is convex in D if and only

if the function g defined by g(z) = z f ′(z) is starlike in D.
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Proof. If g(z) = z f ′(z), then

zg′(z)
g(z)

=
z(z f ′′(z)+ f ′(z))

z f ′(z)
= 1+

z f ′′(z)
f ′(z)

.

If the function f is convex, by Theorem 1.7, we have ℜ{1+ z f ′′(z)/ f ′(z)}> 0. Since

ℜ{zg′(z)/g(z)} = ℜ{1+ z f ′′(z)/ f ′(z)} > 0, the function g is starlike. The converse

follows similarly from above.

The Alexander’s Theorem (Theorem 1.8) can be rephrased in the form f ∈ S∗ if

and only if the function

g(z) =
∫ z

0

f (t)
t

dt

is convex in D.

Example 1.14. Consider the function f (z) = z/(1− z). Since f is convex by Example

1.11, the function

g(z) = z f ′(z) =
z[(1− z)− z(−1)]

(1− z)2 =
z

(1− z)2

is starlike in D. Notice that g is the Koebe function. �

The Bieberbach conjecture for the class S∗ of starlike functions holds true and it

was proved by Nevalinna [35] in 1921.

Theorem 1.9. [35, see also 15] If f (z) = z+∑
∞
n=2 anzn ∈ S∗, then |an| ≤ n for all n.

The inequality is sharp, as shown by the Koebe function, k(z) = z/(1− z)2.

Using Alexander’s Theorem (Theorem 1.8), the coefficient bound for class C of
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convex functions is easily deduced. This result was proved by Löewner [27] in 1917.

Theorem 1.10. [27, see also 15] If f (z) = z+∑
∞
n=2 anzn ∈ C, then |an| ≤ 1 for all n.

The inequality is sharp for all n.

Proof. Since f (z) = z+∑
∞
n=2 anzn is in C, by Theorem 1.8,

z f ′(z) = z+
∞

∑
n=2

nanzn

is in S∗. By Theorem 1.9, we have n|an| ≤ n. Hence, |an| ≤ 1. Since z/(1− z) =

z+ z2 + z3 + · · · , and it is convex by Example 1.11, the bound |an| ≤ 1 is sharp.

In 1936, Robertson [45] introduced the classes S∗(α) and C(α) of starlike and

convex functions of order α,0≤ α < 1, respectively, which are defined as

S∗(α) =

{
f ∈ A : ℜ

(
z f ′(z)
f (z)

)
> α

}

and

C(α) =

{
f ∈ A : ℜ

(
1+

z f ′′(z)
f ′(z)

)
> α

}
.

For α = 0, we have S∗(0) := S∗ and C(0) := C. As α increases, both classes S∗(α)

and C(α) become smaller. For 0≤ α < 1, the geometrical interpretation of the notion

of convexity of order α is that the ratio of the angle between two adjacent tangents

to the unit circle to the angle between the two corresponding tangents of the image of

the unit circle is less than 1/α and comes arbitrarily close to 1/α for some point of

the unit circle [45]. Unfortunately, the class S∗(α) do not admit any clear geometric

interpretation for 0≤ α < 1.
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Example 1.15. Consider the function kα(z) = z/(1− z)2(1−α), where 0≤ α < 1. The

function kα is analytic in D since it is differentiable at all z ∈ D. Clearly, kα(0) = 0.

Since k′α(z) = [1+(1−2α)z]/(1− z)3−2α , it follows that k′α(0) = 1. Note that

ℜ

{
zk′α(z)
kα(z)

}
= ℜ

{
z(1+(1−2α)z)

(1− z)3−2α

(1− z)2(1−α)

z

}
= ℜ

{
1+(1−2α)z

1− z

}
> α.

Hence, kα is in S∗(α). This function kα is called the Koebe function of order α, as

k0(z) = z/(1− z)2 = k(z), the Koebe function. �

For α = 1/2, we have the class of starlike functions of order 1/2, that is,

S∗(1/2) =

{
f ∈ S : ℜ

(
z f ′(z)
f (z)

)
>

1
2

}
.

Marx [30] and Strohhäcker [50] independently established the connection between the

classes C and S∗(1/2).

Theorem 1.11. [30, 50] If f ∈ C, then f ∈ S∗(1/2). This result is sharp, that is, the

constant 1/2 cannot be replaced by a larger constant.

Example 1.16. From Example 1.11, we know that the function f (z) = z/(1− z) is

convex. Hence, by Theorem 1.11, we can conclude that f (z) = z/(1−z) is also starlike

of order 1/2. Alternatively, we can show directly that ℜ{z f ′(z)/ f (z)}> 1/2. Note that

f ′(z) = 1/(1− z)2. Hence

ℜ

{
z f ′(z)
f (z)

}
= ℜ

{
z

(1− z)2
(1− z)

z

}
= ℜ

{
1

1− z

}
>

1
2
,

where the inequality follows from Example 1.4. �
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For f ∈ S∗(1/2), Schild [48] obtained the coefficient estimates as follows.

Theorem 1.12. [48] If f (z) = z+∑
∞
n=2 anzn ∈ S∗(1/2), then |an| ≤ 1. The inequality

is sharp, as shown by the function z/(1− z).

Another important subclass of univalent analytic functions is the class of close-to-

convex functions, which was introduced by Kaplan [19].

Definition 1.6. [19] A function f ∈A is said to be close-to-convex in D if there exists

a convex function g in D such that

ℜ

{
f ′(z)
g′(z)

}
> 0, z ∈ D. (1.1)

We denote by K the class of close-to-convex functions in D.

Every convex function is obviously close-to-convex in D. Indeed, if f is convex in

D, then by choosing g = f in (1.1), we have

ℜ

{
f ′(z)
g′(z)

}
= ℜ

{
f ′(z)
f ′(z)

}
= 1 > 0.

Equivalently, the condition (1.1) can be written in the form

ℜ

{
z f ′(z)
h(z)

}
> 0, z ∈ D (1.2)

where h(z) = zg′(z) is a starlike function on D by Alexander’s Theorem (Theorem

1.8). In other words, a function f ∈ A is said to be close-to-convex in D if there exists

a starlike function h such that the inequality (1.2) holds.
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Suppose f is a starlike function in D. If choose h = f in (1.2), we have

ℜ

{
z f ′(z)
h(z)

}
= ℜ

{
z f ′(z)
f (z)

}
> 0.

Hence, we can conclude that every starlike function is close-to-convex in D.

Therefore, we have the following inclusion

C ⊂ S∗ ⊂K.

From this, instant examples of close-to-convex functions are z/(1− z) and the

Koebe functions, k(z) = z/(1− z)2. Now, it is also natural to ask if close-to-convex

functions are univalent. Kaplan [19] showed that they are indeed so.

Theorem 1.13. [19] Every close-to-convex function is univalent.

Proof. Suppose f is close-to-convex in D. By Definition 1.6, there exists a convex

function g in D in such that ℜ{ f ′(z)/g′(z)} > 0. Since g is convex, it follows that

g maps D one-to-one and onto convex domain g(D). Therefore, g−1 exists in g(D).

Consider the function

h(w) = f (g−1(w)), w ∈ g(D). (1.3)

Since g is analytic D, it follows that g−1 is also analytic in g(D). Using the fact that

the composition of two analytic functions is analytic, the function h is analytic in D.
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