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INTERPOLASI BERKEKANGAN KEPOSITIFAN 
1

C   

DENGAN SEGI TIGA KUBIK NISBAH BERPEMBERAT 

 

 

ABSTRAK 

 Pembinaan interpolan bivariat kepositifan 
1C  kepada data berselerak dengan 

menggunakan tampalan segi tiga Bézier kubik nisbah dipertimbangkan. Permukaan 

interpolasi dibina cebis demi cebis sebagai gabungan cembung tiga segi tiga Bézier 

kubik nisbah. Syarat cukup keselanjaran 
1C  sepanjang sempadan sepunya dua segi 

tiga Bézier kubik nisbah yang bersebelahan dipaparkan. Syarat cukup untuk 

kepositifan segi tiga Bézier kubik nisbah diterbitkan. Nilai awal ordinat Bézier 

ditentukan dengan data dan kecerunan anggaran pada tapak data manakala pemberat 

diberi nilai satu. Ordinat Bézier sempadan dan pemberat diubahsuai jika perlu supaya 

tampalan yang dihasilkan memenuhi syarat keselanjaran 
1C  dan syarat kepositifan. 

Skema untuk membina interpolan 
1C mengekalkan kepositifan adalah setempat. 

Beberapa contoh berangka digambarkan. 

  



x 
 

 

1
C  POSITIVITY CONSTRAINED INTERPOLATION  

BY WEIGHTED RATIONAL CUBIC TRIANGLES  

 

 

ABSTRACT 

 The construction of positivity bivariate 
1C  interpolants to scattered data using 

rational cubic Bézier triangular patches is considered. The interpolating surface is 

formed piecewise as a convex combination of three rational cubic Bézier triangles. 

Sufficient 
1C  continuity conditions along the common boundary of two adjacent 

rational cubic Bézier triangles are shown. The sufficient positivity conditions on 

rational cubic Bézier triangle are derived. The initial values of the Bézier ordinates 

are determined by the data and the estimated gradient at the data sites while the 

weights are given the value one. The boundary Bézier ordinates and the weights are 

modified if necessary so that the resulting patch satisfies the 
1C  continuity and 

positivity conditions. The scheme for constructing 
1C  non-negativity preserving 

interpolant is local. Several numerical examples are illustrated. 
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CHAPTER 1 

INTRODUCTION 

1.1    Introduction 

Computer-aided geometry design (CAGD) is a young field dealing with 

mathematical description of 2D and 3D shapes used in computer graphics, analysis, 

manufacturing, etc. While this field may be mathematical in nature, it stretches 

across several disciplines such as computer science and engineering fields. Today, 

CAGD is widely used for computer description of parts such as car bodies or phone 

bodies and they are also used in representing scientific data such as terrain models or 

fossil bones. The first work in this field began in the mid-1960s. In 1974, R.E. 

Barnhill and R.F. Riesenfeld 

conference held at the University of Utah. This event was considered as the founding 

event of the field. 

There are several ways to represent 3D shapes in CAGD, some common 

concepts including but not limited to free-form deformation (FFD), tensor-product 

surface, Bézier surface, NURBS and rational Bézier surface. Rational Bézier surface 

is chosen as the interpolation scheme in this thesis due to its popularity. It is easy to 

use, and it is also not as complex compared to NURBS, although NURBS is 

considered as a generalization of rational Bézier surface. 

Bézier surface is a numeric function that is piecewise defined by polynomial 

functions used in computer graphics. It is named after Pierre Bézier, a French 

engineer who invented it in 1962, while he was working in Renault automotive 
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company. He used it to design automobile bodies. The shape of the Bézier surface is 

controlled by a finite number of control points. Piecewise Bézier surfaces are 

commonly used to represent any arbitrary 3D shape with certain level of continuity 

property. Bézier surface is popular due to it is easy to compute and easy to use. It can 

be stitched together to represent any 3D shapes one can imagine and have great 

continuity properties. A more controllable and versatile surface can be achieved if a 

scalar weight is assigned to each control point in Bézier surface. This leads to a 

rational Bézier surface. If all the values of weights assigned to the control points are 

1, the rational Bézier surface can be reduced to a standard polynomial Bézier surface.  

 Sometimes the data collected from experiments are positive data, but the 

interpolating surfaces generated to fit the data might not always be positive. A 

surface that defined on a region is said to be positive if the entire surface lies above 

or just touching with the Cartesian xy-plane, that is the coordinate z of the surface is 

greater than or equal to 0 for all the points in the domain region of the surface. In 

these cases, the positivity preservation of an interpolant is essential. For examples, 

disaster related data such as flood, wind storm and slides, pollution data such as gas 

emission, chemical experiments such as stability of radioactive substance, forecast 

data such as rainfall amounts, population statistics and probability distribution should 

all be presented in positive. 

On the other hand, smoothness is also an important property to have for a 

surface in order to produce visually pleasing graphical results or to achieve specified 

analytical continuity. Smoothness of a surface in mathematical analysis is a property 

measured by number of derivatives it has which are continuous. It circumvents 

certain nasty behaviour, infinities and paradoxes. The smoothness discussed in this 

thesis is continuity that is positional and tangential continuity. 
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1.2    Literature Review 

Visualization of 3D data into surfaces and contour maps is important not only 

in CAGD, but also in scientific research. An interpolant is visualized through the 

data and is used in surface drawing. In modern day, visualization of 3D data alone is 

not enough. ty preservation problem (also known as non-

negativity preservation) has been studied and carried out by number of researchers, 

such as (Dougherty et al., 1989), (Fisher et al., 1991), (Goodman et al., 1991), (Ong 

& Unsworth, 1992), (Brodlie et al., 1995), (Ong & Wong, 1996), (Chan & Ong, 

2001), (Piah, et al., 2005), (Hussain & Hussain, 2009), (Schumaker & Speleers, 2010) 

and (Lai & Meile, 2015). 

(Brodlie et al., 1995) considered the problem of generating interpolants 

subject to linear constraints as lower and upper bounds. Sufficient positivity 

conditions on first partial derivatives and second mixed partial derivatives were 

derived from the result of (Schmidt & Heß, 1988). These derivatives were estimated 

and projected onto the valid intervals defined by sufficient positivity conditions. 

(Ong & Wong, 1996) described a local  scattered data interpolation 

scheme subject to constant lower and upper bounds. The side vertex method for 

interpolation in triangles was used with rational cubics for univariate interpolation 

along the line segments joining a vertex to the opposite edge of the triangle. By using 

the results in (Goodman & Said, 1991), the weights of the rational cubics are 

adjusted to ensure the resulting interpolant is positive. 

In (Chan & Ong, 2001) and (Piah et al., 2005), a local  range restricted 

scattered data interpolation scheme was presented. The interpolating surface is 

obtained piecewise as the convex combination of three cubic Bézier triangular 

patches. Positivity was preserved by adjusting the first partial derivatives at data sites 
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and determining the lower bound on the Bézier ordinates. Piah et al., (2005) 

proposed a more relaxed lower bound for the Bézier ordinates. 

In (Hussain & Hussain, 2009), a local  positivity preserving scheme was 

developed using Bernstein-Bézier rational cubic function. The sufficient positivity 

conditions are derived by imposing lower bound on the inner and boundary Bézier 

ordinates. The derivation of lower bound on Bézier ordinates was motivated by the 

ideas in (Piah et al., (2005). However, the weights acted as free parameters which 

used to refine the shape of the interpolant. 

(Schumaker & Speleers, 2010) constructed a positive bivariate interpolant to 

scattered data using splitting method with  Bernstein Bézier spline. Positivity of 

the spline is insured by adjusting gradients at the data points when the data set is 

positive. The gradients are adjusted such that the Bézier ordinates satisfy the lower 

bound of positivity. The proposed method is local. 

Last but not least, (Lai & Meile, 2015) proposed a constrained minimal 

energy method to find a  smooth interpolation of positive data values over 

scattered location using bivariate splines. Uniqueness and existence of the minimizer 

were established under mild assumptions on the data locations and triangulations. 

Then, the classic projected gradient algorithm was used to find the minimizer using a 

simplified positive constraint. 

 

1.3    Motivation 

In the recent 20 years, there are an increasing number of studies in shape 

preserving interpolation and approximation. Despite of that, there were not many 

studies especially in shape preserving surface interpolation using rational Bézier as 

shape preserving interpolant and utilized the benefit of weight parameters in rational 
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Bézier. This has created a motivation to study further on how to manipulate weight 

parameters in rational Bézier to control the shape of the resulting surface, and how 

they can be used to preserve surface positivity.  

 

1.4    Problem Statement 

 Consider a matter where a set of positive 3D data needs to be presented 

graphically. A surface that interpolates the given data and preserves the positivity 

inherent in the data is pursued. Moreover the resulting interpolant should possess 

positional and tangential continuities. Rational Bézier spline is utilized to construct 

the desired surface. A new challenge in this study is to achieve surface positivity by 

using rational Bézier as interpolant and adjusting weight parameters in the rational 

Bézier. Minimum point of rational Bézier patch is computed and analysed such that 

it will be positive which implies the whole surface is positive.    

 

1.5    Thesis Objective 

 The main objective in this thesis is to develop an alternative method to 

achieve  positive surface using rational Bézier surface. Differ from other 

researches, this research deals on manipulating weight parameters in rational Bézier 

patches to obtain positive patches. The patches are constructed piecewise to form a  

 continuous surface. A set of new sufficient conditions of positivity preservation 

for rational Bézier patch should be derived, and imposed onto the weight parameters 

to produce positive surface. 

 

 

 



6 

1.6    Methodology 

In this thesis, the construction of  positivity preserving interpolants to 

scattered data using rational cubic Bézier triangular patches is considered. Rational 

cubic Bézier is used because it is the lowest patch to be able to produce  positive 

interpolant. The data are triangulated such that the data points are used as the vertices 

of triangulation. The resulting interpolant to the data is a piecewise convex 

combination of three rational cubic Bézier triangular patches. The initial values of 

the Bézier ordinates of a rational cubic Bézier triangular patch are determined by the 

given data and the gradients specified at the data sites, while all the weights of the 

rational Bézier patch are initially set to have the value 1. The boundary Bézier 

ordinates of rational Bézier patch are constrained by a lower bound of positivity 

conditions. They are modified if necessary by adjusting the gradients at the data sites 

so that the boundary curves of the patch are positive. Instead of imposing lower 

bound to inner Bézier ordinate, the weights of rational Bézier patch are utilized to 

obtain positivity of the patch. The weights at three corners of the patch are increased 

if necessary such that the interior patch is positive. The scheme for constructing the 

positivity preserving interpolant is local. The interpolant to be constructed has a 

smoothness of  continuity.  

 

1.7    Thesis Outline 

The layout of this thesis is arranged in the following sequence. Chapter 1 

provides a brief introduction to CAGD, a comprehensive literature review, the 

problem statements, objectives and methodology of this study. Chapter 2 gives an 

introduction to rational cubic Bézier triangular patch and some useful intrinsic 

properties of the rational patch such as endpoint interpolation, convex hull property 
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as well as effect of weights towards the patch. The directional derivative equations of 

rational cubic Bézier triangular patches are also provided which will be used in the 

surface continuity. 

 continuity conditions for two adjacent rational cubic Bézier triangular 

patches are presented in Chapter 3. The effect of corner weights towards  

continuity is also discussed in this chapter. In Chapter 4, sufficient positivity 

conditions proposed in (Piah et al., 2005) for cubic Bézier patch are stated. The core 

of this chapter discusses on the formulation of conditions for rational cubic Bézier 

triangular patch to be positive. The work of derivation is inspired by the one shown 

in (Pial et al., 2005). A way to determine minimum point of rational cubic surface is 

proposed in which up to 10 different cases are studied. A set of sufficient positivity 

conditions for a rational cubic Bézier patch to be positive is derived. 

 In Chapter 5, a local scheme for  positivity preserving interpolation to 

scattered data is presented. Given positive data, the domain is triangulated by using 

Delaunay triangulation method (Fang & Piegl, 1992). The first order partial 

derivatives with respect to x and y at each data site are estimated using the method 

introduced in (Goodman et al., 1994). The estimated derivatives are used to 

determine the initial values of boundary Bézier ordinates, while the inner Bézier 

ordinate is determined according to  continuity conditions. If necessary, the 

boundary ordinates are modified by changing the estimated derivatives at the data 

sites. The weight parameters are adjusted in such that the positivity conditions 

derived in Chapter 4 are fulfilled. Lastly in Chapter 6, a few numerical examples are 

visualized with the proposed  positivity preserving interpolation scheme. 

Conclusion and future works are included as well. 
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CHAPTER 2 

WEIGHTED RATIONAL BÉZIER TRIANGULAR PATCH 

 

Rational Bézier triangular patch is a mathematical model that has been widely 

used in Computer Aided Design. Compared to regular polynomial Bézier patch, 

rational Bézier patch has an additional feature  adjustable weights which provide 

better modelling to arbitrary shapes. Its interpolation behaviour is that the patch 

generated touches the vertex points and stretches toward other points, while the 

weight can further attracts or repels the patch depending on the location of the weight. 

Rational cubic Bézier triangular patch is chosen for this research as it gives enough 

degree of freedom to make necessary adjustments to the shape of the patch in 

conjunction with smoothness requirements. This chapter gives the definition of 

rational cubic Bézier triangular patch and its properties. 

 

2.1    Weighted Rational Cubic Bézier Triangular Patch 

Consider a triangle T with vertices ( , )i i iV x y , for 1i , 2, 3. The 

barycentric coordinates (u, v, w) of any point V on T can be written as 

  321 wVvVuVV , 

with   and , , 0u v w . As in (Farin, 1996), a rational cubic Bézier 

triangular patch R on T can be defined as 

0,,
3

3
,,,,

0,,
3

3
,,,,,,

),,(

),,(

),,(

kji
kji

kjikji

kji
kji

kjikjikji

wvuB

wvuBb

wvuR  (2.1) 
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where 3
,, kjiB  are bivariate Bernstein polynomials of degree 3 as 

kji
kji wvu

kji
wvuB

! ! ! 

! 3
),,(3

,, ,  

, ,i j kb  are the Bézier ordinates of patch R and , ,i j k  are the weights, with 

3kji  and , , 0i j k . By ( , )i i iV x y , for 1i , 2, 3, the patch R can be 

represented in parametric form with Bézier points  

, , 1 2 3 1 2 3 , ,( , , )
3 3 3 3 3 3i j k i j k

j ji k i kx x x y y y bb ,  (2.2) 

refer to Figure 2.1, which form a control net in space. Note that when all the weights 

, ,i j k  are the same, a Bézier polynomial patch can be obtained 

0,,
3

3
,,,, ),,(),,(

kji
kji

kjikji wvuBbwvuR . (2.3) 

 

 

 

 

 

 

 

 

Figure 2.1: Bézier points of rational cubic Bézier triangular patch 

 

 

0,0,3b  

3,0,0b  

2,0,1b  

1,0,2b  

0,1,2b  

2,1,0b  

1,1,1b  

0,3,0b  
0,2,1b  

1,2,0b  
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2.2    Properties of Rational Cubic Bézier Triangular Patch 

This section expresses a few useful properties of rational cubic Bézier patch. 

They are end-point interpolation property, convex hull property and effect of the 

weight parameters. 

 

2.2.1  End-point Interpolation 

For a rational cubic Bézier triangular patch, the three corners of the control 

net, i.e. 3,0,0b , 0,3,0b , 0,0,3b  lie on the Bézier patch, as shown in Figure 2.2. This leads 

to 

1 3,0,0( )R V b , 

2 0,3,0( )R V b , 

3 0,0,3( )R V b . 

 

 

 
Figure 2.2: Rational cubic Bézier patch and its control net  

 

We should note that the boundary curves of the patch are rational cubic Bézier curves 

which are determined by the boundary Bézier ordinates and the corresponding 

boundary weights of the patch. For example, along 0u , a rational curve is  
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(0, , )R v w  

3
0, , 0, , 0, ,

3

3
0, , 0, ,

3

(0, , )

(0, , )

j k j k j k
j k

j k j k
j k

b B v w

B v w
 

 

3
3

0,3 , 0,3 ,
0

3
3

0,3 ,
0

( )

( )

k k k k k
k

k k k
k

b B w

B w

 (2.4) 

where  

3 33!( ) (1 )
(3 )! !

k k
kB w w w

k k
,  

for 0k , 1, 2, 3, and . 

 

2.2.2  Convex Hull Property 

Suppose that all the weights , , 0i j k , the rational Bézier triangular patch lies 

completely inside the convex hull of its control net. It is shown as the shaded region 

in Figure 2.3. Thus, if all the Bézier ordinates are non-negative then so is the patch. 

 

 

 

Figure 2.3: Convex hull property 
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2.2.3  Effects of Weight towards Patch 

One of the advantages of using rational Bézier triangular patch is the weights 

kji ,,  can be manipulated as additional design parameters. By easy calculation, the 

parametric form of rational cubic Bézier patch, denoted as R, has  

, ,

lim ( , , )
r s t

u v wR  
, ,

3
, , , , , ,

3,
, , 0

3
, , , ,

3,
, , 0

( , , )

lim
( , , )r s t

i j k i j k i j k
i j k
i j k

i j k i j k
i j k
i j k

B u v w

B u v w

b

 

 
, ,

3
, , , ,

3
, ,

( , , )
lim

( , , )r s t

r s t r s t

r s t

B u v w

B u v w

b
 

 , ,r s tb . 

For example, when 0,0,3  tends to infinity, it results in the parametric patch R tends 

to the Bézier point 3,0,0b . Figure 2.4 shows the effect of weight 0,0,3  towards the 

patch R. The horizontal line indicates a plane. Note that the patch generated with 

different positive weight values will always be inside the convex hull of control 

points.  
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Figure 2.4: Patch R with different weight values 

 

 To be more precise, let ( , , )u v wR  be interpreted as a point on the rational 

patch defined with the weights , ,i j k , 3kji  and , , 0i j k . Suppose one of 

the weights, denoted as , ,r s t , is changed to , , , ,r s t r s t , where , while 

the others remain unchanged. Let ( , , )u v wR  be the point on the new rational patch 

produced using , ,r s t . For simplicity, let  

( , , )
( , , )

( , , )
u v w

u v w
W u v w
S

R , 

( , , )
( , , )

( , , )

u v w
u v w

W u v w

S
R . 

50,0,3

130,0,3 250,0,3

plane a plane a

plane a plane a
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Then 

( , , ) ( , , )u v w u v wR R
( , , ) ( , , )

( , , )( , , )

u v w u v w
W u v wW u v w

S S
 

3 3
, , , , , ,( , , ) ( , , ) ( , , ) ( , , )( , , )

( , , )( , , ) ( , , )

r s t r s t r s tu v w B u v w W u v w B u v wu v w
W u v wW u v w W u v w

S b S
 

3
, ,

, ,

( , , )
( ( , , ))

( , , )

r s t
r s t

B u v w
u v w

W u v w
b R . 

It is obvious that the patch R moves toward the point , ,r s tb  when we increase the 

value of , ,r s t . Conversely, the patch moves further away from , ,r s tb  if , ,r s t  is 

decreased.  

 

2.3    Directional Derivative of Rational Bézier Patch 

Here, the directional derivative of parametric patch R is considered. The 

detailed formulation can be obtained from (Farin, 1996). Let  

  
( , , )

( , , )
( , , )
u v w

u v w
W u v w
S

R  

where S is a vector-valued function with Bézier points given in (2.2). Let 

( , , )D d e f  be a direction defined on the triangle T with barycentric 

coordinates 0d e f . The directional derivatives for ( , , )u v wS  and ),,( wvuW  

with respect to direction D are 

( , , )u v w
D
S  ( , , ) ( , , ) ( , , )d u v w e u v w f u v w

u v w
S S S  

2
1, , 1, , , 1, , 1, , , 1 , , 1 , ,

, , 0
2

3 ( ) ( , , )i j k i j k i j k i j k i j k i j k i j k
i j k
i j k

d e f B u v wb b b , 

( , , )W u v w
D

 ( , , ) ( , , ) ( , , )d W u v w e W u v w f W u v w
u v w
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 2
1, , , 1, , , 1 , ,

, , 0
2

3 ( ) ( , , )i j k i j k i j k i j k
i j k
i j k

d e f B u v w .  (2.5) 

Hence, the directional derivative of R can easily be defined by the quotient rule of 

differentiation as  

2

( , , ) ( , , ) ( , , ) ( , , )
( , , )

( , , )

Wu v w W u v w u v w u v w
D Du v w

D W u v w

R R
R .  

Along the edge of T, such as 0u , the derivatives in (2.5) can be simplified to as 

(0, , )v w
D
S  2

1,2,0 1,2,0 0,3,0 0,3,0 0,2,1 0,2,1 0,2,03( ) (0, , )d e f B v wb b b  

 + 2
1,1,1 1,1,1 0,2,1 0,2,1 0,1,2 0,1,2 0,1,13( ) (0, , )d e f B v wb b b  

 + 2
1,0,2 1,0,2 0,1,2 0,1,2 0,0,3 0,0,3 0,0,23( ) (0, , )d e f B v wb b b , 

(0, , )W v w
D

 2
1,2,0 0,3,0 0,2,1 0,2,03( ) (0, , )d e f B v w  

 + 2
1,1,1 0,2,1 0,1,2 0,1,13( ) (0, , )d e f B v w  

 + 2
1,0,2 0,1,2 0,0,3 0,0,23( ) (0, , )d e f B v w . 

Note that when all the corresponding weights are the same, i.e.  

 1,2,0 1,1,1 1,0,2 0,3,0 0,2,1 0,1,2 0,0,3 (assume 1) 

then  

(0, , )v w
D
R  2

1,2,0 0,3,0 0,2,1 0,2,03( ) (0, , )d e f B v wb b b  

 + 2
1,1,1 0,2,1 0,1,2 0,1,13( ) (0, , )d e f B v wb b b  

 + 2
1,0,2 0,1,2 0,0,3 0,0,23( ) (0, , )d e f B v wb b b , (2.6) 

which is exactly identical to the directional derivative of Bézier polynomial patch of 

(2.3) along the edge 0u . Similar argument holds for the other two edges, 0v  

and 0w . 
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CHAPTER 3 

C1 CONTINUITY CONDITIONS 

 

This chapter emphasizes on how to obtain a smooth joint between two 

adjacent rational cubic Bézier patches. Let the rational patches be defined by (2.1) on 

the triangles 321 VVV  and 321 WWW  respectively, where 22 WV  and 33 WV . Let 

kjib ,,  and kjic ,,  denote the corresponding Bézier ordinates, see Figure 3.1. Suppose 

the weights towards 1,0,2b , 1,1,1b , 1,2,0b , 0,0,3b , 0,1,2b , 0,2,1b , 0,3,0b , and 0,0,3c , 0,1,2c , 

0,2,1c , 0,3,0c  1,0,2c , 1,1,1c , 1,2,0c  are set to be 1, then as in (2.6) the derivatives of the 

rational patches along the common edge are equal to the derivatives of Bézier 

polynomial patches which defined with the Bézier ordinates , ,i j kb  and , ,i j kc  

respectively. 

 
 

Figure 3.1: A pair of cubic Bézier triangles 
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3.1  1C  Conditions Between Two Adjacent Bézier Triangles 

In 2003, Farin described the sufficient and necessary conditions for two 

adjacent Bézier triangles to be joined C1 continuously, which is positional and 

tangential continuity. Suppose the Bézier patches join at a common boundary along 

the edge 32VV  by 0,0,3 0,0,3b c , 0,1,2 0,1,2b c , 0,2,1 0,2,1b c  and 0,3,0 0,3,0b c . The 

conditions  

1,0,2 1,0,2 0,1,2 0,0,3c b b b ,  (3.1) 

1,1,1 1,1,1 0,2,1 0,1,2c b b b ,  (3.2) 

1,2,0 1,2,0 0,3,0 0,2,1c b b b  (3.3)  

where 3211 VVVW , ensure the C1 continuity along the common boundary 

of adjacent Bézier patches. Conditions (3.1) and (3.3) are fulfilled if the related 

Bézier ordinates are determined by using the partial derivatives of surface specified 

at vertices 2V  and 3V  respectively. To satisfy condition (3.2), the ideas originated 

in (Goodman & Said, 1991) were considered, in which the normal derivative of the 

patch is required to vary linearly along the boundary.  

Consider the triangle T by 321 VVV . Let iE  denote the opposite side of vertex 

iV  on triangle T, ie  be the direction along the edge iE  and in  be the inward 

normal direction to the edge iE , where 1i , 2, 3, see Figure 3.2 below. 
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Figure 3.2: Notations on a triangle 

 

By simple calculation, 

1 3 1 1n e h e  

where 3 1
1

1 1

e e
h

e e
. The s  indicates the dot product of two vectors. Then, 

vector 1n  can be written in the barycentric form as  

1 1 1 (1, 1, )n h h .  (3.4) 

Similarly, the normal directions to the edges 2E  and 3E , denoted as 2n  and 3n  

respectively, can be defined in the barycentric form as 

2 2 2( ,  1,  1)n h h ,  

3 3 3( 1,  ,  1)n h h  

where 2 1
2

2 2

e e
h

e e
 and 3 2

3
3 3

e e
h

e e
. Using (3.4), the normal derivative of the 

rational Bézier patch R on edge 1E  is  

1

(0, , )R v w
n 1 1(0, , ) ( 1) (0, , ) (0, , )R R Rv w h v w h v w

u v w
 

 2
0 1 0 2 1 03 6( ) 3( 2 )A A A w A A A w  

2e  3e  
1n  

3V  

1V  

2V  

1e  
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where  

0 1,2,0 1 0,3,0 1 0,2,1(1 )A b h b h b , 

1 1,1,1 1 0,2,1 1 0,1,2(1 )A b h b h b , 

2 1,0,2 1 0,1,2 1 0,0,3(1 )A b h b h b , 

and 1v w . Since the normal derivative of R is required to vary linearly along 1E , 

the coefficient of 2w  is set to be zero, i.e. 

1,2,0 0,3,0 1 0,3,0 1 0,2,1 1,1,1 0,2,1 1 0,2,1 1 0,1,2( ) 2( )b b h b h b b b h b h b  

+ 1,0,2 0,1,2 1 0,1,2 1 0,0,3( ) 0b b h b h b . 

Solving the equation for the ordinate 1,1,1b  and denoting the value by 

1
1,1,1b = 1,2,0 0,3,0 1,0,2 0,1,2 0,2,1

1 [( 2 )
2

b b b b b   

+ 1 0,3,0 0,2,1 0,1,2 0,0,3 0,2,1 0,1,2( 2 2 )]h b b b b b b .  (3.5) 

The ordinates on the right side of Equation (3.5) are known since they are completely 

determined by the partial derivatives of surface specified at vertices. Using similar 

way along edges 2E  and 3E , 2
1,1,1b  and 3

1,1,1b  are obtained as 

2
1,1,1b = 012 003 210 201 102

1 [( 2 )
2

b b b b b   

+ 2 0,0,3 1,0,2 2,0,1 3,0,0 1,0,2 2,0,1( 2 2 )]h b b b b b b ,  (3.6) 

3
1,1,1b = 2,0,1 3,0,0 0,2,1 1,2,0 2,1,0

1 [( 2 )
2

b b b b b   

+ 3 3,0,0 2,1,0 1,2,0 0,3,0 2,1,0 1,2,0( 2 2 )]h b b b b b b . (3.7) 
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3.2  Convex Combination Patch 

Note that the inner Bézier ordinate 1,1,1b  needs to fulfil equations (3.5), (3.6) 

and (3.7) in order for the patch R to have C1 continuity across all three boundaries. 

This over determined problem can be solved by defining a convex combination patch 

of three rational cubic Bézier triangular patches. The three rational Bézier patches, 

denoted as 1R , 2R  and 3R , are defined to have different inner Bézier ordinates 

ib 1,1,1 , 1i , 2, 3, respectively, and have the same boundary Bézier ordinates. They 

also have different weight values at three vertices while the rest of the weights equal 

to 1,  

1 3 3 3 3 3
3,0,0 3,0,0 3,0,0 0,3,0 0,3,0 0,0,3 0,0,3 2,1,0 2,1,0 1,2,0 1,2,0

3 3 3 3 1 3
2,0,1 2,0,1 1,0,2 1,0,2 0,2,1 0,2,1 0,1,2 0,1,2 1,1,1 1,1,1

1 1 3 3 3 3
3,0,0 3,0,0 0,3,0 0,0,3 2,1,0 1,

( , , ) 

b B b B b B b B b B

b B b B b B b B b B
R u v w

B B B B B3 3 3 3
2,0 2,0,1 1,0,2 0,2,1

3 3
0,1,2 1,1,1

B B B

B B

,  (3.8) 

3 2 3 3 3 3
3,0,0 3,0,0 0,3,0 0,3,0 0,3,0 0,0,3 0,0,3 2,1,0 2,1,0 1,2,0 1,2,0

3 3 3 3 2 3
2,0,1 2,0,1 1,0,2 1,0,2 0,2,1 0,2,1 0,1,2 0,1,2 1,1,1 1,1,1

2 3 2 3 3 3
3,0,0 0,3,0 0,3,0 0,0,3 2,1,0 1,

( , , ) 

b B b B b B b B b B

b B b B b B b B b B
R u v w

B B B B B3 3 3 3
2,0 2,0,1 1,0,2 0,2,1

3 3
0,1,2 1,1,1

B B B

B B

,  (3.9) 

3 3 3 3 3 3
3,0,0 3,0,0 0,3,0 0,3,0 0,0,3 0,0,3 0,0,3 2,1,0 2,1,0 1,2,0 1,2,0

3 3 3 3 3 3
2,0,1 2,0,1 1,0,2 1,0,2 0,2,1 0,2,1 0,1,2 0,1,2 1,1,1 1,1,1

3 3 3 3 3 3
3,0,0 0,3,0 0,0,3 0,0,3 2,1,0 1,

( , , ) 

b B b B b B b B b B

b B b B b B b B b B
R u v w

B B B B B3 3 3 3
2,0 2,0,1 1,0,2 0,2,1

3 3
0,1,2 1,1,1

B B B

B B

.  (3.10) 
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The convex combination of 1R , 2R  and 3R  is defined as 

),,(),,(),,(),,(),,(),,(),,( 332211 wvuRwvucwvuRwvucwvuRwvucwvuR   

where the combination coefficients are 

,),,(
222222

22

1
wvwuvu

wv
wvuc  

,),,(
222222

22

2
wvwuvu

wu
wvuc  

222222

22

3 ),,(
wvwuvu

vu
wvuc .  (3.11) 

Note that these blending functions 1c , 2c  and 3c  have some useful properties. We 

have  

(i) 
1, if  

( )
0, if  i j

i j
c E

i j
 

(ii) 1321 ccc   

(iii) ( ) 0i
j

c
E

D
, for , 1i j , 2, 3  (3.12) 

where 
D

 indicates the differentiation with respect to a direction D. When 1R , 2R  

and 3R  are respectively 1C  continuous along the edges 1E , 2E  and 3E , the 

properties in (3.12) will enable the convex combination patch R to be C1 continuous 

along all the three edges. 
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3.3  Effect of Corner Weights to C1 Continuity 

This sections discusses the effect of the weights 1
3,0,0 , 2

0,3,0 , 3
0,0,3  at the 

three corners onto C1 continuity across the boundaries of rational Bézier patch 

),,( wvuRi , 1i , 2, 3. Let us consider the patch 1R . Figure 3.3 shows the 

corresponding corner weights. 

 

 

 

 

 

 

 

Figure 3.3: Three corner weights of 1R  

 

By referring to equations (2.4) and (2.6), notice that 1
0,0,3  does not exist in these 

equations when 0u . This concludes that any modification on the weight 1
0,0,3  

will not affect the boundary curve along the opposite edge 1E  and also the C1 

continuity across the edge. The same argument holds for the patches 2R  and 3R . 

However, the modification of 1
0,0,3  will change the boundary curves of 1R  along 

the edges 2E  and 3E . But, this alteration of boundaries will not appear in the 

resulting convex combination patch R  in (3.11) due to the properties of blending 

functions in (3.12). 

2E  3E  

 

1
3,0,0  

 

1E  
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CHAPTER 4 

POSITIVITY CONDITIONS 

 

The conditions for a rational cubic Bézier triangular patch to be positive are 

derived in this chapter. The formulation of these positivity conditions is motivated by 

the analysis shown in (Piah et al., 2005). The conditions are basically created based 

on the requirement that the minimum point of rational cubic Bézier patch must be 

positive. A positive patch means any point on the patch is greater than or equals to 

zero, that is the patch lies above the xy-plane. Section 4.1 will describe the sufficient 

positivity conditions for a cubic Bézier triangular patch which is the result from (Piah 

et al., 2005). A lower bound is employed to restrict the Bézier ordinates such that the 

patch preserves positivity. In Section 4.2 the positivity conditions for rational cubic 

Bézier triangular patch will be introduced. A lower bound is imposed to the boundary 

Bézier ordinates and the weights of the rational Bézier patch are manipulated to 

obtain positive surface. Note that all the Bézier ordinates , ,i j kb  in this chapter are 

scalar numbers. 

 

4.1   Sufficient Positivity Conditions for Cubic Bézier Triangular Patch 

In 2001, Chan and Ong derived sufficient conditions for a cubic Bézier 

triangular patch to be positive where a lower bound was imposed on the Bézier 

ordinates of the Bézier patch. In 2005, Piah et al. proposed a more relaxed lower 

bound onto the Bézier ordinates. The derivation of this lower bound is shown as 

follows. Consider a cubic Bézier patch  
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3
, , , ,

3
, , 0

( , , ) ( , , )i j k i j k
i j k
i j k

P u v w b B u v w  

   

                                (4.1) 

where , ,i j kb , , , 0u v w  and . Note that this cubic patch can be 

obtained from rational cubic in (2.1) by assuming that all the weights are equal to 1, 

i.e. , , 1i j k , for 3i j k . 

Given that all three Bézier ordinates at vertices are positive, i.e. 0,0,3b , 0,3,0b , 

0,0,3 0b . A lower bound is determined for the remaining Bézier ordinates such that 

the patch ( , , ) 0P u v w , if all the remaining Bézier ordinates have values greater than 

or equal to that lower bound. Let Ab 0,0,3 , Bb 0,3,0 , Cb 3,0,0  where A, B, 0C , 

and let the other Bézier ordinates 0,1,2b , 0,2,1b , 2,0,1b , 1,0,2b , 2,1,0b , 1,2,0b , 1,1,1b m , 

with 0m . Equation (4.1) can be rewritten as 

( , , )P u v w
3 3 3 2 2 2 2 2 2

3 ( 2 )Au Bv Cw m u v u w uv uw v w vw uvw  

 
3 3 3 3 3 3

(1 )Au Bv Cw m u v w  

 
3 3 3

( ) ( ) ( )A m u B m v C m w m .  (4.2)

 
From (4.2), it is obvious that when 0m , 0),,( wvuP  and ),,( wvuP  decreases 

when m increases. Now we shall find the value of m when the minimum of 

),,( wvuP  is 0. The partial derivatives of P are  

   


