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KEJURUTERAAN METABOLIK Cupriavidus necator UNTUK 

PENGHASILAN POLI(3-HIDROKSIBUTIRAT-ko-3-

HIDROKSIHEKSANOAT) 

 

ABSTRAK 

Polihidroksialkanoat (PHA) adalah keluarga poliester yang dihasilkan oleh 

bakteria yang mempunyai ciri-ciri fizikal untuk kegunaan pelbagai industri. Dalam 

kajian ini, gen PHA sintase telah dipencilkan daripada Chromobacterium sp. USM2 

(phaCCs USM2) telah dikaji potensinya untuk mensintesiskan polimer dalam 

Cupriavidus necator. Plasmid berjulat luas pBBR1MCS-2 telah diubahsuai untuk 

membina plasmid pengekspresan pYEB-100, yang telah direka untuk memudahkan 

pengklonan PHA sintase dalam langkah untuk menilai prestasi pelbagai PhaC dan 

komposisi PHA terkumpul dalam keadaan piawai. Bagi membuktikan konsep ini, 

phaCCs USM2 telah diekspreskan dalam C. necator PHB
-
4 yang menghasilkan  68% 

jisim kopolimer P(3HB-ko-3HHk) dengan menggunakan minyak isirong sawit 

mentah sebagai sumber karbon tunggal. Kesan terhadap enzim utama lain; β-

ketotiolase (PhaA) dan NADPH-bersandar asetoasetil-KoA reduktase (PhaB1) 

terhadap pertumbuhan dan penghasilan PHA dalam C. necator turut dikaji. 

Penghapusan phaA dan phaB1 dalam C. necator (kedua-dua strain H16 dan PHB
-
4) 

telah dihasilkan daripada rekombinasi berhomolog menggunakan plasmid swa-hapus 

pDM4. Mutan delesi diperhatikan telah menghasilkan jisim kering sel yang lebih 

rendah tetapi bahagian 3HHk yang lebih tinggi dalam kopolimer P(3HB-ko-3HHk) 

yang terhasil. Gen (R)-spesifik enoil-KoA hidratase (phaJ) daripada Aeromonas sp. 

AE6, yang telah diekpres bersama dengan phaCCs USM2 telah meningkatkan 

kopolimer P(3HB-ko-3HHk) tetapi bahagian 3HHk masih kekal pada 2% mol. 
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Analisis mikroskop elektron transmisi (TEM), telah mendedahkan bahawa granul 

PHA P/CCsJAs adalah lebih besar dan panjang berbanding granul P/CCs. Dalam mutan 

delesi, granul HΔAB1/CCsJAs adalah bersaiz lebih kecil, tetapi mempunyai bilangan 

yang lebih banyak berbanding granul HΔAB1. 
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METABOLIC ENGINEERING OF Cupriavidus necator FOR THE 

PRODUCTION OF POLY(3-HYDROXYBUTYRATE-co-3-

HYDROXYHEXANOATE) 

 

ABSTRACT 

 Polyhydroxyalkanoate (PHA) is a family of polyesters produced by bacteria 

that possesses physical properties for various industrial applications. In this study, 

PHA synthase (PhaC) gene isolated from Chromobacterium sp. USM2 (phaCCs USM2) 

was explored for its potential to synthesize polymer in Cupriavidus necator. A 

broad-host range plasmid pBBR1MCS-2 was modified to construct an expression 

plasmid pYEB-100, which was designed to facilitate cloning of PHA synthases in 

order to assess the performance of various PhaCs and the composition of PHA 

accumulated in a standard environment. To prove this concept, phaCCs USM2 was 

expressed in C. necator PHB
-
4, which produced 68 wt% of P(3HB-co-3HHx) 

copolymer using crude palm kernel oil as the sole carbon source. The effect of other 

key enzymes; β-ketothiolase (PhaA) and NADPH-dependent acetoacetyl-CoA 

reductase (PhaBI) on growth and PHA production in C. necator were also 

investigated. Deletion of phaA and phaB1 in C. necator (both H16 and PHB
-
4 

strains) were generated by homologous recombination using the suicidal plasmid 

pDM4. The deletion mutants were observed to produce lower cell dry weights but 

higher 3HHx fraction in the P(3HB-co-3HHx) copolymer produced. The (R)-specific 

enoyl-CoA hydratase gene (phaJ) from Aeromonas sp. AE6, which was co-expressed 

with phaCCs USM2 increased P(3HB-co-3HHx) copolymer but the 3HHx fraction 

remained constant at 2 mol%. Transmission electron microscopy analysis revealed 

that PHA granules of P/CCsJAs were larger and elongated compared to P/CCs granules. 
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In deletion mutants, HΔAB1/CCsJAs granules were smaller in size, but greater in 

number compared to HΔAB1. 
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CHAPTER 1 

INTRODUCTION 

 The over production of petro-based polymers (commonly known as plastics) 

by dynamic growing human populations has considerably increased the number of 

landfills across the world. In most urban areas, plastic-based materials would be a 

major constitution of the landfills. The main problem of these waste materials is its 

poor biodegradable nature. They are not easily degraded and will be remained in the 

environment for many years.  

 Biological polymers such as polyhydroxyalkanoates (PHA) and their 

derivatives could be alternatives to plastics that are being used currently. These 

biological polymers receive great attention globally because they are viewed as 

environmentally friendly, non-toxic, and possess potential applications in various 

fields such as packaging, medical, pharmaceuticals, foods and agriculture (Khanna 

and Srivastava, 2005).  

 PHA is naturally synthesized by various microorganisms as storage 

materials under imbalanced growth conditions (Anderson and Dawes, 1990). These 

polymers are unique because they are synthesized from renewable resources and can 

be degraded into water and carbon dioxide by a wide range of microorganisms 

(Steinbuchel and Fuchtenbusch, 1998;  Jendrossek, 2001).   

 The main obstacle in replacing plastics by PHA is the high cost of PHA 

production. Thus, many efforts have been expended in reducing the cost of PHA 

production by using cheap raw material resources, isolating better producer strains, 

improving fermentation and downstream processes as well as using metabolic 

engineering approaches to develop low cost production processes.   



2 
 

 Generally, PHA can be divided into two major groups which are short-

chain-length PHA (scl-PHA) and medium-chain-length PHA (mcl-PHA). Scl-PHA is 

composed of monomers with three to five carbon atoms, while mcl-PHA is 

composed of monomers with six to fourteen carbon atoms (Anderson and Dawes, 

1990). Poly(3-hydroxybutyrate) [P(3HB)], which is a homopolymer of 3HB 

monomer has a high degree of crystallinity is very stiff and brittle (Doi, 1995). These 

properties will limit its commercial potential. Mcl-PHA more rubber or latex-like, 

has lower crystallinity and but higher elasticity compared to scl-PHA (Gross et al., 

1989; Doi, 1990).  

 However, a blend polymer consisting of scl-PHA and mcl-PHA has more 

favourable properties for industrial applications (Steinbuchel and Valentin, 1995; 

Sudesh et al., 2000; Steinbuchel and Lutke-Eversloh, 2003). One such example of 

copolymer is poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)]. 

P(3HB-co-3HHx) copolymer is tougher, more ductile and flexible as compared to 

P(3HB) homopolymer (Shimamura et al., 1994). The incorporation of a small 

amount of 3HHx monomer fraction into the P(3HB) backbone polymer improved the 

properties of the copolymer similar to low-density polyethylene(LDPE) (Matsusaki 

et al., 2000). 

 The goal of this study was to synthesize P(3HB-co-3HHx) copolymer with 

enhanced 3HHx monomer fraction in the PHA model organism, C. necator. The 

strategy of the study was to reduce the synthesis of 3-hydroxybutyrate-CoA (3HB-

CoA) from the PHA metabolic pathway by the deletion of β-ketothiolase (phaA) and 

NADPH-dependent acetoacetyl-CoA reductase (phaB1) genes. The incorporation of 

3HHx monomer into the PHA production might be improved due to the reduction of 

PhaA and PhaB1 activities in the cells.     
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 Hence, the aim of the study was carried out in three parts. The first part was 

to construct an expression plasmid based on a broad-host range vector suitable for 

PHA synthase (PhaC) functional study. This new expression plasmid would be 

useful to facilitate the cloning and evaluating the performance of PhaC from different 

bacteria. The second part was to observe the effect of β-ketothiolase (phaA) and 

NADPH-dependent acetoacetyl-CoA reductase (phaB1) genes deletion on PHA 

production in C. necator. Deletion mutants were generated by homologous 

recombination approach with the help of suicidal plasmid pDM4. The expression of 

PHA synthase gene (phaC) from Chromobacterium sp. USM2 using the newly 

constructed expression plasmid in deletion mutants and the wild-type was observed. 

The final part of the study was to increase 3HHx fraction in the copolymer 

production by the co-expression of (R)-specific enoyl coenzyme-A hydratase (phaJ) 

from Aeromonas sp. AE6 with phaCCs USM2.  
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CHAPTER 2 

LITERATURE REVIEW  

2.1  Background of polyhydroxyalkanoates (PHA) 

 Polyhydroxyalkanoates (PHA) are homo- or hetero-polymers synthesized 

from various carbon substrates by microorganisms under imbalanced growth 

conditions (Doi, 1990; Steinbüchel, 1991; Braunegg et al., 1998). Microorganisms 

accumulate PHA when there is excess carbon source and under the limitation of 

growth factors such as nitrogen (Schlegel et al., 1961), potassium or sulphur 

(Wilkinson and Munro, 1967), or oxygen (Senior et al., 1972). PHA are accumulated  

in the cytoplasm of the microorganisms as water insoluble inclusion bodies (referred 

to as PHA granules) and function as storage material for energy and carbon sources 

(Steinbüchel, 1991). PHA can be degraded completely into carbon dioxide and water 

in the environment by a wide variety of bacteria and fungi (Mergaert et al., 1995; 

Braunegg et al., 1998).  

 PHA becomes attractive due to its biodegradable, biocompatible and 

thermo-plasticity characteristics which are highly valued in terms of medical, 

agricultural and industrial applications (Reddy et al., 2003). Interestingly, PHA can 

be synthesized from renewable resources in contrast to synthetic petro-based 

polymers  (Eggersdorfer et al., 1992). However, the cost of PHA production is still 

high and becomes the main obstacle to completely replace the petro-based plastics 

currently preferably used over the biodegradable plastics. Thus, a lot of studies are 

extensively done to reduce the cost of PHA production by developing an efficient 

fermentation and recovery processing techniques, as well as generating numerous 
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better strains and producing PHA in a large scale by transgenic plants in order to 

make it a success.   

2.2 Classification of PHA  

 PHA can be divided into three groups based on the number of carbon atoms 

present in the monomer unit; short-chain-length PHA (scl-PHA) consists of 

monomer with carbon number in the range of 3 to 5, while medium-chain-length 

PHA (mcl-PHA) consists of 6 to 14 carbon atoms (Anderson and Dawes, 1990). 

However, there is another sub-group which comprises of both scl-PHA and mcl-PHA 

with the chain length ranging from 3 to 14 carbon atoms (Matsusaki et al., 1998).  

 Cupriavidus necator (formerly known as Ralstonia eutropha) represents 

bacterium producing scl-PHA, while mcl-PHA is produced by Pseudomonas 

oleovorans (Anderson and Dawes, 1990). The other example is Aeromonas caviae, 

which produces a combination of scl-mcl-PHA from oleic acids and olive oil as 

carbon sources (Doi et al., 1995). Each group is different depending on the PHA 

produced, and this is due to the substrate specificity of PHA synthases to incorporate 

3-hydroxyalkanoates (3HAs) of a certain range of carbon length (Anderson and 

Dawes, 1990).  

  PHA is polymer consisting of R(-)-3-hydroxyalkanoic acid monomers with 

variety of saturated or unsaturated and straight or branched side chain of aliphatic or 

aromatic group (Kawaguchi and Doi, 1992; Steinbüchel and Valentin, 1995). The 

chemical structure of PHA is shown in Figure 2.1. PHA has an R absolute 

configuration in the chiral center of 3-hydroxybutyric acid. The component of the 

side (R) and the number of carbon atom determined the identity of monomer unit. 
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       [O-C-(CH2)n-C]    
                  

 

                                              
 

n = 1 R = hydrogen  poly(3-hydroxypropionate)     

 R = methyl  poly(3-hydroxybutyrate)   

 R = ethyl  poly(3-hyrdroxyvalerate) 

 R = propyl  poly(3-hyrdroxyhexanoate) 

 R = pentyl  poly(3-hyrdroxyoctanoate) 

 R = nonyl  poly(3-hydroxydodecanoate) 

 

n = 2 R = hydrogen  poly(4-hydroxybutyrate) 

 R = methyl  poly(4-hydroxyvalerate) 

 

n = 3 R= hydrogen  poly(5-hydroxyvalerate) 

 R= methyl  poly(5-hydroxyhexanoate) 

 

n = 4 R = hexyl  poly(6-hydroxydodecanoate) 

 

  

Figure 2.1 The chemical structure of polyhydroxyalkanoates  

 

*R refers to side group and n refers to the number of repeating units 

 
            (Source: Ojumu et al., 2004) 
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2.3 Biosynthesis of PHA   

 Generally, there are three major types of metabolic pathways which are 

responsible for the synthesis of PHAs. The three most well known metabolic 

pathways involved are; P(3HB) biosynthesis pathway, fatty acid β-oxidation pathway 

and fatty acid biosynthesis pathway. These metabolic pathways can be divided based 

on the monomer compositions of PHA produced by bacteria. Figure 2.2 summarized 

the metabolic pathways that supply hydroxyalkanoate monomers for PHA 

biosynthesis.  

2.3.1 Biosynthesis of scl-PHA  

 Biosynthesis of scl-PHA or P(3HB) has been studied extensively and well 

established in C. necator (Steinbüchel and Schlegel, 1991; Steinbüchel, 1991). In 

Pathway I, biosynthesis of scl-PHA begins with the conversion of carbon substrate to 

acetyl-coenzyme A (acetyl-CoA) which is derived from tricarboxylic acid (TCA) 

cycle. Subsequently, two molecules of acetyl-CoA are condensed to acetoacetyl-CoA 

by β-ketothiolase (PhaA). Acetoacetyl-CoA is later reduced to (R)-isomer of 3-

hyrdoxybutyryl-CoA by NADPH-dependent acetoacetyl-CoA reductase (PhaB). 

Finally, PHA synthase (PhaC) will polymerize the (R)-3-hydroxybutyryl-CoA to 

produce scl-PHA or P(3HB) (Madison and Huisman, 1999; Sudesh et al., 2000; 

Rehm, 2007).  

2.3.2 Biosynthesis of mcl-PHA 

 Biosynthesis of mcl-PHA also has been studied in detail in pseudomonads 

such as P. oleovorance, P. putida and P. aeruginosa (de Smet et al., 1983; Haywood 

et al., 1990; Timm and Steinbüchel, 1990). Fluorescent pseudomonads which belong 
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Figure 2.2  Metabolic pathways that supply hydroxyalkanoate monomers for 

PHA biosynthesis 

Legends: PhaA, β-ketothiolase; PhaB, NADPH-dependent acetoacetyl-CoA 

reductase; PhaC, PHA synthase; PhaG, 3-hydroxyacyl-ACP-CoA transferase; PhaJ, 

(R)-specific enoyl-CoA hydratase; FabD, malonyl-CoA-ACP transacylase; FabG, 3-

ketoacyl-CoA-reductase. 

             (Source: Sudesh et al., 2000) 
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to the rRNA-homology-group I are able to utilize various alkanes for the production 

of mcl-PHA (Lageveen et al., 1988). However, pseudomonads have a wider range of 

monomers incorporated as they can utilize fatty acids, glucose and unrelated carbon 

sources (Haywood et al., 1990) in order to produce mcl-PHAs. 

 There are three pathways found to be involved in the biosynthesis of mcl-

PHAs; fatty acid degradation by β-oxidation, fatty acid biosynthesis and chain 

elongation. Fatty acid degradation pathway is also known as fatty acid β-oxidation 

(Pathway II) and it is represented by P. oleovorans. Initially, fatty acid is catalysed 

by acyl-CoA synthetase to form acyl-CoA. Acyl-CoA is then converted to 2-trans-

enoyl-CoA by acyl-CoA dehydrogenase. Subsequently, (R)-specific enoyl-CoA 

hydratase (PhaJ) catalyses 2-trans-enoyl-CoA into (R)-3-hydroxyacyl-CoA and used 

as precursors to form the PHA polymerase substrates (Zinn et al., 2001; Kim et al., 

2007). The other two precursors (S)-3-hydroxyacyl-CoA and 3-ketoacyl-CoA are 

produced from β-oxidation cycle.  

 Fatty acid biosynthesis pathway (Pathway III) is represented by 

Pseudomonas aeruginosa, Pseudomonas mendocina and Pseudomonas putida. A 3-

hydroxyacyl-ACP-CoA transferase, PhaG is capable to channel the intermediates of 

the fatty acids biosynthesis to form mcl-PHA (Kim et al., 2007;  Rehm et al., 1998). 

However, (R)-3-hydroxyacyl-ACP will be firstly converted to (R)-3-hydroxyacyl-

CoA form before channelling to PHA biosynthesis cycle.  

 The third pathway is a chain elongation reaction. In this reaction, acyl-CoA 

is extended with acetyl-CoA to form ketoacyl-CoA. Subsequently, ketoacyl-CoA is 

converted to (R)-3-OH-acyl-CoA by ketoacyl-CoA reductase. This precursor will be 

incorporated into mcl-PHA under optimize condition.  
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2.3.3 Biosynthesis of scl-mcl-PHA; P(3HB-co-3HHx) copolymer 

 Biosynthesis of scl-mcl-PHA [P(3HB-co-3HHx)] copolymer has been well 

studied in Aeromonas caviae (Doi et al., 1995; Kobayashi et al., 1994) and 

Aeromonas hydrophila (Chen et al., 2001). P(3HB-co-3HHx) is a unique copolymer 

which consists of both scl- and mcl-PHA. The physical properties and thermal 

process-ability of the resultant copolymer improved with the incorporation of at least 

5 mol% of 3HHx monomer into P(3HB) polymer chain (Doi et al., 1995; Matsusaki 

et al., 2000; Loo et al., 2005).  

 Metabolic pathway of P(3HB-co-3HHx) copolymer in Aeromonas caviae 

has been proposed by Fukui and Doi (1997). Acyl-CoA, which is derived from 

alkanoics acids or oils is degraded through β-oxidation cycle to form enoyl-CoA 

intermediates with different chain lengths. Subsequently, the intermediates are 

converted to (R)-3HA-CoA by the (R)-specific enoyl-CoA hydratase which is 

encoded by phaJ. Then, the resultant (R)-3HA-CoA of four to six carbon atoms were 

incorporated into PHA copolymer(s) by PHA synthase. However, the small amount 

of 3HB unit which is found in the copolymers may be supplied from acetyl-CoA 

molecules through four-step reactions are catalyzed by β-ketothiolase, NADPH-

dependent acetoacetyl-CoA reductase, crotonase [(S)-specific enoyl-CoA hydratase] 

and (R)-specific enoyl-CoA hydratase. The proposed metabolic pathway of P(3HB-

co-3HHx) in A. caviae is illustrated in Figure 2.3. 

 2.4 PHA granules 

 PHA granules exist as spherical inclusion bodies with average diameters 

approximately 200-500 nm (Anderson and Dawes, 1990). These granules are 

surrounded by a phospholipid membrane (Griebel et al., 1968) with embedded or   
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 Figure 2.3 Pathway of P(3HB-co-3HHx) biosynthesis by Aeromonas caviae 

from alkanoic acids or oils 1) β-ketothiolase; 2) NADPH-dependent 

acetoacetyl-CoA reductase; 3) crotonase [(S)-specific enoyl-CoA hydratase]; 4) 

(R)-specific enoyl-CoA hydratase 

         (Source: Fukui et al., 1997) 
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attached proteins (Stuart et al., 1998). The attached proteins are composed of PHA 

synthase (Gerngross et al., 1993; Liebergesell et al., 1994), intracellular PHA 

depolymerase (Handrick et al. 2000; Saegusa et al., 2001; York et al., 2003), 

amphipathic phasin proteins (Wieczorek et al., 1996; York et al., 2001; Jurasek and 

Marchessault, 2002), PHA-specific regulator proteins (Maehara et al., 2002; York et 

al., 2002; Pötter et al., 2005) and other uncharacterized proteins (Klinke et al., 2000). 

 To date, there are two models of PHA granule formation have been 

proposed, namely, the micelle model and the budding model. These two models are 

considered at the defined location of the PHA synthase and the attached proteins at 

the surface of the granule. Both models are illustrated in Figure 2.4(A) and Figure 

2.4(B), respectively.  The micelle model was supported by PHA granules synthesis 

in vitro which was assayed without the presence of phospholipids membrane. In the 

micelle model, (R)-3-hydrocyacyl-CoA substrates required to attach to the free 

soluble PHA synthase, in order to form an amphiphathic PHA synthase which 

functional to initiate PHA granules formation. This formation of artificial granules 

was firstly demonstrated by Gerngross and Martin (1995). 

 However, the formation of PHA granule in vivo by the micelle model 

proposed that PHA synthase molecules and monomer substrates are randomly 

distributed in the cytoplasm (Gerngross et al., 1994). During the initial stage of 3-

hydroxyacly-CoA polymerization,  PHA  synthase molecules aggregate into micelle-  

like structure. The elongation cycle of the polymer chain will continuously repeat the 

process to form small PHA granules by hydrophobic interactions. While, PHA 

synthase still attached to the surface of the PHA granules and the polymer chain will 

continue to grow. Finally, PHA granules become larger as they might be coalesced 

with their neighbouring granules. The other PHA surface proteins that attach to the  
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 Figure 2.4   Model of PHA granule formation A) Micelle model representing in 

vitro formation in the absence of phospholipids. B) Budding model representing 

PHA granule formation at the cytoplasmic membrane. (Source: Tian et al., 2005; 

Rehm, 2007)   
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PHA growing granules are phasins (PhaP), PHA depolymerase (PhaZ) and PHA-

spesific regulator proteins (PhaR).   

 In the budding model, it has been proposed that PHA synthases bind to the 

cytoplasmic membrane by hydrophobic interaction, then PHA granules accumulated 

and incorporated into the periplasm, a space in between of the phospholipid bilayer 

(Tian et al., 2005). Subsequently, the membrane-bounded PHA granules bud towards 

cytoplasm, and released inside it. Based on the first microscopy studies, it was 

showed that membrane-like material surrounding PHA granules either in intact cells 

or isolated granules supported the evidence of budding model (Boatman, 1964; 

Wang and Lundgren, 1969; Jensen and Sicko, 1971; Dunlop and Robards, 1973). 

2.5 Properties of PHA 

 Naturally, PHA exist as highly amorphous and water-soluble inclusion 

within bacterial cell (Barnard and Sanders, 1989). A rapid crystallization occurs, 

when the disruption of cell to extract polymer (Hocking et al., 1996). The physical 

properties of PHA mainly depend on the composition of monomer units incorporated 

into the polymer chain and the molecular weight of the PHAs. Table 2.1 shows the 

comparison of various polymer properties. 

 The most well studied polymer is P(3HB) homopolymer. This is because 

most of the producing PHA bacteria  accumulate P(3HB) in their cells, thus it  makes 

an accessibility to study the polymer in great detail compared to mcl-PHA polymer 

or copolymer. P(3HB) homopolymer is stiffer, brittle and has high crystallinity 

properties compared to mcl-PHA. However, this homopolymer is highly viscous and 

and moldable at temperatures close to or above melting point. P(3HB) also has a high 

crystallinity properties compared to mcl-PHA. However, this homopolymer is highly  
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Table 2.1 Comparison of polymer properties 

Polymer* Melting 

point 

(°C) 

 

Young’s 

modulus 

(GPa) 

Tensile 

strength 

(MPa) 

Elongation to 

break (%) 

Glass 

transition 

temperature 

(°C) 

 

P(3HB) 

 

P(3HB-co-3HV) 

  3 mol% 3HV 

  9 mol% 3HV 

14 mol% 3HV 

20 mol% 3HV 

25 mol% 3HV 

 

P(3HB-co-4HB) 

  3 mol% 4HB 

10 mol% 4HB 

16 mol% 4HB 

64 mol% 4HB 

90 mol% 4HB 

 

P(4HB) 

 

P(3HHx-co-3HO) 

 

P(3HB-co-6 mol% 

3HA) 

 

P(3HB-co-67 

mol% HP) 

 

P(3HB-co-3HHx)  

 

Polypropelene  

 

Polyethylene-

terephalate 

 

Polystyrene 

 

LDPE 

 

179 

 

 

170 

162 

150 

145 

137 

 

 

166 

159 

- 

50 

50 

 

53 

 

61 

 

133 

 

 

44 

 

 

52 

 

170 

 

262 

 

 

110 

 

130 

 

3.5 

 

 

2.9 

1.9 

1.5 

1.2 

0.7 

 

 

- 

- 

- 

30 

100 

 

149 

 

- 

 

0.2 

 

 

nd 

 

 

nd 

 

1.7 

 

2.2 

 

 

3.1 

 

0.2 

 

40 

 

 

38 

37 

35 

32 

30 

 

 

28 

24 

26 

17 

65 

 

104 

 

10 

 

17 

 

 

nd 

 

 

20 

 

34.5 

 

56 

 

 

50 

 

10 

 

5 

 

 

nd 

nd 

nd 

nd 

nd 

 

 

45 

242 

444 

591 

1080 

 

1000 

 

300 

 

680 

 

 

nd 

 

 

850 

 

400 

 

7300 

 

 

- 

 

620 

 

4 

 

 

nd 

nd 

nd 

nd 

nd 

 

 

nd 

nd 

nd 

nd 

nd 

 

nd 

 

nd 

 

-8 

 

 

-19 

 

 

-4 

 

45 

 

3400 

 

 

21 

 

-30 

*P(3HB) is poly(3-hydroxybutyrate), P(3HB-co-3HV) is poly(3-hydroxybutyrate-co-3-

hydroxyvalerate), P(3HB-co-4HB) is poly(3-hydroxybutyrate-co-4-hydroxybutyrate), P(4HB) is 

poly(4-hydroxybutyrate), P(3HHx-co-3HO) is poly(3-hydroxyhexanoate-co-3-hydroxyoctanoate), 

P(3HB-co-6 mol% 3HA) is poly(3-hydroxybutyrate-co-3-hydroxyalkanoate) containing 6 mol% of 

3HA, P(3HB-co-67 mol% HP) is poly(3-hydroxybutyrate-co-hydroxypentanoate) containing 67 mol% 

of HP, P(3HB-co-3HHx) is poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and LDPE is low 

density polyethylene.(Kunioka et al., 1989; Doi et al., 1990; Byrom, 1994; Saito & Doi, 1994) nd is 

not determined.   

(Source: Khanna and Srivastava, 2005) 
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viscous and moldable at temperatures close to or above melting point. P(3HB) also 

has a high melting temperature about 177 °C similar to conventional plastic 

(polypropylene) (Doi et al., 1990). Mechanical properties of P(3HB) like Young’s 

modulus and tensile strength are close to polypropylene, but extension to break is 

very low.  

 Mcl-PHA has much lower crystallinity and higher elasticity compared to 

P(3HB). It also has low melting point, low tensile strength and high elongation to be 

broken (Preusting et al., 1990).  The physical properties of PHA can be improved by 

increasing the molecular weight or by incorporation of various hydroxyl-acids units 

to form PHA copolymer which is greatly needed for the industrial applications.   

 In P(3HB-co-3HV) copolymer, it is found to be less stiffer and tougher 

compared  to  P(3HB).  It  has higher elongation to be broken as  well  as  its  melting 

point decreased from 160 °C to 100 °C. The properties of this copolymer are greatly 

improved due to the presence of 3HV monomer units.  The 3HV fraction needs to 

exceed at least 5 mol% in the copolymer to become an effective material (Mitsky et 

al., 1999). Glass transition temperature is reduced in order to allow them to be used 

at low temperature without to becoming brittle or glassy (Hartmann, 1998).  

 P(3HB-co-3HHx) copolymer exhibits lower crystallinity as compared to 

P(3HB) homopolymer. Incorporation of 3HHx monomer fraction into P(3HB) 

polymer reduces the crystallinity of the copolymer. According to Doi and co-

workers, the crystallinity of P(3HB-co-3HHx) copolymer reduced from 60 to 18%, 

with the incorporation of 3HHx mol fraction increased from 0 to 25 mol% (Doi et 

al., 1995). Furthermore, P(3HB-co-3HHx) is a flexible material and shows a high 

degree of elongation to break, up to 850% with the incorporation of 17 mol% of 
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3HHx monomer (Doi et al., 1995). A good advantage of a longer chain length PHA 

is, that it is more ductile and easily molded (Zhao and Chen, 2007).      

2.6 Applications of PHA 

 PHA is unique because of their biocompatibility, biodegradability and 

thermoplastic features. PHA has been used in a wide range of applications such as 

industrial, medical, pharmaceuticals, agricultural and food industries as well. In 

industrial applications, PHA has been used in packaging films such as bags, bottles, 

cosmetic containers, golf tees, paper coatings and pens (Holmes et al., 1981; Holmes, 

1988). The usage of PHA also includes disposable items such as plastic bags, razors, 

drinking cups, plates, cutlery, fast-food containers and straws (Siracusa et al., 2008).   

 In agricultural applications, PHA is useful as biodegradable carriers for long 

term dosage of herbicides, fungicides, insecticides or fertilizers (Reddy et al., 2003). 

In medical applications, PHA can be used as osteosynthetic materials in stimulation 

of bone growth due to their piezoelectric properties, in bone plates, surgical sutures 

and blood vessel replacements . Other than that, P(3HB) also shows a high 

biocompatibility to various cell lines such as osteoblastic, epithelial cell and ovine 

chondrocytes (Knowles, 1993; Kunze et al., 2002; Wang et al., 2005; Cheng et al.; 

2006). 

2.7 Biodegradation of PHA 

 The most unique characteristic of PHA is its biodegradability property.  

PHA can be degraded intracellularly and extracellularly into water and carbon 

dioxide by various microorganisms in the environment. PHA biodegradation is 

influenced by their own properties such as crystallinity, stereoregularity, composition 
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and by the environmental conditions includes pH, temperature, moisture level as well 

as nutrient supply (Sudesh et al., 2000). 

 In aerobic condition, monomers will be used up and metabolized by the 

cells to yield carbon dioxide and water. In anaerobic condition, monomers will be 

metabolized by the cells to release methane, carbon dioxide and water into the 

environment.   

 Intracellular degradation is an active degradation, as it occurs in the 

bacterium which produces the polymer itself. This bacterium will hydrolyse the 

polymer by depolymerase enzyme in the cells and utilize it as carbon and energy 

sources. For the extracellular degradation, microorganisms from various 

environments will excrete depolymerase enzyme to hydrolyze PHA or polymers into 

monomers or dimers into the environment.  

 Some of microorganisms that are able to degrade PHA has been isolated 

from various ecosystems such as Aspergillus fumigatus (Mergaert et al., 1993) and 

Comamonas testeroni from soil (Kasuya et al., 1994), Alcaligenes faecalis (Kita et 

al., 1995) and Pseudomonas fluorescens from activated sludge, from soil, 

Pseudomonas stutzeri from lake water (Mukai et al., 1994) and IIyobacter delafieldii 

from anaerobic sludge (Janssen & Harfoot, 1990).     

2.8 Classification of PHA synthases       

  PHA synthase is known to be the key enzyme of the PHA biosynthesis 

pathway. There are numerous of PHA synthase genes from various bacteria have 

been studied in detail at a molecular level (Steinbüchel & Hein, 2001). PHA synthase 

operon of C. necator was firstly cloned and characterized in three different 

laboratories approximately 25 years ago. PHA synthases can be classified into four 
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classes depending on their primary structures, subunit composition and substrate 

specificities as presented in Table 2.2.     

 Class I PHA synthase consists of one type of subunit with the molecular 

weight ranging from 60 to 73 kDa (Qi and Rehm, 2001). This class is represented by 

Cupriavidus necator that produces scl-PHA containing three to five carbon atoms. 

PHA synthase from this class favourably utilizes CoA thioesters from various (R)-3-

hydroxyfatty acids comprise three to five carbon atoms. 

 Class II PHA synthase also consists of one type of subunit with the 

molecular weight  ranging  from 60 to 73 kDa. However, this class of enzyme is 

represented  by two PHA synthases such as PhaC1and PhaC2. PHA synthases from 

this class is presented by Pseudomonas oleovorans which produces mcl-PHA 

containing 6 to 14 carbon atoms. This type of PHA synthases is favoured towards 

CoA thioesters of various (R)-3-hydroxyfatty acids comprise 6 to 14 carbon atoms 

(Rehm, 2003). 

 Unlike two other classes described earlier, class III PHA synthase consists 

of two different types of subunits namely PhaC-subunit and PhaE-subunit. Both of 

the subunits are approximately 40 kDa in molecular weight size and exist in large 

molecular  mass aggregates (Müh et al., 1999). PhaC-subunit  is found to have about 

21 to 28% amino acid identity to the PHA synthases from class I and II. However, 

there is no similarity showed between PhaE-subunit with other classes of PHA 

synthases. This class III PHA synthase is represented by Allochromatium vinosum 

which produces scl-PHA containing three to five carbon atoms. This type of PHA 

synthase prefers CoA thioester of (R)-3-hydroxyfatty acids which comprise three to  
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Table 2.2 Classification of PHA synthase based on subunits and substrate   

specificities 

 

Class 

 

Subunits 

 

Species 

 

Substrate 

 

I 

 

  

Cupriavidus necator 

 

3HASCL-CoA 

(C3-C5) 

4HASCL-CoA 

5HASCL-CoA 

 3MASCL-CoA 

 

II 

 

 

 

 

Pseudomonas 

oleovorans 

 
 

3HASCL-CoA 

(-C5) 

 

 

III 

 

  

Allochromatium 

vinosum 

 

 

3HASCL-CoA 

3HAMCL-CoA 

(-C6-C8) 

4HA-CoA 

5HA-CoA 

 

 

IV 

 

  

Bacillus megaterium 

 
 

3HASCL-CoA 

 

    
(Source: Rehm, 2003) 

 

 

 

 

 

~60-73 kDa 

PhaC 

~60-65 kDa 

~40 kDa  ~40 kDa 

~40 kDa  ~20 kDa 

PhaC 

PhaC  PhaR 

PhaC  PhaE 
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five carbon atoms. This type of PHA synthase prefers CoA thioester of (R)-3-

hydroxyfatty acids which comprise three to five carbon atoms. However, class I and 

III PHA synthases activities are found to be different in vitro compared to in vivo 

(Yuan et al., 2001).  

 Class IV PHA synthase also consists of two subunits such as PhaC-subunit 

and PhaR-subunit with approximately 40 kDA and 20 kDA molecular weights in 

sizes. This class IV PHA synthase is represented by Bacillus megaterium. This type 

of PHA synthase utilizes a similar substrate range as class III PHA synthase.  

2.9 Molecular organization of PHA biosynthesis genes  

 PHA biosynthesis genes and genes for other proteins that are involved in the 

metabolism of PHA frequently appear as a cluster of genes in the bacterial genome 

(Rehm and Steinbüchel, 2002). Regarding PHA biosynthesis genes, the most well 

studied microorganism is C. necator (Steinbüchel and Schlegel, 1991). In C. necator, 

PHA biosynthesis genes that are involved include PHA synthase (phaC), β-

ketothiolase (phaA), and NADPH-dependent acetoacetyl-CoA reductase (phaB) 

arranged in a phaCAB operon (Peoples and Sinskey, 1989a, Peoples and Sinskey, 

1989b, Schubert et al., 1988, Slater et al., 1988).  

 Molecular organization of PHA synthase genes can be divided into four 

groups based on the PHA synthase classes as discussed earlier. Figure 2.5 shows the 

gene organization of PHA biosynthesis genes in representative bacteria from four 

different classes.  

 Class I PHA synthase represents by C. necator which consists of phaC, 

phaA and phaB arranged in a single operon. Pseudomonas oleovorans is represented 
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Type of PHA synthase 

 

Molecular organization of PHA synthase 

 

Class I 

Cupriavidus  necator 

 

Class II 

Pseudomonas oleovorans 

 

Class III 

Allochromatium vinosum 

 

Class IV 

Bacillus megaterium 

 

 

Figure 2.5 Organization of PHA synthases genes 

 (Source: Rehm, 2003) 

 

 

 

 

 

 

phaC (1767 bp) 

-35/-10 

314 bp 

phaC1 (1680 bp) phaC2 (1780 bp) 
-24/-12 

137 bp phaZ (852 bp) 

phaC (1068 bp) phaE (1074 bp) 

57 bp 150 bp 

385bp 82 bp 77bp 

phaR (609 bp) phaB (744 bp) phaC 1089 bp) 

phaA (1179 bp) phaB (738 bp) 

450 bp 
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By class II synthase. This group synthase is having two phaC genes; phaC1 and 

phaC2. The synthases genes are separated by phaZ which encodes for PHA 

depolymerase.   

 Meanwhile, for the class III synthase, phaC and phaE are found to be 

colocalized in a single operon (Liebergesell and Steinbüchel, 1993). For the class IV 

synthase, phaC and phaR is separated by phaB in a single operon. Based on the 

studies by McCool and Cannon, PhaC and PhaR are required for in vivo or in vitro 

activities of PHA synthase from Bacillus megaterium (McCool and Cannon, 2001). 

2.10 Key enzymes of PHA biosynthesis   

2.10.1 β-ketothiolase, PhaA        

 β-ketothiolase is a key regulatory enzyme that channels the direction of 

acetyl-CoA towards PHB biosynthesis (Oeding and Schlegel, 1973). Activity of β-

ketothiolase is inhibited when the concentration of free coenzyme-A is high, thus 

biosynthesis of PHA is inhibited as well. The acetyl-CoA subsequently enters the 

tricarboxylic acid cycle to generate energy and to form amino acid under balanced 

conditions. 

 According to Pohlmann et al. (2006), 15 β-ketothiolases were found in the 

genome sequence of C. necator H16 including phaA and bktB. However, another 13  

isologues of β-ketothiolase (phaA) involve in catabolic pathways based on 

neighbourhood genes found. The existence of the genes that encode for short-chain 

dehydrogenase or dehydrogenases of unknown substrate specificity and 

dioxygenases confirms that those clusters are involved in catabolic processes not in 

PHA biosynthetic pathways.   
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 Slater et al. (1998) reported that β-ketothiolase (bktB) which is located 

approximately 4.5 kb downstream of phaCAB, is required to synthesise P(3HB-co-

3HV) copolymer by C. necator when provided with appropriate carbon source. β-

ketothiolase (bktB) is capable to form β-ketovaleryl-CoA that is driven to the 

accumulation β-hydroxyvalerates and the third bktC was also identified through 

genetic analysis.  

2.10.2 NADPH-dependent acetoacetyl-CoA reductase, PhaBI 

 There are about 39 isologues of acetoacetyl-CoaA reductase PhaB found in 

genome C. necator as reported by Pohlmann et al. (2006). However, not all the 

reductases found are totally involved in PHA biosynthesis pathways. As about 17 of 

PhaB isologues are found on chromosome 1, while another 22 reductases are located 

on chromosome 2. Among three of isologues; phaB1, phaB2 and phaB3 only phaB3 

is located near to phaP3 (encodes for phasin) that involve in PHA metabolism 

(Reinecke & Steinbuchel, 2009).  

2.10.3 PHA synthase, PhaC 

 Two PHA synthases found in C. necator; PhaC1 and PhaC2 which are 

encoded by phaC1 and phaC2, respectively. Both genes are located on the 

chromosome 1 but in different operon. phaC2 is localized at the locus upstream to 

the phaB2, where phaC1 located at the upstream of phaCAB operon. However, based 

on the findings from York et al. (2003) the second PHA synthase (PhaC2) is an 

inactive enzyme as it is unable to accumulate P(3HB) polymer although all the 

essential residues are presence.  

 


